# PAPER DETAILS

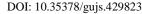
TITLE: Generalized Regression-Cum-Exponential Estimators Using Two Auxiliary Variables for

Population Variance in Simple Random Sampling

AUTHORS: Naureen RIAZ, Muhammad NOUMAN QURESHI, Muhammad HANIF

PAGES: 1045-1058

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/792556





Gazi University

## **Journal of Science**



http://dergipark.gov.tr/gujs

# Generalized Regression-Cum-Exponential Estimators Using Two Auxiliary Variables for Population Variance in Simple Random Sampling

Naureen RIAZ<sup>1,3\*</sup>, Muhammad NOUMAN QURESHI <sup>1,2</sup>, Muhammad HANIF<sup>3</sup>

<sup>1</sup>National College of Business Administration & Economics, Department of Statistics, Lahore, Pakistan

### **Highlights**

- Generalized regression-cum-exponential type estimators are proposed to estimate population variance.
- Bias and MSE have been derived for the proposed estimators.
- Simulation and empirical study proves better functioning of the proposed estimators than the existing one.

### **Article Info**

### Abstract

Received: 01/06/2018 Accepted: 24/10/2018

### Keywords

Auxiliary Information Exponential Estimators Percent Relative Efficiency In this paper, we proposed two generalized regression-cum-exponential type estimators for the estimation of finite population variance using the information of mean and variance of the auxiliary variables in simple random sampling (SRS). The expressions of approximate bias and mean square error (MSE) of the proposed estimators are derived. Many special cases of the proposed estimators are obtained by using different combinations of real numbers and some conventional parameters of the auxiliary variables. Algebraic comparisons of the proposed estimators have been made with some available estimators. From the numerical study, we analyzed that the proposed estimators perform well than the existing estimators available in the literature.

### 1. INTRODUCTION

Auxiliary information is commonly used to improve the efficiency of population parameters of interest. History filled with a lot of authors that have used auxiliary information in order to get the prices estimates. Classical ratio, product, and regression and their mixture-type of estimators are good examples and cornerstone in this background. The estimation of population variance considered to be the best measure in the variations of study variable. Various authors have been done work on estimating the population variance. [1] introduced classical ratio and regression estimators in finite population variance. The effort of [2,3] may be well-thought-out as an early effort in the estimation of population variance. [4] developed the exponential ratio and exponential product type estimators in population variance. [5] developed generalized exponential estimator. [6] developed a ratio-type estimator for finite population variance. [7] utilized a single auxiliary variable to propose an estimator in population variance and provide more efficient results as compare to the ratio estimator. The studies related to the estimation of population variance have made by different authors such as [8-22].

After a brief introduction and literature review, some basics notations and existing estimators are mentioned in Section 2. The expressions of approximate bias and *MSE* of the proposed estimators are derived in Section 3. Section 4 is based on efficiency comparisons. A numerical study is illustrated in Section 5 on three real populations. Conclusion and remarks are given in Section 6.

<sup>&</sup>lt;sup>2</sup>University of Minnesota, School of Statistics, Minneapolis-55108, USA

<sup>&</sup>lt;sup>3</sup> Lahore Garrison University, Department of Statistics, Lahore, Pakistan

### 2. NOTATION AND VARIOUS EXISTING ESTIMATORS

Let  $U = (U_1, U_2, ..., U_N)$  having the units for a finite population U for the population size N and a sample of size n is selected from the population by using the method of SRS without replacement. Here  $S_y^2$ ,  $S_x^2$  and  $S_z^2$  be the population variances, while  $S_y^2$ ,  $S_x^2$  and  $S_z^2$  be the sample variance for our study and auxiliary variables respectively. Let,  $e_0$ ,  $e_1$  and  $e_2$  be the sampling errors such that:

$$\begin{split} s_{y}^{2} &= S_{y}^{2} \left( 1 + e_{0} \right), \ \, s_{x}^{2} &= S_{x}^{2} \left( 1 + e_{1} \right), s_{z}^{2} &= S_{z}^{2} \left( 1 + e_{2} \right), \\ E\left( e_{0} \right) &= E\left( e_{1} \right) = E\left( e_{2} \right) = E\left( e_{11} \right) = E\left( e_{22} \right) = 0, \\ E\left( e_{0}^{2} \right) &= \Theta\left( \lambda_{400} - 1 \right), E\left( e_{1}^{2} \right) = \Theta\left( \lambda_{040} - 1 \right), E\left( e_{2}^{2} \right) = \Theta\left( \lambda_{004} - 1 \right), \\ E\left( e_{0}e_{1} \right) &= \Theta\left( \lambda_{220} - 1 \right), E\left( e_{0}e_{2} \right) = \Theta\left( \lambda_{202} - 1 \right), E\left( e_{2}e_{1} \right) = \Theta\left( \lambda_{022} - 1 \right), \\ \rho_{yx} &= \frac{S_{yx}}{S_{y}S_{x}}, \rho_{yz} = \frac{S_{yz}}{S_{y}S_{z}}, C_{y} = \frac{S_{y}}{\overline{Y}}, C_{x} = \frac{S_{x}}{\overline{X}}, C_{z} = \frac{S_{z}}{\overline{Z}}, w_{1} = \frac{\alpha_{1}}{\delta_{1}}, w_{2} = \frac{\alpha_{2}}{\delta_{2}}. \end{split}$$

Let  $\overline{Y}$ ,  $\overline{X}$  and  $\overline{Z}$  be the population means whereas  $\overline{y}$ ,  $\overline{X}$  and  $\overline{z}$  be the sample means for the study and auxiliary variables respectively. Let  $e_{11}$ ,  $e_{22}$  be the sampling error such that

