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Abstract. Several authors have been interested in cotorsion theories. Among

these theories we figure the pairs (Pn,P⊥
n ), where Pn designates the set of

modules of projective dimension at most a given integer n ≥ 1 over a ring R.

In this paper, we shall focus on homological properties of the class P⊥
1 that

we term the class of P1-injective modules. Numerous nice characterizations

of rings as well as of their homological dimensions arise from this study. In

particular, it is shown that a ring R is left hereditary if and only if any P1-

injective module is injective and that R is left semi-hereditary if and only if

any P1-injective module is FP-injective. Moreover, we prove that the global

dimensions of R might be computed in terms of P1-injective modules, namely

the formula for the global dimension and the weak global dimension turn out

to be as follows

wgl-dim(R) = sup{fdR(M) : M is a P1-injective left R-module}

and

l-gl-dim(R) = sup{pdR(M) : M is a P1-injective left R-module}.

We close the paper by proving that, given a Matlis domain R and an R-module

M ∈ P1, HomR(M,N) is P1-injective for each P1-injective module N if and

only if M is strongly flat.
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1. Introduction

Throughout this paper, R denotes an associative ring with unit element and

the R-modules are supposed to be unital. Given an R-module M , M+ denotes

the character R-module of M , that is, M+ := HomZ

(
M,

Q
Z

)
, pdR(M) denotes

the projective dimension of M , idR(M) the injective dimension of M and fdR(M)

the flat dimension of M . As for the global dimensions, l-gl-dim(R) designates

the left global dimension of R and wgl-dim(R) the weak global dimension of R.



54 SAMIR BOUCHIBA AND MOUHSSINE EL-ARABI

Finally, Mod(R) stands for the class of left R-modules, P(R) stands for the class

of projective left R-modules and I(R) the class of injective left R-modules. Any

unreferenced material is standard as in [23,25,26,27].

The cotorsion theories were introduced by L. Salce in the category of abelian

groups. Their role proves to be significant in the study of covers and envelopes and

particularly in the proof of the flat cover conjecture. The most known and useful

cotorsion pair is the flat cotorsion pair (D, E), where D is the class of flat modules

and E is the class of cotorsion modules. Also, among the interesting examples

of cotorsion theories we figure the pairs (Pn,P⊥n ), where Pn designates the set of

modules of projective dimension at most a given integer n ≥ 1 over a ring R. These

pairs have been proved to be complete with enough projective and injective modules

and they play an important role in generalizing many classical results of Fuchs and

Salce in the context of Prüfer domains by means of the approximation theory.

Our main purpose in this paper is to study the homological properties of the

class P⊥1 that we term the class of P1-injective modules over an arbitrary ring R.

Let us denote by P1I(R) := P⊥1 this class of P1-injective R-modules. Note that

in the context of integral domains, by [4, Theorem 7.2 and Corollary 8.2], P1I(R)

coincides with the class DI(R) of divisible R-modules. This means that the P1-

injective module notion extends in some sense the divisible module notion from

integral domains to arbitrary rings, and thus our study will permit, in particular,

to shed light on homological properties of divisible modules in the case when R is a

domain. It is worth reminding the reader at this point that several generalizations of

injective R-modules were studied in the literature. Recently, S.B. Lee introduced

the notion of weak-injective modules which are injective with respect to F1 the

class of modules of flat dimension at most one in the case of integral domains

R [18]. It is to be noted that this concept of weak-injective module is different

from the notion of weak injective module introduced by Gao and Wang in [16].

Observe that (F1,W) is a cotorsion theory, where W denotes the class of weak-

injective modules over R, and that it is proved in [12] that the pairs (F1,W)

and (P1,P1I(R)) coincide over an integral domain R if and only if R is almost

perfect in the sense of Bazzoni and Salce [5]. Lee provided many characterizations

of Prüfer domains and semi-Dedekind domains in terms of weak-injective modules.

