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Abstract. The aim of this note is to investigate the finite groups whose irre-

ducible characters vanish only on elements of prime power order. Interesting,

we give a new characterization of A5, where A5 is the alternating group of

degree 5.
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1. Introduction

It is well known that the set of values cd(G) = {χ(1) : χ ∈ Irr(G)} has a strong

influence on the group structure of G, where Irr(G) denotes the set of irreducible

complex characters of G. The aim of this paper is to provide some evidence that

also the zeros of irreducible characters encode non-trivial information of G.

Following [3], we say that an element x of G is a vanishing element if there exists

χ ∈ Irr(G) such that χ(x) = 0. Denote Van(G) the set {g ∈ G : χ(g) = 0 for some

χ ∈ Irr(G)}, Vo(G) the set {o(g) : g ∈ Van(G)} consisting of the orders of the

elements in Van(G).

Recently, Malle, Navarro and Olsson [6] proved that every non-linear χ ∈ Irr(G)

vanishes on some element of prime power order. Naturally, we consider the following

problem: if every element in Vo(G) is of prime power order, then what can be said

about the structure of G?

Following [4], we call groups all of whose elements have prime power order

CP−groups. Generally, we say that a group G is a V CP−group if every element

in Vo(G) is of prime power order. Furthermore, a group G is called a V CP1−group

if every element in Vo(G) is of prime order.
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It is known that the quotient group of the automorphism group of L2(9) modulo

the group of inner automorphisms is isomorphic to the elementary abelian group

of order 4; in other words, there are 3 subgroups of index 2 in Aut(L2(9)), and

we denote them by U, V, W . One of them, say U , is isomorphic to S6 and is not a

V CP−group; another one, V , is isomorphic to PGL2(9) and possesses a vanishing

element of order 10. Close inspection shows that the remaining subgroup W is in

fact a V CP−group.

We first study the non-solvable V CP−groups, such groups are nearly CP−groups.

We have the following easy result.

Theorem A. Let G be a finite non-solvable V CP−group, and Sol(G) denote the

solvable radical of G. Then the following statements hold:

(1) If Sol(G) = 1, then G is isomorphic to one of the following groups:

L2(q) for q = 5, 7, 8, 9, 17, L3(4), Sz(8), Sz(32), or W .

(2) Assume that Sol(G) > 1. Let N := Op(Sol(G)) for some prime p such that

Sol(G)/N > 1. Then p = 2 and G/N is a CP−group; furthermore, one of the

following holds:

(2.1) Sol(G)/N is elementary abelian and G/Sol(G) is isomorphic to L2(5).

(2.2) Sol(G)/N is abelian and G/Sol(G) is isomorphic to L2(8).

(2.3) Sol(G)/N is nilpotent of class at most 6 and G/Sol(G) is isomorphic to

Sz(8) or Sz(32).

If the zeros of the irreducible characters are elements of prime order, then we

have the following result:

Theorem B. Let G be a finite non-abelian and solvable group. If every irreducible

character of G vanishes only on elements of prime order, then one of the following

holds.

(1) G is a p-group of exponent p.

(2) G = E×F , where E is an elementary abelian p−group (possibly E = 1) and

F is a Frobenius group with complement of order p.

Applying Theorem A and Theorem B, we easily get the following result, which

is a new characterization of A5, where A5 is the alternating group of degree 5.

Theorem C. Suppose G is a finite group. If Vo(G) = {2, 3, 5}, then G ∼= A5.
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In this paper, G always denotes a finite group. Notation is standard and taken

from [5]. In particular, denote Irr1(G) the set of non-linear irreducible complex

characters of G, Sol(G) the solvable radical of G.

2. On non-solvable V CP−group

The following Proposition comes from [4, Theorems 6 and 8].

Proposition 2.1. Let G be a non-solvable CP−group, and let O2(G) be its largest

normal 2−subgroup. Then one of following holds:

(1) If O2(G) = 1, then G is isomorphic to one of the following groups: L2(q) for

q = 5, 7, 8, 9, 17, L3(4), Sz(8), Sz(32) or W .

(2) Suppose that O2(G) > 1. Then G satisfies one of the following statements:

(2.1) O2(G) is elementary abelian and G/O2(G) is isomorphic to L2(5).

(2.2) O2(G) is abelian and G/O2(G) is isomorphic to L2(8).

(2.3) O2(G) is nilpotent of class at most 6 and G/O2(G) is isomorphic to Sz(8)

or Sz(32).