$$\begin{split} \overline{x} &= \overline{X} \left( 1 + e_{11} \right), \ \overline{z} = \overline{Z} \left( 1 + e_{22} \right), \ s_x^2 = S_x^2 \left( 1 + e_{11} \right), s_z^2 = S_z^2 \left( 1 + e_{22} \right), \\ E \left( e_{11}^2 \right) &= \theta C_x^2, E \left( e_{22}^2 \right) = \theta C_z^2, E \left( e_0 e_{11} \right) = \theta \lambda_{210} C_x, E \left( e_0 e_{22} \right) = \theta \lambda_{201} C_z, \\ E \left( e_2 e_{11} \right) &= \theta \lambda_{012} C_x, E \left( e_1 e_{22} \right) = \theta \lambda_{021} C_z, E \left( e_{11} e_{22} \right) = \theta \rho_{xz} C_x C_z, \theta = \frac{1}{n}, \\ \lambda_{abc} &= \frac{\mu_{abc}}{\mu_{200}^2 \mu_{020}^2 \mu_{002}^2}, \mu_{abc} = \frac{1}{N-1} \sum_{i=1}^N \left( Y_i - \overline{Y} \right)^a \left( X_i - \overline{X} \right)^b \left( Z_i - \overline{Z} \right)^c, \\ y f_{004} &= \frac{\left( \lambda_{004} - 1 \right)}{\left( \lambda_{400} - 1 \right)}, \ y f_{220} = \frac{\left( \lambda_{220} - 1 \right)}{\left( \lambda_{400} - 1 \right)}, \ x f_{220} = \frac{\left( \lambda_{220} - 1 \right)}{\left( \lambda_{040} - 1 \right)}, \\ x f_{022} &= \frac{\left( \lambda_{022} - 1 \right)}{\left( \lambda_{040} - 1 \right)}, \ z f_{202} = \frac{\left( \lambda_{202} - 1 \right)}{\left( \lambda_{004} - 1 \right)}, \\ M_1 &= \frac{1}{A^2} \left[ \ y f_{004} R_1 + \ y f_{040} R_2 + 2 \ y f_{002} R_3 \right] - \frac{2}{A} R_4, \ P = \frac{\lambda_{012}^2 R_2}{B^2 \left( \lambda_{004} - 1 \right)} - \frac{2R_3}{B} - \frac{1}{4} C_x^2 + \lambda_{210} C_x, \\ M_2 &= \frac{\lambda_{012}^2 R_2}{B^2 \left( \lambda_{004} - 1 \right)} + \frac{1}{B^2} \left( R_3 - 2\lambda_{012}^2 \lambda_{210}^2 \right) - \frac{2R_3}{B}, A = 1 - \ x f_{220} \ z f_{022}, B = \left( \frac{1 - \lambda_{012}^2}{\left( \lambda_{004} - 1 \right)} \right), \end{split}$$

where a,b and c be the non-negative integers. The quantities  $\mu_{200}$ ,  $\mu_{020}$  and  $\mu_{002}$  be the second order moments and  $\lambda_{abc}$  be the moment ratio.

The sample means and variances of the study and auxiliary variable may obtained as:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
,  $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$  and  $\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$ ,

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$$
,  $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$  and  $s_z^2 = \frac{1}{n-1} \sum_{i=1}^n (z_i - \overline{z})^2$ .

Similarly, the population means and variances of the study and auxiliary variables may be obtained as:

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
,  $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$  and  $\overline{Z} = \frac{1}{N} \sum_{i=1}^{N} Z_i$ ,

$$S_y^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i - \overline{Y})^2, \ S_x^2 = \frac{1}{N-1} \sum_{i=1}^N (X_i - \overline{X})^2 \text{ and } S_z^2 = \frac{1}{N-1} \sum_{i=1}^N (Z_i - \overline{Z})^2.$$

In literature, the unbiased variance estimator without having auxiliary information for the finite population is

$$t_0 = s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2.$$
 (1)

The variance of  $t_0$  is given as

$$Var(t_0) = \theta S_v^4 (\lambda_{400} - 1).$$
 (2)

[1] proposed the classical ratio and regression estimators for the estimation of finite population variance as

$$t_1 = s_y^2 \left(\frac{S_x^2}{s_x^2}\right),\tag{3}$$

$$t_2 = s_y^2 + b_1 \left( S_x^2 - s_x^2 \right), \tag{4}$$

where  $b_1 = S_v^2 (\lambda_{220} - 1) / S_v^2 (\lambda_{040} - 1)$ , which is regression coefficient.

The expressions of MSE of  $t_1$  and  $t_2$  up to the first order approximation are respectively given as

$$MSE(t_1) \approx \Theta S_y^4 \left[ \lambda_{400} + \lambda_{040} - 2\lambda_{220} \right],$$
 (5)

$$MSE(t_2) \approx \Theta S_y^4 \left( \lambda_{400} - 1 \right) \left[ 1 - {}_x f_{220 \ y} f_{220} \right].$$
 (6)

The traditional regression estimator for population variance using the mean of the auxiliary variable is

$$t_3 = s_y^2 + b_2(\overline{X} - \overline{x}), \tag{7}$$

where,  $b_2 = S_v^2 (\lambda_{210}) / \bar{X}C_x$  which is regression coefficient.

The expression of mean square error of  $t_3$  up to the first order approximation is given as

$$MSE(t_3) \approx \theta S_y^4 \Big[ (\lambda_{400} - 1) - \lambda_{210}^2 \Big].$$
 (8)

[4] introduced exponential ratio and exponential product-type estimators using the information of single auxiliary variable for the finite population variance are

$$t_4 = s_y^2 \exp\left(\frac{S_x^2 - s_x^2}{S_x^2 + s_x^2}\right),\tag{9}$$

$$t_5 = s_y^2 \exp\left(\frac{s_z^2 - S_z^2}{S_z^2 + s_z^2}\right). \tag{10}$$

The expressions of MSE for  $t_4$  and  $t_5$  up to the first order approximation are respectively given as

$$MSE(t_4) \approx \Theta S_y^4 \left[ \lambda_{400} + \frac{\lambda_{040}}{4} - \lambda_{220} + \frac{1}{4} \right],$$
(11)

$$MSE(t_5) \approx \Theta S_y^4 \left[ \lambda_{400} + \frac{\lambda_{004}}{4} + \lambda_{202} - \frac{9}{4} \right].$$
 (12)

[5] introduced a generalized exponential-type estimator using the auxiliary information of finite population variance as

$$t_6 = s_y^2 \exp\left[\frac{S_x^2 - s_x^2}{S_x^2 + (\alpha - 1)s_x^2}\right]. \tag{13}$$

The expression of minimum MSE of  $t_6$  up to the first order approximation is

$$MSE_{min}(t_6) = \Theta S_y^4 (\lambda_{400} - 1) \left[ 1 - {}_y f_{220 \ x} f_{220} \right],$$
where  $\alpha_{out} = (\lambda_{040} - 1)/(\lambda_{220} - 1).$  (14)

[8] introduced exponential ratio and exponential product-type estimators using the mean of the auxiliary variable as

$$t_7 = s_y^2 \exp\left(\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right),\tag{15}$$

$$t_8 = s_y^2 \exp\left(\frac{\overline{x} - \overline{X}}{\overline{X} + \overline{x}}\right). \tag{16}$$

The expressions of MSE of  $t_7$  and  $t_8$  up to the first order term are given as

$$MSE(t_7) \approx \Theta S_y^2 \left[ (\lambda_{400} - 1) - \lambda_{210} C_x + \frac{1}{4} C_x^2 \right].$$
 (17)

$$MSE(t_8) \approx \Theta S_y^2 \left[ (\lambda_{400} - 1) + \lambda_{210} C_x + \frac{1}{4} C_x^2 \right].$$
 (18)