Subsequently, in [13], Fuchs and Lee studied the weak-injective envelopes of modules

over an integral domain R and their relations to flat covers. They proved that any

R-module admits a weak-injective envelope. Further, in [19], Lee extends weak-

injectivity from modules over a domain to modules over a commutative ring R.

The author discusses many properties of weak-injective modules over R, namely
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their relations to h-divisible, pure-injective and absolutely pure modules over R.

For basics and later investigations on weak-injective modules the reader is kindly

referred to [11,12,13,14,15,18,19]. It arises from the present study of P1-injective

modules over an arbitrary ring R numerous nice characterizations of specific rings

as well as of their homological dimensions. For instance, it is shown that R is left

hereditary if and only if P1I(R) = I(R) and that R is left semi-hereditary if and

only if P1I(R) ⊆ FP-I(R), where FP-I(R) stands for the class of FP-injective

R-modules. Also, we characterize those rings R over which any R-module is P1-

injective. In this aspect, we prove that P1I(R) = Mod(R) if and only if FPD(R) =

0, where FPD(R) denotes the finitistic projective dimension of R. Moreover, if R

is commutative, it turns out that P1I(R) = Mod(R) if and only if R is a perfect

ring. On the other hand, we discuss the homological dimensions of R in terms of

P1-injective modules. In particular, we prove the following formula for the weak

global dimension and the global dimension of a ring R:

wgl-dim(R) = sup{fdR(M) : M is a P1-injective left R-module}

and

l-gl-dim(R) = sup{pdR(M) : M is a P1-injective left R-module}.

In the last section, we characterize the modules M such that HomR(M,N) is P1-

injective for each P1-injective module N . It is worthwhile pointing out, in this case,

that Fuchs and Lee proved that given an integral domain R and an R-module M ,

then HomR(M,N) is weak-injective for each weak-injective module N if and only

if M is flat [12, Theorem 4.3]. We prove that, given a commutative ring R and

an R-module M , M ∈ P1 and HomR(M,N) is P1-injective for each P1-injective

module N if and only if TorR1 (E,M) = 0 and E ⊗R M ∈ P1 for each E ∈ P1. It

turns out, in the case where R is a Matlis domain and for an R-module M ∈ P1,

that HomR(M,N) is P1-injective for each P1-injective module N if and only if M

is strongly flat.

2. P1-injective modules and homological dimensions

This section discusses homological properties of P1-injective modules especially

those related to the different homological dimensions. Let P1 := {X ∈ Mod(R) :

pdR(X) ≤ 1}. Then it is easy to check that P1 satisfies the following statements:

1) P1 is contains all projective left R-modules.

2) P1 is closed under extensions.



56 SAMIR BOUCHIBA AND MOUHSSINE EL-ARABI

3) P1 is closed under kernels of epimorphisms.

P1 is thus a projectively resolving class of R-modules. Moreover, if R is left hered-

itary, then P1 = Mod(R).

Definition 2.1. A left R-module M is said to be P1-injective if Ext1
R(H,M) = 0

for all H ∈ P1 and R is said to be a self P1-injective ring if it is a P1-injective left

R-module.

Let ζ denotes the set of exact sequences of the form 0 −→ K −→ N −→ H −→ 0

such that H ∈ P1. It is easy to see that a module M is P1-injective if M is ζ-

injective, that is, the functor HomR(−,M) leaves exact all short exact sequences

of ζ.

Next, we list some properties of P1-injective R-modules.

Proposition 2.2. Let R be a ring. Then the following conditions hold:

(1) Any injective R-module is P1-injective.

(2) Any quotient of a P1-injective module is P1-injective.

(3) The class P1I(R) of all P1-injective R-modules is closed under extensions.

(4) Let (Mi)i∈I be a family of R-modules. Then
∏

i∈I Mi is P1-injective if and

only if each Mi is P1-injective.

(5) Any finite direct sum of P1-injective R-modules is P1-injective.

(6) A direct summand of a P1-injective R-module is P1-injective.

Proof. (1) It is clear.