Let p be a prime number. Recall that a character χ ∈ Irr(G) is said to be of

p-defect zero if p does not divide |G|/χ(1). By a fundamental result of R. Brauer

(see [5, Theorem 8.17]), if χ ∈ Irr(G) is of p-defect zero then, for every element

g ∈ G such that p divides o(g), we have χ(g) = 0.

Lemma 2.2. [3, Proposition 2.1] Let G be a non-abelian simple group and p a

prime number. If G is of Lie type, or if p ≥ 5, then there exists χ ∈ Irr(G) of

p-defect zero.

Remark 2.3. Let G be a non-abelian simple group. By Burnside paqb-theorem,

we conclude that |G| has a prime divisor p such that p ≥ 5. Then by Lemma 2.2,

there exists χ ∈ Irr(G) such that χ is of p-defect zero.

Lemma 2.4. Let G be a non-abelian simple group. If G is a V CP−group, then

G is isomorphic to one of the following groups: L2(q) for q = 5, 7, 8, 9, 17, L3(4),

Sz(8), or Sz(32).

Proof. Let G ∼= An for some n ≥ 14.

For odd n, set

a = (1, ..., n− 9)(n− 8, n− 7, n− 6, n− 5)(n− 4, n− 3, n− 2, n− 1, n).

For even n, set

a = (1, ..., n− 8)(n− 7, n− 6)(n− 5, n− 4, n− 3, n− 2, n− 1).

By Lemma 2.2, we may assume that there exists χ ∈ Irr(G) such that χ is of 5-defect
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zero. Clearly, χ vanishes on a. Hence the hypothesis yields that n < 14. Then by

[2], G is isomorphic to L2(5) or L2(9) (note that L2(5) ∼= A5 and L2(9) ∼= A6).

If G is a sporadic simple groups, then G is not a V CP−group, as one can

check in [2]. By the classification theorem of the finite simple groups we can now

suppose that G is a simple group of Lie type. Let p be a prime divisor of |G|. It is

known that G has an irreducible character of p−defect zero (see Lemma 2.2). Since

characters of p−defect zero vanish on elements of order divisible by p, it follows

that no simple group of Lie type can have a nonidentity non-vanishing element.

Hence the hypothesis implies that every element of G has prime power order, then

by Proposition 2.1(1), we complete the proof. ¤

Proposition 2.5. Let G be a non-solvable group. If G is a V CP−group, then G

has an unique non-cyclic composition factor.

Proof. By induction, we may assume that Sol(G) is trivial. Let N be a (non-

solvable) minimal normal subgroup of G. If N is not a non-abelian simple group,

then N = N1 × ...×Ns is a direct product of isomorphic simple groups Ni, where

s ≥ 2. Let θi ∈ Irr(Ni) be of p-defect zero, where p ≥ 5 is a prime divisor of Ni

(see Remark 2.3), and set

θ = θ1 × . . .× θs.

Let χ0 be an irreducible constituent of θG, let x1 ∈ N1 be of a prime order p and

let x2 ∈ N2 be of a prime order q (q 6= p). Clearly, θg is of p-defect zero for any

g ∈ G, then we have

θg(x1) = θg(x1x2) = 0.

This implies that

χ0(x1) = χ0(x1x2) = 0.

Then we obtain a contradiction, hence N is a simple group.

Suppose that G/N is non-solvable. Note that Out(N) is solvable by the the

classification of the finite simple groups, it follows that CG(N) is non-solvable and

hence contains a non-solvable minimal normal subgroup M of G as Sol(CG(N)) = 1.

Arguing as the above step, we conclude that M is s simple group.

Set T = M×N . By Remark 2.3, there exist ψ ∈ Irr(M) and θ ∈ Irr(N) such that

ψ is of q-defect zero and that θ is of p-defect zero, where q, p ≥ 5 are prime divisors

of |M | and |N |, respectively. Let x ∈ M , z ∈ N be of order q, r, respectively, where

r 6= p and r 6= q. Then for any irreducible constituent χ of (ψ × θ)G, we see that

χ(x) = χ(xz) = 0.