[9] suggested new variance estimator as

$$t_9 = \frac{s_y^2}{2} \left[ \frac{S_x^2}{s_x^2} + \exp\left(\frac{S_x^2 - s_x^2}{S_x^2 + s_x^2}\right) \right]. \tag{19}$$

The expression of MSE of  $t_9$  up and around to the first order term is given as

$$MSE(t_9) \approx \Theta S_y^4 \left[ (\lambda_{400} - 1) + \frac{3(\lambda_{040} - 1)}{16} (3 - 8_x f_{220}) \right].$$
 (20)

[10] suggested a new exponential-type estimator. The estimator along with the expression of its variance is

$$t_{10} = s_y^2 \exp\left[\frac{\sqrt{\bar{X}} - \sqrt{\bar{x}}}{\sqrt{\bar{X}} + \sqrt{\bar{x}}}\right],\tag{21}$$

$$MSE(t_{10}) = \Theta S_y^4 \left[ \lambda_{400} + \frac{1}{2} C_x \left( \frac{1}{8} C_x - \lambda_{210} \right) - 1 \right].$$
 (22)

[11] proposed exponential-type estimator using a single auxiliary variable as

$$t_{11} = \lambda s_y^2 \exp\left[\frac{c(\overline{X} - \overline{x})}{\overline{X} + (d - 1)\overline{x}}\right] \exp\left[\frac{e(S_x^2 - s_x^2)}{S_x^2 + (f - 1)s_x^2}\right],\tag{23}$$

the expression of minimum mean square error of  $t_{11}$  up to the first order approximation is given as

$$MSE_{min}(t_{11}) = \Theta S_{y}^{4} \left[ \left( \lambda_{400} - 1 \right) - \lambda_{210}^{2} - \left\{ \frac{\left( \left( \lambda_{220} - 1 \right) - \lambda_{210} \left( \lambda_{030} \right) \right)^{2}}{\left( \lambda_{040} - 1 \right) - \lambda_{030}^{2}} \right\} \right].$$
(24)

### 3. PROPOSED GENERALIZED ESTIMATORS

In this section, two generalized regression-cum-exponential type estimators are proposed by using the variance and mean respectively as the auxiliary variables in simple random sampling. The estimators are defined as

$$t_{n1} = \left[ S_y^2 + k_1 \left( S_z^2 - S_z^2 \right) \right] \exp \left[ \alpha_1 \frac{S_x^2 - S_x^2}{S_x^2 + (\delta_1 - 1)S_x^2} \right]$$
 (25)

and

$$t_{n2} = \left[ s_y^2 + k_2 \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \alpha_2 \left( \frac{\overline{X} - \overline{x}}{\overline{X} + \left( \delta_2 - 1 \right) \overline{x}} \right) \right], \tag{26}$$

where,  $k_1, k_2, \delta_1, \delta_2$  ( $\delta_1, \delta_2 > 0$ ) be the constants and need to be optimized for the expressions of minimum mean square errors for proposed estimators ( $t_{n1}, t_{n2}$ ). The generalized constants  $\alpha_1$  and  $\alpha_2$  can assume values -1, 0 and 1 to generate many special cases of the suggested estimators.

### 3.1. Bias and *MSE* for the Proposed Estimator-I $(t_{nl})$

In order to derive the expression of bias of the proposed estimator  $t_{n1}$ , we may write (25) in terms of e's as

$$t_{n1} = \left[ S_y^2 (1 + e_0) + k_1 \left\{ S_z^2 - S_z^2 (1 + e_2) \right\} \right] \exp \left[ \alpha \left( \frac{S_x^2 - S_x^2 (1 + e_1)}{S_x^2 + (S_1 - 1)S_x^2 (1 + e_1)} \right) \right]. \tag{27}$$

Simplifying and applying Taylor series and ignoring the terms beyond the second order terms

$$t_{n1} \approx \left[ S_y^2 + S_y^2 e_0 - k_1 S_z^2 e_2 \right] \left[ 1 - \frac{\alpha_1}{\delta_1} e_1 + \frac{\alpha_1}{\delta_1} e_1^2 - \frac{\alpha_1}{\delta_1^2} e_1^2 + \frac{\alpha_1^2}{2\delta_1^2} e_1^2 \right]. \tag{28}$$

On simplification of (28), we have

$$t_{n1} - S_y^2 \approx \left[ -w_1 S_y^2 e_1 + w_1 S_y^2 e_1^2 \left( 1 - \frac{1}{\delta_1} + \frac{w_1}{2} \right) + S_y^2 e_0 - w_1 S_y^2 e_1 e_0 - k_1 S_z^2 e_2 + w_1 k_1 S_z^2 e_1 e_2 \right], \tag{29}$$

where

$$\xi_1 = \left(1 - \frac{1}{\delta_1} + \frac{w_1}{2}\right).$$

Simplifying and taking expectations of (29), we may get the expression of bias of the proposed estimator as

$$Bias(t_{n1}) \approx \theta w_1 S_y^2 \left(\lambda_{040} - 1\right) \left[ \xi_1 - {}_x f_{220} + k_1 \frac{S_z^2}{S_y^2} {}_x f_{022} \right].$$
(30)

In order to get the expression of MSE of the proposed estimator  $t_{n1}$ , we expand (27) using Tylor series up to the first order of approximation as

$$t_{n1} - S_{\nu}^2 \approx S_{\nu}^2 e_0 - k_1 S_{\nu}^2 e_2 - w_1 S_{\nu}^2 e_1. \tag{31}$$

By taking Square of (31) and ignoring the higher order terms

$$\left(t_{n1} - S_y^2\right)^2 \approx \left[S_y^4 e_0^2 + k_1^2 S_z^4 e_2^2 + w_1^2 S_y^4 e_1^2 - 2k_1 S_y^2 S_z^2 e_0 e_2 + 2k_1 w_1 S_y^2 S_z^2 e_1 e_2 - 2w_1 S_y^4 e_0 e_1\right],\tag{32}$$

by taking expectations on both sides of (32), we have the expression of MSE as

$$MSE(t_{n1}) \approx \theta(\lambda_{400} - 1) \left[ S_y^4 \left\{ 1 + w_{1x}^2 f_{040} - 2w_{1x} f_{220} \right\} + k_1^2 S_{zx}^4 f_{004} + 2S_y^2 S_z^2 \left\{ w_{1x} f_{022} - x f_{202} \right\} \right]. \tag{33}$$