(2) Let M be a P1-injective left R-module and let N be a submodule of M . Consider

the short exact sequence 0 −→ N −→ M −→ M

N
−→ 0. Let K ∈ P1. Applying

the functor HomR(K,−) to the considered sequence, we get the following exact

sequence

Ext1
R(K,N) −→ Ext1

R(K,M) = 0 −→ Ext1
R

(
K,

M

N

)
−→ Ext2

R(K,N).

As K ∈ P1, Ext2
R(K,N) = 0. Hence Ext1

R

(
K,

M

N

)
= 0. It follows that

M

N
is

P1-injective, as desired.

The remaining assertions (3), (4), (5) and (6) are straightforward completing the

proof. �

Let L be a class of R-modules. Consider the following two associated classes:

L⊥ = {X ∈ Mod(R) : Ext1
R(L,X) = 0,∀L ∈ L} and ⊥L = {X ∈ Mod(R) :

Ext1
R(X,L) = 0,∀L ∈ L}.
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A pair (F , C) of classes of R-modules is called a cotorsion theory provided that
⊥C = F and F⊥ = C [10]. A cotorsion theory (F , C) is called complete if every

R-module has a special C-preenvelope and a special F-precover [25].

Lemma 2.3. The pair (P1,P1I(R)) is a complete cotorsion theory with enough

injectives and projectives.

Proof. This follows from [10, Theorem 7.4.6]. �

Taking into account [19], we call a module M weak-injective over an arbitrary

ring R if Ext1
R(H,M) = 0 for each left R-module H ∈ F1. The next results compare

the two classes P1I(R) of P1-injective modules and W of weak-injective modules.

Lemma 2.4. Let R be a ring. Then any weak-injective module is P1-injective.

Proof. It is straightforward as P1 ⊆ F1. �

Proposition 2.5. Let R be a ring. Then the following assertions are equivalent:

(1) P1I(R) =W;

(2) P1 = F1;

(3) Any flat submodule of a free R-module is projective.

Proof. (1) ⇔ (2) It is straightforward as (P1,PI(R)) and (F1,W) are cotorsion

theories.

(2) ⇒ (3) Let 0 −→ F −→ L −→ K =
L

F
−→ 0 be an exact sequence such that

F is flat and L is a free module. Then K ∈ F1 = P1. If K is projective, then the

sequence splits and thus F is projective. If pdR(K) = 1, then F is projective, as

desired.

(3) ⇒ (2) Let M ∈ F1 and let 0 −→ F −→ L −→ M −→ 0 be an exact sequence

such that L is a free module and F is flat. By assumption, F , being a flat submodule

of the free module L, is projective. Thus M ∈ P1 completing the proof. �

Corollary 2.6. Let R be a left perfect ring. Then a module M is P1-injective if

and only if it is weak-injective.

Proof. It is follows easily from Proposition 2.5 as if R is left perfect, then P1 =

F1. �

Corollary 2.7. Let R be a domain. Then the following assertions are equivalent.

(1) P1I(R) =W;

(2) R is almost perfect.

Proof. It is straightforward using [19, Corollary 6.4] and Proposition 2.5. �
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Remark 2.8. It is clear from Proposition 2.2 that any quotient module of an

injective R-module is P1-injective. Also, it is notable that P1I(R) is not stable

under direct limit and arbitrary direct sum. In fact, take any left hereditary ring

R which is not left Noetherian. For instance, let R be the ring

R :=

(
Q R
0 Q

)
.

Then R is a hereditary ring which is not Noetherian (see [1, Example 28.12]).

Observe that P1I(R) = I(R) and, as R is not Noetherian, I(R) is not stable under

direct limit and arbitrary direct sum [23, Theorem 4.10]. Thus P1I(R) is not stable

under direct limit and arbitrary direct sum, as desired. An immediate consequence

of this is that the two classes of P1-injective modules and divisible modules are

different in general as this latter is stable under arbitrary direct sums.