The contradiction completes the proof. ¤
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Let G be finite group, π(G) be the set of all prime divisors of its order, and

ω(G) be the spectrum of G, that is, the set of all of its element orders. A graph

GK(G) = V (GK(G)), E(GK(G)), where V (GK(G)) is a vertex set and E(GK(G))

is an edge set, is called the Gruenberg − Kegel graph (or prime graph) of G if

V (GK(G)) = π(G) and the edge (r, s) is in E(GK(G)) iff rs ∈ ω(G). Denote by

πi(G), i = 1, ..., s(G), the ith connected component of GK(G). If G has even order

then we put 2 ∈ π1(G).

Recall that a vertex set of a graph is called a clique if all vertices in that set are

pairwise adjacent. The following result is part of [8, Corollary 7.6].

Lemma 2.6. Let G be a finite non-abelian simple group, and let all connected

components of its prime graph GK(G) be cliques. If G is not of Lie type, then G

is one of the groups in the following list:

(1) sporadic groups M11, M22, J1, J2, J3, and HS.

(2) alternating groups Altn, where n = 5, 6, 7, 9, 12, 13.

Lemma 2.7. Let G be a non-solvable V CP−group. If every non-trivial quotient

group of G is solvable, then G is isomorphic to one of the following: L2(q) for

q = 5, 7, 8, 9, 17, L3(4), Sz(8), Sz(32), or W .

Proof. Let N be the unique minimal normal subgroup of G. Then by Proposition

2.5, N is a non-abelian simple. In particular, G ≤ Aut(N) and G/N ≤ Out(N).

Assume that χp ∈ Irr(N) such that χp be of p-defect zero where p is an prime

of N , and let ψ be an irreducible constituent χG
p . Observe that χg

p(x) = 0 for any

g ∈ G and any x ∈ N of order divisible by p. It follows that ψ(x) = 0 whenever

x ∈ N is of order divisible by p.

We, first, suppose that N is not a V CP−group. Hence we may assume that g ∈
Van(N) such that the number of prime divisors of o(g) is greater than 1. Let p be

a prime divisor of o(g). If N is of Lie type, then by lemma 2.2, there exists χp ∈
Irr(N) such that χp is of p−defect zero. So arguing as the above paragraph, we

obtain a contradiction. Hence we may assume that N is not of Lie type. If p ≥ 5,

then by Lemma 2.2, there exists χp ∈ Irr(N) such that χp is of p−defect zero. Then

arguing as the above paragraph, we also obtain a contradiction. Therefore, we may

assume that π1(N) = {2, 3} and that the other connected components contain

only one prime divisor. Then applying Lemma 2.6, N is isomorphic to M11, or M22

(note that L2(5) ∼= A5 and L2(9) ∼= A6). So G is not a V CP−group, as one can

check in [2].
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We, now, suppose that N is a V CP−group; then by Proposition 2.1(1), we

conclude that N is isomorphic to one of the following: L2(q) for q = 5, 7, 8, 9, 17,

L3(4), Sz(8), or Sz(32). Recall that G ≤ Aut(N), then we conclude from [2] that

the result is true. ¤

The proof of the Theorem A.

Proof. We identify the irreducible characters of G/Sol(G) with the irreducible

characters of G that contain Sol(G) in the kernel. So, if G is a V CP−group,

then G/Sol(G) is also a V CP−group. By Proposition 2.5, we have that G/Sol(G)

satisfies the hypothesis of Lemma 2.7. Then by lemma 2.7, G/Sol(G) is isomorphic

to one of the following: L2(q) for q = 5, 7, 8, 9, 17, L3(4), Sz(8), Sz(32), or W . So

G/Sol(G)− {1} = Van(G/Sol(G)), as one can check in [2].

If Sol(G) = 1, then G satisfies (1) of the theorem. Hence we may assume that

Sol(G) > 1. Note that Sol(G) is solvable, so we may choose a prime divisor p

of |Sol(G)| such that Sol(G)/Op(Sol(G)) > 1. Set N := Op(Sol(G)). Note that

G − Sol(G) ⊆ Van(G), then every element in G − Sol(G) has prime power order.

Since Sol(G)/N is a p-group, all elements in G/N have prime power order, hence

G/N is a non-solvable CP -group.

Let O2(G/N) be the largest normal 2-subgroup of G/N . If O2(G/N) = 1,

then by Proposition 2.1, G/N is isomorphic to one of the following: L2(q) for

q = 5, 7, 8, 9, 17, L3(4), Sz(8), Sz(32), or W . This is impossible since Sol(G)/N > 1,

and thus O2(G/N) > 1. Hence p = 2 and Sol(G)/N = O2(G/N). Then by

Proposition 2.1, we complete the proof. ¤

3. On solvable V CP1−groups

In this section, to prove Theorem B, we will use the following easy result.