In order to minimize the expression of (33) with respect to " $w_1$ " and " $k_1$ " yield its optimum values as

$$w_{1(opt)} = \frac{1}{A} \left[ {}_{x} f_{220} - {}_{x} f_{022} {}_{z} f_{202} \right] \quad \text{and} \quad k_{1(opt)} = \frac{S_{y}^{2}}{S_{z}^{2}} \frac{1}{A} \left[ A_{z} f_{202} - {}_{z} f_{022} {}_{x} f_{220} + {}_{z} f_{022} {}_{x} f_{022} {}_{z} f_{202} \right].$$

The expression of the minimized mean square error of  $t_{n1}$  after substituting the values of  $w_{1 (opt)}$  and  $k_{1 (opt)}$  obtained as,

$$MSE_{\min}(t_{n1}) \approx \theta S_y^4 (\lambda_{400} - 1) \frac{1}{A^2} \left[ A^2 + \left( R_{1y} f_{004} + R_{2y} f_{040} + 2R_{3y} f_{022} \right) - 2AR_4 \right], \tag{34}$$

where,

$$R_{1} = \begin{bmatrix} z f_{202}^{2} + z f_{022}^{2} x f_{220}^{2} - 2z f_{202} z f_{022} x f_{220} \end{bmatrix}, R_{2} = \begin{bmatrix} x f_{220}^{2} + x f_{022}^{2} z f_{202}^{2} - 2z f_{202} x f_{022} x f_{220} \end{bmatrix},$$

$$R_3 = \left[ {}_{x}f_{220} {}_{z}f_{202} - {}_{x}f_{220}^{2} {}_{z}f_{022} - {}_{z}f_{202}^{2} {}_{x}f_{022} + {}_{x}f_{022} {}_{x}f_{220} {}_{z}f_{202} {}_{z}f_{022} \right].$$

### 3.2. Bias and MSE for Proposed Estimator-II $(t_{n2})$

In order to derive the expression of bias for the proposed estimators  $t_{n2}$ , we may express (26) in terms of e's as,

$$t_{n2} = \left[ S_y^2 \left( 1 + e_0 \right) + k_2 \left\{ S_z^2 - S_z^2 \left( 1 + e_2 \right) \right\} \right] \exp \left[ \alpha_2 \left( \frac{\overline{X} - \overline{X} \left( 1 + e_{11} \right)}{\overline{X} + (\delta_2 - 1) \overline{X} \left( 1 + e_{11} \right)} \right) \right]. \tag{35}$$

Simplifying and applying Taylor series on (35) up to the second order of approximation, we have

$$\left(t_{n2} - S_y^2\right) \approx \left[S_y^2 e_0 - w_2 S_y^2 e_{11} + w_2 S_y^2 e_{11}^2 \left(1 - \frac{1}{\delta_2} + \frac{w_2}{2}\right) - w_2 S_y^2 e_0 e_{11} - k_2 S_z^2 e_2 + k_2 w_2 S_z^2 e_2 e_{11}\right].$$
 (36)

Applying expectation on (36), we have the final expression of the approximate bias of the proposed estimators  $t_{n2}$ , as

$$Bias(t_{n2}) \approx \theta S_y^2 C_x^2 w_2 \left[ \xi_2 - \lambda_{210} + k_2 \frac{S_z^2}{S_y^2} \lambda_{012} \right] \text{ where } \xi_2 = \left( 1 - \frac{1}{\delta_2} + \frac{w_2}{2} \right).$$
 (37)

In order to get the expression of MSE for the proposed estimator  $t_{n2}$ , we expand (35) up to first order of approximation as

$$t_{n2} - S_{y}^{2} = S_{y}^{2} e_{0} - k_{2} S_{z}^{2} e_{2} - S_{y}^{2} w_{2} e_{11}.$$

$$(38)$$

By taking square and after simplifying the (38), we have

$$(t_{n2} - S_{y}^{2})^{2} = \left[ S_{y}^{4} e_{0}^{2} + k_{2}^{2} S_{z}^{4} e_{2}^{2} + S_{y}^{4} w_{2}^{2} e_{11}^{1} - 2k_{2} S_{y}^{2} S_{z}^{2} e_{0} e_{2} + 2k_{2} w_{2} S_{y}^{2} S_{z}^{2} e_{2} e_{11} - 2w_{2} S_{y}^{4} e_{0} e_{11} \right].$$
 (39)

By taking expectations of (39), we have

$$MSE(t_{n2}) \approx \theta \begin{bmatrix} S_y^4 (\lambda_{400} - 1) + k_2^2 S_z^4 (\lambda_{004} - 1) \\ +2k_2 S_y^2 S_z^2 \{w_2(\lambda_{012}) C_x - (\lambda_{202} - 1)\} - 2w_2 S_y^4 (\lambda_{210}) C_x + S_y^4 w_2^2 C_x^2 \end{bmatrix}.$$
(40)

In order to obtain the expression of minimum MSE, differentiating (40) with respect to " $w_2$ " and " $k_2$ " yield its optimum values

$$w_{2(opt)} = \frac{1}{BC_x} \left[ \left( \lambda_{210} \right) - \left( \lambda_{012} \right)_z f_{202} \right] \quad \text{and} \quad k_{2(opt)} = \frac{S_y^2}{S_z^2} \left[ \left( z f_{202} \right) - Z \left\{ \left( \lambda_{210} \right) - \left( \lambda_{012} \right) \left( z f_{202} \right) \right\} \right].$$

The final expression of the minimize MSE of  $t_{n2}$  after substitute the values of  $w_{2(opt)}$  and  $k_{2(opt)}$  is,

$$MSE_{\min}(t_{n2}) \approx \theta S_y^4 \left[ (\lambda_{400} - 1) R_1 + \frac{1}{B^2} \left\{ Z(\lambda_{012}) R_2 + \left( R_3 - 2(\lambda_{012})^2 (\lambda_{210})^2 \right) - 2BR_3 \right\} \right], \tag{41}$$

where

$$R_{4} = \left[1 + \left(y f_{004}\right)\left(z f_{202}\right)^{2} - 2\left(y f_{202}\right)\left(z f_{202}\right)\right], R_{5} = \left[\left(\lambda_{210}\right)^{2} - \left(\lambda_{012}\right)^{2}\left(z f_{202}\right)^{2} + 2\left(z f_{202}\right)\left(\lambda_{210}\right)\left(\lambda_{012}\right)\right],$$

$$R_6 = \left[ \left( \lambda_{210} \right)^2 + \left( \lambda_{012} \right)^2 \left( {}_z f_{202} \right)^2 - 2 \left( {}_z f_{202} \right) \left( \lambda_{210} \right) \left( \lambda_{012} \right) \right], \quad Z = \frac{\left( \lambda_{012} \right)}{B(\lambda_{004} - 1)}.$$

The details of populations are presented in Appendix Table-B3 in order to judge the performance of the proposed estimators over the competing estimators at optimum conditions. Some special cases of the proposed estimators are summarized in appendix-A