The following result discusses possible connections between the stability of P1I(R)

under direct limit and under arbitrary direct sum.

Proposition 2.9. Let R be a ring. Then the following assertions are equivalent.

(1) P1I(R) is stable under direct limits;

(2) P1I(R) is stable under direct sums.

(3) P1I(R) is stable under direct unions.

(4) P1I(R) is stable under increasing unions.

Proof. (1)⇒ (3)⇒ (4)⇒ (2) It holds as direct unions are direct limits, increasing

unions are direct unions and direct sums are increasing unions.

(2) ⇒ (1) Observe that a direct limit of a direct system (Mi)i∈Λ of P1-injective

modules is a quotient of the direct sum
⊕
i

Mi. As, by Proposition 2.2, any quotient

of
⊕
i

Mi is a P1-injective, we get lim
→
Mi is P1-injective, as desired. �

Next, we present a large class of P1-injective modules. First, we begin by re-

calling some notions from Gorenstein homological theory. In fact, the Gorenstein

projective modules, Gorenstein injective modules and Gorenstein flat modules stem

from the classical notions of projective modules, injective modules and flat mod-

ules, respectively, by standing as images and kernels of the differentials of complete

resolutions of projective modules, injective modules and flat modules. Effectively,

a module M is said to be Gorenstein projective if there exists an exact sequence of

projective modules, called a complete projective resolution,

P := · · · −→ P2 −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · ·
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such that P remains exact after applying the functor HomR(−, P ) for each pro-

jective module P and M := Im(P0 → P−1). The Gorenstein injective mod-

ules are defined dually. These new concepts allows Enochs and Jenda [8,9] to

introduce new (Gorenstein homological) dimensions in order to extend the G-

dimension defined by Auslander and Bridger in [2]. It turns out, in particu-

lar, that these Gorenstein homological dimensions are refinements of the clas-

sical dimensions of a module M , in the sense that GpdR(M) ≤ pdR(M) and

GidR(M) ≤ idR(M) with equality each time the corresponding classical homo-

logical dimension is finite. Moreover the Gorenstein global dimension is defined to

be G-gldim(R) := max{GpdR(M) : M ∈ Mod(R)}. A ring R is called Gorenstein

semi-simple if G-gldim(R) = 0.

Note that any Gorenstein injective module over a ring R, being a quotient of an

injective module, is P1-injective. Then

I(R) ⊆ GI(R) ⊆ P1I(R)

where GI(R) denotes the class of Gorenstein injective modules.

Proposition 2.10. Let R be a ring. Then (P1I(R))⊥ = I(R).

Proof. We only need to prove that if M ∈ (P1I(R))⊥, then M is injective. In

fact, let M ∈ (P1I(R))⊥. There exists a short exact sequence of left R-modules

0 −→M −→ I −→ G −→ 0 with I injective. Then G is P1-injective, by Proposition

2.2. Hence, Ext1
R(G,M) = 0, and thus the sequence 0 −→ M −→ I −→ G −→ 0

splits. It follows that M is injective, as desired. �

The next results show that the homological dimensions of a ring R might be

characterized by the vanishing of the functors Ext and Tor with respect to the class

P1I(R) of P1-injective modules.

Proposition 2.11. Let R be a ring. Let M be a left R-module and n ≥ 1 an

integer. Then the following statements are equivalent:

(1) pdR(M) ≤ n;

(2) ExtnR(M,N) = 0 for any P1-injective left R-module N .

Proof. Our argument uses induction on n. The equivalence holds for n = 1 as, by

Lemma 2.3, the pair (P1,P1I(R)) is a cotorsion theory. Assume that n ≥ 2. Then

pdR(M) ≤ n if and only if there exists a short exact sequence 0 −→ K −→ P −→
M −→ 0 with P is a projective module and pdR(K) ≤ n − 1 if and only if there

exists a short exact sequence 0 −→ K −→ P −→ M −→ 0 with P is a projective

module and Extn−1
R (K,N) = 0 for any N ∈ P1I(R) (by induction) if and only if

ExtnR(M,N) = 0 for any N ∈ P1I(R), as desired. �
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Proposition 2.12. Let R be a ring. Let M be a right R-module and n be a positive

integer. Then the following statements are equivalent:

(1) fdR(M) ≤ n;

(2) TorRn+1(M,N) = 0 for any P1-injective left R-module N .