Lemma 3.1. Let G be a V CP−group. Let M be a normal subgroup of G and χ ∈
Irr(G/M). If χ vanishes on x ∈ G and gcd(|M |, o(x)) = 1, then CM (x) = 1.

Proof. By the hypothesis, for every y ∈ CM (x) we have χ(xy) = 0, and thus xy

is an element of prime power. Since o(xy) = o(x)o(y) and (|M |, o(x)) = 1, we have

CM (x) = 1, and we are done. ¤

The group G = [N ]H means a semidirect product of a normal subgroup N and

a complement subgroup H.
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Proposition 3.2. [7, Theorem 1] Let G be a group, and Let N be a proper normal

subgroup of G. If every element in G − N has prime order, then G is one of the

following groups:

(1) G ∼= A5 and N = 1.

(2) G is a Frobenius group with a complement A of prime order and the kernel

F of prime power order, where N < F (N is a proper normal subgroup of F ).

(3) G is a p-group.

(4) G = [Op′(G)×Op(G)]A, where A is of prime order p, N = Op′(G)×Op(G),

[Op(G)]A ∈ Sylp(G), Op′(G) > 1 and A acts fixed point freely on Op′(G).

Now we are ready to prove Theorem B.

Proof. For a non-linear irreducible complex character χ of G, write υ(χ) = {g ∈
G | χ(g) = 0}. Let ψ ∈ Irr1(G/G′′) (since G is non-abelian and solvable, such ψ

exists). Then ψG′/G′′ is not irreducible, and so ψG′ is not irreducible (note that

we identify the character χ of G/G′′ with a suitable character of G). It follows by

[5, Theorem 6.22] that G has a proper subgroup N such that G′ ≤ N < G and

G−N ⊆ υ(ψ). The hypothesis yields that all elements outside N are of prime order.

Then by Proposition 3.2, we have that G satisfies (2), (3), or (4) of Proposition 3.2.

If G is the group in Proposition 3.2(2) then G satisfies (2) of Theorem B. If G is

the group in Proposition 3.2(3), then by [1, Corollary 2.10], we see that G satisfies

(1) of Theorem B.

Suppose that G has the structure described in Proposition 3.2(4). We set E :=

Op(G) < G. Let P := [Op(G)]A, and let K := Op′(G).

We, now, prove that Z(G) = Op(G). Note that G/Op(G) is a Frobenius group

with complement P/Op(G); thus Z(G/Op(G)) = 1, which implies Z(G) ≤ Op(G).

We next claim:

CK(x) = 1 for every x ∈ P − Z(P ). (+)

Namely, if x ∈ P − Z(P ) (if any), then by [1, Lemma 2.9] there exists χ ∈ Irr(G)

such that χ(x) = 0, since G/K ∼= P . Thus, by Lemma 3.1, we see that CK(x) = 1.

Since Op(G) centralizes Op′(G), from (+) it follows Op(G) ≤ Z(P ) and hence

Op(G) ≤ Z(G). Therefore, Z(G) = Op(G).

As Op(G) ≤ Z(P ) and A is a group of order p, we have that P is abelian. Let

χ ∈ Irr1(G/Z(G)), and let x be a nonidentity element of A. Clearly χ vanishes on

x. For every y ∈ Z(G), we have χ(xy) = 0 and thus

xp = 1 = (xy)p = xpyp = yp.

Then the group P is an elementary abelian p-group. We hence obtain G = E × F ,
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where F is a Frobenius group with complement of order p. Hence the proof is

completed. ¤

4. A new characterization of A5

We start by stating a consequence of Theorem A.

Corollary 4.1. Suppose that G is a finite non-solvable group. If Vo(G) = {p, q, r},
where p, q and r are prime, then G ∼= A5

Proof. Clearly, G is a non-solvable V CP−group. Then applying Theorem A, it

follows from [2] that G/Sol(G) is isomorphic to L2(5). Obviously, G − Sol(G) ⊆
Van(G). Hence G−Sol(G) consists of elements of prime order. Then by [7, Theorem

1], we obtain that G ∼= A5. ¤

Following [1], We will say that a group G belongs to the class υk, for a positive

integer k, if every element in Vo(G) divides k. So, an abelian group belongs to υk

for all k. The following result has already appeared in [1], here we give an easy and

neat proof.