# 4. EFFICIENCY COMPARISON OF PROPOSED ESTIMATORS WITH SOME EXISTING ESTIMATORS

The efficiency comparisons of the proposed estimators with some relevant competing estimators are given as

i. The proposed  $(t_{n1})$  will be more precise estimator than the [1] estimator given in (3) if

$$MSE_{\min}(t_{n1}) < MSE(t_1),$$

$$_{x}f_{220}$$
  $_{y}f_{220} + M_{1} < 0$ .

ii. The proposed  $(t_{n1})$  will be more precise estimator than the [4] estimator given in (9) if

$$MSE_{\min}(t_{n1}) < MSE(t_4),$$

$$M_1(\lambda_{400}-1)-\frac{\lambda_{040}}{4}+\lambda_{220}-\frac{5}{4}<0.$$

iii. The proposed  $(t_{n1})$  will be more precise estimator than the [9] estimator given in (19)

$$MSE_{\min}(t_{n1}) < MSE(t_9),$$

$$M_1(\lambda_{400}-1)+\frac{3(\lambda_{040}-1)}{16}(3-8_xf_{220})<0.$$

iv. The proposed  $(t_{n2})$  will be more precise estimator than the traditional regression estimator given in (13) if

$$MSE_{\min}(t_{n2}) < MSE(t_3),$$

$$(\lambda_{100}-1)(R_1-1)+\lambda_{210}^2<0.$$

v. The proposed  $(t_{n2})$  will be more precise estimator than the [8] estimator given in (15) if

$$MSE_{\min}(t_{n2}) < MSE(t_7),$$

$$(\lambda_{400}-1)(R_1-1)+\lambda_{210}C_x-0.25C_x^2+M_2<0.$$

vi. The proposed  $(t_{n2})$  will be more precise estimator than the [11] the estimator is given in (23) if  $MSE_{min}(t_{n2}) < MSE(t_{11})$ ,

$$(\lambda_{400}-1)(R_1-1)+\lambda_{210}^2+M_2+P<0.$$

### 5. NUMERICAL STUDY

In this section, we set up two types of numerical studies in order to evaluate the performance of the estimators consider in this paper using three real populations. The judgment for the evaluation of suggested estimators are illustrated with traditional unbiased variance estimator. The amount of ARB, MSE and percent relative efficiency (PRE's) may be obtained by using the following mathematical formulas as

$$ARB(t_i) = \frac{\left| \frac{1}{R} \sum_{i=1}^{R} (t_i - S_y^2) \right|}{S_y^2},$$
(42)

$$MSE(t_i) = \frac{1}{R} \sum_{i=1}^{R} (t_i - S_y^2)^2,$$
(43)

and

$$PRE = \frac{Var(t_0)}{MSE(t_*)} \times 100, \tag{44}$$

where 'R' (R= 20,000) is the total number of iterations and  $t_i$  be the relevant estimators for i<sup>th</sup> sample. The performance of the proposed estimators depends on PRE, such that the value greater than one hundred indicates that the proposed estimators are more efficient than the usual variance estimator.

### 5.1. Theoratical Study

In this section, we evaluated the performance of our proposed estimators on three real populations using an empirical study and the results of *PRE*'s are summarized in Table 1. The sources of populations along with the descriptions of study and auxiliary variables are given in Appendix-B.

| imators |
|---------|
| į       |

| Estimators    | Populations |          |          |  |
|---------------|-------------|----------|----------|--|
| Estillators   | 1           | 2        | 3        |  |
| $t_0 = S_y^2$ | 100         | 100      | 100      |  |
| $t_1$         | 41.5495     | 157.2156 | 89.4363  |  |
| $t_2$         | 108.2613    | 180.2517 | 102.5925 |  |
| $t_3$         | 100.0395    | 138.2660 | 109.2543 |  |
| $t_4$         | 74.6328     | 140.2744 | 91.1857  |  |
| $t_6$         | 108.2613    | 180.2517 | 102.5925 |  |
| $t_7$         | 99.6919     | 80.9687  | 93.8899  |  |

| $t_9$                  | 61.1047  | 179.5361 | 96.6753  |
|------------------------|----------|----------|----------|
| <i>t</i> <sub>10</sub> | 100.0395 | 109.9673 | 102.6304 |
| <i>t</i> <sub>11</sub> | 120.5324 | 183.3319 | 109.2887 |
| $t_{n1}$ (proposed)    | 151.3692 | 323.9974 | 139.9441 |
| $t_{n2}$ (proposed)    | 159.4911 | 348.4204 | 149.7324 |

The results of the empirical study are presented in Table1 indicate that our proposed estimators  $t_{n1}$ ,  $t_{n2}$  performed better and found to be the most efficient estimators as compared to [1]  $t_1$ ,  $t_2$  and  $t_3$  estimators, [4] estimator  $t_4$ , [8] estimator  $t_5$ , [9] estimators  $t_9$ , [10] estimator  $t_{10}$  and [11] estimator  $t_{11}$ .

### **5.2. Simulation Study**

In this simulation we consider six sample sizes n=8, 11,14,17,20 and 23 to evaluate the performance of proposed estimators and the results are summarized in Table 2 and Table 3 respectively. The following steps have been used to compute the ARB's and PRE's by using the R-Language software.

- Step1 From population 3, Twenty thousand samples of size n we selected using SRSWOR.
- Step2 Using the sample of step 1, Twenty thousand values of all the estimators are obtained from each sample size to achieve the efficiency in the estimation.
- Step3 The *ARB*, and *PRE* of all the considered estimators are computed using the formula given in eq.(42) and eq.(44).

| T 11 0  |             | 7                | 7 .    | C 11 .1   | . •          | •     | 1.00      | , ,          |
|---------|-------------|------------------|--------|-----------|--------------|-------|-----------|--------------|
| Table 2 | ! Absolute  | relative         | hias o | t all the | ostimators.  | tor a | littørønt | sample sizes |
| 1 WUW 2 | • 110000000 | <i>i</i> ciuiivc | vius o | i an inc  | Communicions | ioi u |           | sumpic sizes |