First, we establish the following lemma.

Lemma 2.13. Let R be a ring and M a right R-module. Then the following

assertions are equivalent:

(1) M is a flat right R-module;

(2) TorR1 (M,N) = 0 for any P1-injective left R-module N .

Proof. We only need to prove that (2) ⇒ (1). Assume that TorR1 (M,N) = 0 for

every P1-injective left R-module N . Consider the short exact sequence of left R-

modules 0 −→M+ −→ E −→ G −→ 0 with E an injective left module. Then E is

P1-injective and thus G is P1-injective by Proposition 2.2. Hence, Ext1
R(G,M+) ∼=

TorR1 (M,G)+ = 0. Therefore, the considered exact sequence 0 −→M+ −→ E −→
G −→ 0 splits, and thus M+ is an injective left R-module. Hence, M is a flat right

R-module completing the proof. �

Proof of Proposition 2.12. It suffices to prove that (2) ⇒ (1). Assume that (2)

holds. Let Fn−1 be the (n−1)th yoke of a flat resolution of M and let N be any P1-

injective left R-module. By [23, Corollary 8.8], TorRn+1(M,N) ∼= TorR1 (Fn−1, N).

Then, using (2), we get TorR1 (Fn−1, N) = 0, and thus by Lemma 2.13, Fn−1 is flat.

Hence fdR(M) ≤ n, as desired. �

Corollary 2.14. Let R be a ring. Then

wgl-dim(R) = sup{fdR(M) : M ∈ P1I(R)}.

Proof. If sup{fdR(M) : M is a P1-injective left R-module} = +∞, then we are

done. Assume that there exists a positive integer n such that fdR(M) ≤ n for

any P1-injective left module M . Then TorRn+1(A,M) = 0 for any right R-module

A. Then, by Proposition 2.12, fdR(A) ≤ n for each right R-module A. Therefore

wgl-dim(R) ≤ n. This establishes the desired equality. �

As P1I(R) = DI(R) when R is a domain, we have the following consequence.

Corollary 2.15. Let R be a domain. Then

wgl-dim(R) = sup{fdR(M) : M ∈ DI(R)}.
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Let R be an arbitrary ring. Recall the following cohomological invariants which

are inherent to the ring R:

l-sfli(R) = sup{fdR(M) : M is a left injective R-module}

and

r-sfli(R) = sup{fdR(M) : M is a right injective R-module}.

It is known that r-sfli(R) 6= l-sfli(R), in general. But still, it remains one of the

open problems of homological algebra to know whether r-sfli(R) = l-sfli(R) in the

case of Noetherian rings R. A positive answer to this problem will have a positive

impact on the resolution of the well known Gorenstein symmetry conjecture. Let

us define the P1-analogs of these two entities. Denote by

P1- l-sfli(R) = sup{fdR(M) : M is a left P1-injective R-module}

and

P1- r-sfli(R) = sup{fdR(M) : M is a right P1-injective R-module}.

The next corollary states that the new cohomological invariants P1- l-sfli(R) and

P1- r-sfli(R) do, in fact, coincide for any ring R.

Corollary 2.16. Let R be a ring. Then

P1- l-sfli(R) = P1- r-sfli(R).

Proof. It suffices to observe that P1- l-sfli(R) = l-wgl-dim(R) = r-wgl-dim(R) =

P1- r-sfli(R). �

In Section 3, we deduce from the above result that if R is left hereditary, then

r-sfli(R)=l-sfli(R).

The next corollary records the fact that von Neumann regular rings can totally

be characterized by flatness of P1-injective R-modules.