Lemma 4.2. Let G be a Frobenius group and p a prime, p ≤ 5. If G ∈ υp, then

the Frobenius kernel of G is abelian.

Proof. Let G be a minimal counter example. Let C be a Frobenius complement

of G and Q the kernel. Then by Theorem B, we have |C| = p. Let x be a generator

of C. Since Q is nilpotent and the class υp is closed by images, the group Q is a

q-group for some prime q, also Q′ is minimal normal in G and Q′ ≤ Z(Q). Observe

that if |C| ≤ 3 then we easily conclude that the result is true. Hence we may assume

that |C| = 5.

Let ψ ∈ Irr(Q) be of maximal degree. Recall that Q′ ≤ Z(Q); then by [5,

Corollary 2.30 and Theorem 2.31], there exist a subgroup Z of Q such that ψ

vanishes on Q− Z and that Z ≥ Q′, |Q/Z| = ψ(1)2 = q2m.

Suppose that q > 2 or m > 1. Then there exists an irreducible character χ of G

such that χ vanishes on Q−∆, where ∆ := Z ∪ Zx ∪ Zx2 ∪ Zx3 ∪ Zx4
. Therefore,

the hypothesis yields that Q = ∆. Thus |Q| ≤ 5|Z| and hence |Q/Z| = q2m ≤ 5, a

contradiction. Hence we may assume that q = 2 and m = 1.

As ψ is of maximal degree, cd(Q) = {1, 2}. It follows by [5, Theorem 12.11] that

either |Q : Z(Q)| = 8 or Q has an abelian subgroup of index 2. Recall that G/Z(Q)

is a Frobenius group with the kernel Q/Z(Q) and complement isomorphic to C,

so Q/Z(Q) is a C-module. We note that C has only two irreducible F2-modules,
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namely the trivial module and a module of dimension 4. Hence it is impossible to

|Q : Z(Q)| = 8.

Assume now that Q has an abelian subgroup E of index 2. Let ψ be any non-

linear irreducible character of Q. Since E is abelian and |Q : E| = 2, it follows by

[5, Theorem 6.2 and Corollary 6.19] that ψE = µ+ν, where µ and ν are irreducible

and are conjugate to each other in Q. Hence ψ = µQ, and so ψ vanishes on Q−E.

Take χ ∈ Irr(G) of degree 10. We see that χ vanishes on Q−E, hence we obtain a

contradiction. ¤

The following result shows that characters of degree not divisible by some prime

number p never vanish on p−elements.

Lemma 4.3. [1, Corollary 2.2] If χ ∈ Irr(G) vanishes on a p−element, p prime,

then p divides χ(1).

We are now ready to prove Theorem C, which we state again:

Theorem C. Suppose G is a finite group. If Vo(G) = {2, 3, 5}, then G ∼= A5.

Proof. Applying Corollary 4.1, we need prove that G is a non-solvable group.

Assume that G is solvable. It follows from the hypothesis that G satisfies (2) of

Theorem B. If E > 1, then we easily conclude from the hypothesis that G belongs

to the class υp, a contradiction. So we may assume that E = 1 and thus G is

a Frobenius group with kernel K and complement of order p. Let q be a prime

divisor of |K|. Take N = Oq′(K). Now consider the group G/N . Clearly, G/N

is a Frobenius group with kernel K/N of prime power order and complement of

order p. Suppose that G/N does not belong to the class υp. Then there exists

x ∈ K − N such that xN ∈ Van(G/N). Let χ ∈ Irr1(G/N) with χ(xN) = 0.

Let x = xqxq′ , where xq and xq′ are the q-part and the q′-part of x, respectively.

Since χ(xN) = χ(xqxq′N) = χ(xqN) = 0, we may suppose that such element x is

a q-element. Assume that N > 1. Take y ∈ N − 1, we have

χ(xy) = χ(xyN) = χ(xN) = χ(x) = 0.

Since K is nilpotent and gcd(o(x), o(y)) = 1, we have that xy = yx. Hence o(xy)

is not a prime number, and so we obtain a contradiction. Thus N = 1, and so |G|
have only two prime divisors, we also obtain a contradiction. Hence G/N belongs

to the class υp. Recall that p = 2, 3 or 5; thus by Lemma 4.2, K/N is abelian. Since

q is an arbitrary prime divisor of |K|, we get K is abelian. By Lemma 4.3, we easily

see that G belongs to the class υp, a contradiction. The proof is complete. ¤
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