|                        | Sample size |        |        |        |        |        |
|------------------------|-------------|--------|--------|--------|--------|--------|
| Estimators             | 8           | 11     | 14     | 17     | 20     | 23     |
| $t_0 = s_y^2$          | 0.6456      | 0.3736 | 0.5064 | 0.4935 | 0.3325 | 0.2009 |
| $t_1$                  | 0.3917      | 0.1893 | 0.2417 | 0.4295 | 0.1559 | 0.0258 |
| $t_2$                  | 0.5222      | 0.3064 | 0.4032 | 0.4802 | 0.2706 | 0.1504 |
| $t_3$                  | 0.6164      | 0.3903 | 0.4706 | 0.4804 | 0.3186 | 0.1842 |
| $t_4$                  | 0.5387      | 0.2879 | 0.3902 | 0.4611 | 0.2498 | 0.1101 |
| $t_6$                  | 0.5779      | 0.3214 | 0.4340 | 0.4744 | 0.2823 | 0.1480 |
| $t_7$                  | 0.6205      | 0.3953 | 0.4625 | 0.4524 | 0.3112 | 0.1592 |
| $t_9$                  | 0.4652      | 0.2386 | 0.3159 | 0.4453 | 0.2028 | 0.0679 |
| $t_{10}$               | 0.6333      | 0.3846 | 0.4849 | 0.4728 | 0.3219 | 0.1799 |
| <i>t</i> <sub>11</sub> | 0.6268      | 0.3749 | 0.4799 | 0.4762 | 0.3182 | 0.1795 |
| $t_{n1}$ (Proposed)    | 0.6839      | 0.5362 | 0.1652 | 0.5181 | 0.0319 | 0.0087 |
| $t_{n2}$ (Proposed)    | 0.6526      | 0.5382 | 0.0618 | 0.5017 | 0.0303 | 0.0499 |

Table 3: Percentage relative efficiencies for all the estimators of different sample sizes

|                        | Sample size |          |          |          |          |          |
|------------------------|-------------|----------|----------|----------|----------|----------|
| Estimators             | 8           | 11       | 14       | 17       | 20       | 23       |
| $t_0 = s_y^2$          | 100         | 100      | 100      | 100      | 100      | 100      |
| $t_1$                  | 68.8873     | 76.4613  | 76.94706 | 76.5429  | 77.6677  | 77.3710  |
| $t_2$                  | 102.9675    | 103.2390 | 103.2839 | 102.9013 | 102.7457 | 102.4545 |
| $t_3$                  | 102.1620    | 102.2128 | 102.2547 | 102.2111 | 102.2037 | 102.1727 |
| $t_4$                  | 101.3425    | 100.2903 | 98.9985  | 97.5976  | 97.2824  | 96.5506  |
| $t_6$                  | 102.8320    | 102.1749 | 101.3834 | 100.5272 | 100.2806 | 99.8629  |
| $t_7$                  | 105.4710    | 104.5317 | 104.0685 | 103.5067 | 103.2695 | 103.0139 |
| $t_9$                  | 87.11435    | 90.0978  | 89.3678  | 88.2704  | 88.5735  | 87.9722  |
| <i>t</i> <sub>10</sub> | 103.0179    | 102.5238 | 102.2670 | 101.9794 | 101.8474 | 101.7150 |
| $t_{11}$               | 102.9033    | 102.4082 | 102.1174 | 101.8063 | 101.6656 | 101.5269 |
| $t_{n1}$ (Proposed)    | 132.7014    | 135.3150 | 139.5052 | 141.5388 | 141.2783 | 141.3261 |
| $t_{n2}$ (Proposed)    | 135.7227    | 137.8522 | 141.5803 | 143.2343 | 142.7709 | 142.3033 |

### 6. CONCLUSION

The results illustrated in Section-5 which are summarized in Table 2, Table 3 and Table 4 respectively shows that the proposed estimators are more efficient than the other estimators considered in this paper. The results obtained from empirical study as shown in Table 1 found to be more superior then the other existing estimators. From the results of simulation study, it is visibly acquired that the values of ARB for all the estimators tend to zero and the PRE increases by increasing the sample sizes as shown in Table 2 and Table 3 respectively. Hence the proposed estimators are most efficient and useful for the estimation of finite population variance. Some special cases of proposed estimators are given in Appendix-A. Source of populations, description of variables and results of parameters are given in Appendix-B.

### **ACKNOWLEDGEMENT**

The authors are thankful to the anonymous raferees for the improvement of the paper. The first author is greatful to Syed Wasim Abbas for the final editing of the paper

### **CONFLICTS OF INTEREST**

No conflict of interst was declared by the authors.

### **REFERENCES**

- Isaki, C.T., "Variance estimation using auxiliary information", Journal of the American Statistical [1] Association, 78(381): 117-123, (1983).
- [2] Prasad, B., Singh, H.P., "Some improved ratio-type estimators of finite population variance in sample surveys", Communications in Statistics-Theory and Methods, 19(3): 1127-1139, (1990).
- Prasad, B., Singh, H.P., "Unbiased estimators of finite population variance using auxiliary [3] information in sample surveys", Communications in Statistics-Theory and Methods, 21(5): 1367-1376, (1992).
- [4] Singh, R., Chauhan, P., Sawan, N., Smarandache, F., "Improved exponential estimator for population variance using two auxiliary variables", Italian Journal of Pure and Applied Mathematics, 28: 101-108, (2011).
- Yaday, S.K., Kadilar, C., "Improved Exponential Type Ratio Estimator of Population Variance", [5] Revista Colombiana de Estadística, 36(1): 145-152, (2013).
- Upadhyaya, L.N., Singh, H.P., "An estimator for population variance that utilizes the kurtosis of an [6] auxiliary variable in sample surveys", Vikram Mathematical Journal, 19(1):14-17, (1999).
- Jhaji, H.S., Sharma, M.K., Grover, L.K., "An efficient class of chain estimators of population [7] variance under sub-sampling scheme", Journal of the Japan Statistical Society, 35(2): 273-286, (2005).
- Asghar, A., Sanaullah, A., Hanif, M., "Generalized exponential type estimator for population [8] variance in survey sampling", Revista Colombiana de Estadística, 37(1): 213-224,(2014).
- Singh, H.P., Singh, A.K., Solanki, R.S., "Estimation of finite population variance using auxiliary [9] information in sample surveys", Statistica, 74(1): 95-112, (2014).
- [10] Ahmed, A., Singh, R. V. K., "Improved exponential type estimators for estimating population variance in survey sampling", International Journal of Advance Research, IJOAR .org, 33(1): 1-16, (2015).
- Gupta, S., Shabbir, J., "Variance estimation in simple random sampling using auxiliary [11] information", Hacettepe Journal of Mathematics and Statistics, 37(1): 57-67, (2008).
- Cekim, H.O., Kadilar, C., "Generalized family of estimators via two auxiliary variables for [12] population variance", Journal of Reliability and Statistical Studies, 11(1): 67-81, (2018).
- Grover, L.K., "A correction note on improvement in variance estimation using auxiliary [13] information", Communications in Statistics—Theory and Methods, 39(5): 753-764, (2010).