Corollary 2.17. Let R be a ring. Then the following assertions are equivalent.

(1) R is a von Neumann regular ring.

(2) Any P1-injective left R-module M is flat.

Proposition 2.18. Let R be a ring. Let M be a left R-module and n a positive

integer. Then the following statements are equivalent.

(1) idR(M) ≤ n;

(2) Extn+1
R (N,M) = 0 for each P1-injective left R-module N .

The proof requires the following lemma.
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Lemma 2.19. Let R be a ring and M a left R-module. Then the following asser-

tions are equivalent.

(1) M is injective;

(2) Ext1
R(N,M) = 0 for each P1-injective left R-module N .

Proof. It suffices to prove that (2) ⇒ (1). Assume that Ext1
R(N,M) = 0 for

each P1-injective left R-module N . Then M ∈ P1I(R)⊥. By Proposition 2.10,

P1I(R)⊥ = I(R). Hence M is injective, as desired. �

Proof of Proposition 2.18. (1) ⇒ (2) is straightforward.

(2) ⇒ (1) Assume that Extn+1
R (N,M) = 0 for each P1-injective left R-module

N . If n = 0, then we are done, by Lemma 2.19. Assume that n ≥ 1 and let

0 −→M
ε−→ E0

d0−→ E1
d1−→ E2 −→ · · · be an injective resolution of M . Let L0 =

Im(ε) and Li = Im(di−1) for each integer i ≥ 1. Then, by [23, Corollary 6.16],

Ext1
R(N,Ln−1) ∼= Extn+1

R (N,M) = 0 for any P1-injective module N . Hence, by

Lemma 2.19, Ln−1 is injective. It follows that idR(M) ≤ n. �

Proposition 2.20. Let R be a ring. Then

(1) l-gl-dim(R) = sup{pdR(M) : M ∈ P1I(R)}.
(2) Either R is semi-simple or

l-gl-dim(R) = 1 + sup{idR(M) : M ∈ P1I(R)}.

Proof. (1) First, note that

l-gl-dim(R) ≥ sup{pdR(M) : M is a P1-injective left R-module}.

If sup{pdR(M) : M is a P1-injective left R-module} = +∞, then we are done.

Now, assume that there exists an integer n ≥ 0 such that pdR(M) ≤ n for any P1-

injective R-module M . Then Extn+1
R (M,N) = 0 for any P1-injective R-module M

and any R-module N . Hence, by Proposition 2.18, idR(N) ≤ n for any R-module

N . It follows that l-gldim(R) ≤ n and thus the desired equality follows.

(2) Assume that R is not semi-simple. Then l-gl-dim(R) ≥ 1. Let n ≥ 1 be an

integer.

Then l-gl-dim(R) ≤ n if and only if pdR(M) ≤ n for each R-module M if and

only if ExtnR(M,N) = 0 for each R-module M and each P1-injective module N (by

Proposition 2.11) if and only if idR(N) ≤ n − 1 for each P1-injective module N if

and only if 1 + sup{idR(M) : M is a P1-injective left R-module} ≤ n. It follows

that

l-gl-dim(R) = 1 + sup{idR(M) : M is a P1-injective left R-module}.

�
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We get the following result allowing to compute the global dimension of a do-

main R in terms of divisible modules.

Corollary 2.21. Let R be a domain. Then

(1) l-gl-dim(R) = sup{pdR(M) : M ∈ DI(R)}.
(2) Either R is a field or

l-gl-dim(R) = 1 + sup{idR(M) : M ∈ DI(R)}.

We close this section by the following characterization of semi-simple rings in

terms of P1-injective modules.

Proposition 2.22. Let R be a ring. Then the following assertions are equivalent.

(1) R is semi-simple;

(2) Any P1-injective left R-module is projective;

(3) Any P1-injective left R-module is semi-simple.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.

(2) ⇒ (1) Assume that any P1-injective left R-module is projective. Then, by

Proposition 2.20, l-gl-dim(R) = 0. Hence R is semi-simple.