- [14] Jhajj, H.S., Lata, K., "A family of difference-cum-exponential type estimators for estimating the population variance using auxiliary information in sample surveys", Journal of Mathematics and Statistics Sciences, 3(4): 10-14, (2015).
- [15] Kadilar, C., Cingi, H., "Improvement in variance estimation using auxiliary information", Hacettepe Journal of Mathematics and Statistics, 35(1): 111-115, (2006).
- [16] Khan, M., Shabbir, J., "A ratio type estimator for the estimation of population variance using quartiles of an auxiliary variable", Journal of Statistics Applications & Probability, 2(3): 319-325, (2013).
- [17] Maqbool, S., Javaid, S., "Variance estimation using linear combination of tri-mean and quartile average", American Journal of Biological and Environmental Statistics, 3(1): 5-9, (2017).
- [18] Subramani, J., Kumarapandiyan, G., "Variance estimation using median of the auxiliary variable", International Journal of Probability and Statistics, 1(3): 36-40, (2012).
- [19] Subramani, J., Kumarapandiyan, G., "Estimation of variance using known coefficient of variation and median of an auxiliary variable", Journal of Modern Applied Statistical Methods, 12(1):58-64, (2013).
- [20] Singh, H.P., Solanki, R.S., "A new procedure for variance estimation in simple random sampling using auxiliary information", Statistical Papers, 54(2): 479-497, (2013).
- [21] Yadav, S.K., Misra, S., Mishra, S.S., "Efficient estimator for population variance using auxiliary variable", American Journal of Operational Research, 6(1): 9-15, (2016).
- [22] Shabbir, J., Gupta, S., "A note on generalized exponential type estimator for population variance in survey sampling", Revista Colombiana de Estadística, 38(2): 385-397, (2015).
- [23] Singh, H.P., Espejo, M.R., "On linear regression and ratio-product estimation of a finite population mean", Journal of the Royal Statistical Society: Series D (The Statistician), 52(1): 59-67, (2003).
- [24] Cochran, W.G., "Sampling Techniques", New York: John Wiley and Sons, (1977).
- [25] Gujarati, D.N., "Basic econometrics", Tata McGraw-Hill Education, (2009).
- [26] Sukhatme, P.V., Sukhatme, B.V., "Sampling Theory of Surveys with Applications", Asia Publishing House, New Delhi, (1970).

# **APPENDIX-A**

The proposed estimators  $t_{n1}$  and  $t_{n2}$  may produce many special cases by using different values  $\alpha_1, \alpha_2, k_1, k_2$   $\delta_1$  and  $\delta_2$ . Some of them are listed below.

Table A1. Some Special Cases of Proposed Estimators

| Table A1. Some Special Cases of F                                                                                                                                   | roposea Estimators                                                                                                                                                                              |                    |            |                |          |                                   |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|----------------|----------|-----------------------------------|------------------------------------|
| $t_{n1}$                                                                                                                                                            | $t_{n2}$                                                                                                                                                                                        | $\alpha_{_{\! 1}}$ | $\alpha_2$ | $k_1$          | $k_2$    | $\delta_{\!\scriptscriptstyle 1}$ | $\delta_{\!\scriptscriptstyle 2}$  |
| $t_0 = s_y^2$                                                                                                                                                       | $t_0 = s_y^2$                                                                                                                                                                                   | 0                  | 0          | 0              | 0        | 1                                 | 1                                  |
| $t_{n1}^1 = s_y^2 \exp\left[\frac{S_x^2 - s_x^2}{S_x^2}\right]$                                                                                                     | $t_{n2}^{1} = s_{y}^{2} \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X}} \right]$                                                                                                   | 1                  | 1          | 0              | 0        | 1                                 | 1                                  |
| $t_{n1}^{2} = s_{y}^{2} \exp \left[ \frac{S_{x}^{2} - s_{x}^{2}}{S_{x}^{2} + s_{x}^{2}} \right]$                                                                    | $t_{n2}^2 = s_y^2 \exp\left[\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right]$                                                                                             | 1                  | 1          | 0              | 0        | 2                                 | 2                                  |
| $t_{n3}^{3} = s_{y}^{2} \exp \left[ \frac{S_{x}^{2} - s_{x}^{2}}{S_{x}^{2} + (\delta_{lopt} - 1)s_{x}^{2}} \right]$                                                 | $s_{n,2}^3 = s_y^2 \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X} + (\delta_{2(opt)} - 1)\overline{x}} \right]$                                                                    | 1                  | 1          | 0              | 0        | $\delta_{	ext{l}(opt)}$           | $\delta_{\scriptscriptstyle 2opt}$ |
| $t_{n1}^4 = s_y^2 \exp\left[\frac{s_x^2 - S_x^2}{S_x^2}\right]$                                                                                                     | $t_{n2}^4 = s_y^2 \exp\left[\frac{\overline{x} - \overline{X}}{\overline{X}}\right]$                                                                                                            | -1                 | -1         | 0              | 0        | 1                                 | 1                                  |
| $t_{n1}^{5} = s_{y}^{2} \exp \left[ \frac{s_{x}^{2} - S_{x}^{2}}{S_{x}^{2} + s_{x}^{2}} \right]$                                                                    | $t_{n2}^{5} = s_{y}^{2} \exp \left[ \frac{\overline{x} - \overline{X}}{\overline{X} + \overline{x}} \right]$                                                                                    | -1                 | -1         | 0              | 0        | 2                                 | 2                                  |
| $t_{n1}^6 = S_y^2 + b_{yz}(S_z^2 - S_z^2)$                                                                                                                          | $t_{n2}^6 = s_y^2 + b_{yz}(S_z^2 - S_z^2)$                                                                                                                                                      | 0                  | 0          | $b_{yz}$       | $b_{yz}$ | 1                                 | 1                                  |
| $t_{n1}^{7} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{S_x^2 - s_x^2}{S_x^2} \right]$                                           | $t_{n2}^{7} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X}} \right]$                                                  | 1                  | 1          | $b_{_{ m yz}}$ | $b_{yz}$ | 1                                 | 1                                  |
| $t_{n1}^{8} = \left[ s_{y}^{2} + b_{yz} \left( S_{z}^{2} - s_{z}^{2} \right) \right] \exp \left[ \frac{s_{x}^{2} - S_{x}^{2}}{S_{x}^{2}} \right]$                   | $t_{n2}^{8} = \left[ s_{y}^{2} + b_{yz} \left( S_{z}^{2} - s_{z}^{2} \right) \right] \exp \left[ \frac{\overline{x} - \overline{X}}{\overline{X}} \right]$                                      | -1                 | -1         | $b_{yz}$       | $b_{yz}$ | 1                                 | 1                                  |
| $t_{n1}^{9} = \left[ S_y^2 + \left( S_z^2 - S_z^2 \right) \right] \exp \left[ \frac{S_x^2 - S_x^2}{S_x^2} \right]$                                                  | $t_{n2}^{9} = \left[ s_{y}^{2} + \left( S_{z}^{2} - s_{z}^{2} \right) \right] \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X}} \right]$                                             | 1                  | 1          | 1              | 1        | 1                                 | 1                                  |
| $t_{n1}^{10} = \left[ s_y^2 + \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{s_x^2 - S_x^2}{S_x^2} \right]$                                                 | $t_{n2}^{10} = \left[ s_y^2 + \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{x} - \overline{X}}{\overline{X}} \right]$                                                        | -1                 | -1         | 1              | 1        | 1                                 | 1                                  |
| $t_{n1}^{11} = \left[ s_y^2 + \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right]$                                         | $t_{n2}^{11} = \left[s_y^2 + \left(S_z^2 - s_z^2\right)\right] \exp\left[\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right]$                                                | 1                  | 1          | 1              | 1        | 2                                 | 2                                  |
| $t_{n1}^{12} = \left[ s_y^2 + \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{s_x^2 - S_x^2}{S_x^2 + s_x^2} \right]$                                         | $t_{n2}^{12} = \left[ s_y^2 + \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{x} - \overline{X}}{\overline{X} + \overline{x}} \right]$                                         | -1                 | -1         | 1              | 1        | 2                                 | 2                                  |
| $t_{n1}^{13} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right]$                                  | $t_{n2}^{13} = \left[ S_y^2 + b_{yz} \left( S_z^2 - S_z^2 \right) \right] \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}} \right]$                                  | 1                  | 1          | $b_{yz}$       | $b_{yz}$ | 2                                 | 2                                  |
| $t_{n1}^{14} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{s_x^2 - S_x^2}{S_x^2 + s_x^2} \right]$                                  | $t_{n2}^{14} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{X} - \overline{X}}{\overline{X} + \overline{X}} \right]$                                  | -1                 | -1         | $b_{yz}$       | $b_{yz}$ | 2                                 | 2                                  |
| $t_{n1}^{15} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{S_x^2 - s_x^2}{S_x^2 + \left( \delta_{1opt} - 1 \right) s_x^2} \right]$ | $t_{n2}^{15} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{X} - \overline{x}}{\overline{X} + \left( \delta_{2opt} - 1 \right) \overline{x}} \right]$ | 1                  | 1          | $b_{_{ m yz}}$ | $b_{yz}$ | $\delta_{	ext{l}(opt)}$           | $\delta_{\scriptscriptstyle 2opt}$ |
| $t_{n1}^{16} = \left[ s_y^2 + b_{yx} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{s_x^2 - S_x^2}{S_x^2 + \left( S_{lopy} - 1 \right) s_x^2} \right]$      | $t_{n2}^{16} = \left[ s_y^2 + b_{yz} \left( S_z^2 - s_z^2 \right) \right] \exp \left[ \frac{\overline{x} - \overline{X}}{\overline{X} + \left( \delta_{2opt} - 1 \right) \overline{x}} \right]$ | -1                 | 1          | $b_{yz}$       | $b_{yz}$ | $\delta_{	ext{l}(opt)}$           | $\delta_{\scriptscriptstyle 2opt}$ |
| $t_{n1}^{17} = s_y^2 \exp\left[\frac{S_x^2 - s_x^2}{S_x^2 + (a - 1)s_x^2}\right]$                                                                                   | $t_{n2}^{17} = s_y^2 \exp\left[\frac{\overline{X} - \overline{x}}{\overline{X} + (a-1)\overline{x}}\right]$                                                                                     | 1                  | 1          | 0              | 0        | a                                 | a                                  |

# APPENDIX-B

Table-B1

| Population | Sources of Population                |
|------------|--------------------------------------|
| 1          | Gujarati(2009, Pg 406)               |
| 2          | Sukhatme and Sukhatme (1970, pg 185) |
| 3          | Cochran(1977,pg 34)                  |

# Table- B2

| Population | Y                                         | X                                         | Z                                         |
|------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1          | Average Miles per gallon                  | Top, speed miles per<br>Hour              | Engine horsepower                         |
| 2          | The area under wheat in acres during 1937 | The area under wheat in acres during 1936 | The area under wheat in acres during 1931 |
| 3          | Food cost                                 | Size                                      | Income                                    |

 Table B3 Results for Population Parameters

|                                          | Populations |          |         |  |  |  |
|------------------------------------------|-------------|----------|---------|--|--|--|
| parameters                               | 1           | 2        | 3       |  |  |  |
| N                                        | 81          | 34       | 33      |  |  |  |
| n                                        | 21          | 15       | 9       |  |  |  |
| $ar{Y}$                                  | 33.7111     | 201.4118 | 27.4909 |  |  |  |
| $ar{X}$                                  | 112.4568    | 218.4118 | 3.7272  |  |  |  |
| $ar{Z}$                                  | 30.9876     | 765.3529 | 72.5455 |  |  |  |
| $egin{array}{c} ar{Z} \ C_y \end{array}$ | 0.2984      | 0.7555   | 0.3685  |  |  |  |
| $C_x$                                    | 0.1256      | 0.7678   | 0.4095  |  |  |  |
| $C_z$                                    | 0.2635      | 0.6169   | 0.1458  |  |  |  |
| $ ho_{yx}$                               | -0.6883     | 0.9299   | 0.4328  |  |  |  |
| $ ho_{\scriptscriptstyle yz}$            | -0.9035     | 0.8992   | 0.2522  |  |  |  |
| $ ho_{\scriptscriptstyle \! xz}$         | 0.6788      | 0.8308   | -0.0660 |  |  |  |
| $\lambda_{400}$                          | 3.5699      | 5.1118   | 5.5509  |  |  |  |
| $\lambda_{040}$                          | 6.7365      | 4.7293   | 2.3154  |  |  |  |
| $\lambda_{004}$                          | 2.4758      | 3.9524   | 2.0780  |  |  |  |
| $\lambda_{220}$                          | 2.0606      | 3.61287  | 1.3889  |  |  |  |
| $\lambda_{202}$                          | 2.1238      | 3.8722   | 2.2186  |  |  |  |
| $\lambda_{022}$                          | 1.9995      | 2.9763   | 1.4466  |  |  |  |
| $\lambda_{210}$                          | 0.0319      | 1.0668   | 0.6209  |  |  |  |
| $\lambda_{201}$                          | -0.0647     | 1.0686   | 0.5422  |  |  |  |
| $\lambda_{012}$                          | 0.4349      | 0.7541   | 0.2337  |  |  |  |
| $\lambda_{021}$                          | 0.8782      | 0.7404   | 0.2643  |  |  |  |
| $\lambda_{030}$                          | 1.8547      | 1.3184   | 0.5683  |  |  |  |