(3) ⇒ (1) Let M be any left R-module. As M is a submodule of an injective

R-module I and I is semi-simple, by our assumption. Then M is semi-simple. It

follows that R is semi-simple, as desired. �

3. P1-injective modules and specific rings

The main goal of this section is to characterize specific rings such as hereditary

rings, semi hereditary rings and Noetherian rings in terms of inherent properties of

P1-injective R-modules.

Let A be nonempty collection of left ideals of a ring R. A left R-module Q is said

to be A-injective provided that each R-homomorphism f : A −→ Q with A ∈ A
extends to R (see [24]), equivalently, Ext1

R

(R
A
,Q
)

= 0 for each A ∈ A. Let us

denote the class of A-injective modules by AI(R). In particular, an R-module M is

called P-injective if M isA-injective withA = {principal left ideals of R}, M is said

to be max-injective if M is A-injective with A = {maximal left ideals of R} and M

is said to be coflat if M is A-injective with A = {finitely generated left ideals of R}.

Proposition 3.1. Let A be nonempty collection of left ideals of a ring R. Then

P1I(R) ⊆ AI(R) if and only if A ⊆ P(R).
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Proof. Assume that P1I(R) ⊆ AI(R). Let A ∈ A. Then Ext1
R

(R
A
,M
)

= 0 for

each P1-injective R-module M and thus
R

A
∈ ⊥(P1I(R)). By Lemma 2.3, we get

pdR

(R
A

)
≤ 1, and so A is projective. The inverse implication is obvious. �

Corollary 3.2. Let R be a ring. Then the following conditions are equivalent.

(1) R is left hereditary;

(2) P1I(R) = I(R).

Proof. Note that I(R) ⊆ P1I(R) and that if A := {left ideals of R}, then an

R-module M is injective if and only if M is A-injective. Hence, by Proposition 3.1,

P1I(R) ⊆ I(R) if and only if P1I(R) ⊆ AI(R) if and only if A ⊆ P(R) if and only

if R is left hereditary. This completes the proof. �

Corollary 3.3. Let R be a domain. Then the following conditions are equivalent.

(1) R is Dedekind domain;

(2) DI(R) = I(R).

As an immediate consequence of the above result, we deduce that l-sfli(R) =

r-sfli(R) in the context of a left hereditary ring R.

Corollary 3.4. Let R be a left hereditary ring. Then

l-sfli(R) = r-sfli(R).

Proof. It is straightforward using Corollary 2.16. �

It is known that, given a commutative ring R, any R-module is weak-injective

(or F1-injective, where F1 = {M ∈ Mod(R) : fd(M) ≤ 1}) if and only if R is

perfect [19, Theorem 5.1]. Now, we present the following characterization of rings

all modules over which are P1-injective via the vanishing of their finitistic projective

dimension. This allows to give an alternate and simple proof of [19, Theorem 5.1].

Proposition 3.5. Let R be a ring. Then the following conditions are equivalent.

(1) Any left R-module is P1-injective;

(2) R is self-P1-injective and P1I(R) is stable under direct limits;

(3) Any projective R-module is P1-injective;

(4) Every submodule of a P1-injective is P1-injective;

(5) P1 = P(R);

(6) FPD(R) = 0.
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Proof. (1) ⇒ (2) It is obvious.

(2) ⇒ (3) It is easy as any projective module is a direct limit of finitely generated

free modules which are P1-injective by hypotheses and as P1I(R) is stable under

finite direct sums.

(3) ⇒ (1) It follows from the fact any R-module M is a quotient of a projective

module and thus it is P1-injective.

(1) ⇔ (4) is clear as any R-module is a submodule of an injective module which is

P1-injective.

(1) ⇒ (5) Using (1), we get ⊥Mod(R) =⊥ (P1I(R)) = P1 as (P1,P1I(R)) is a

cotorsion theory. Since ⊥Mod(R) = P(R), we get P1 = P(R).

(5) ⇒ (6) It follows easily that FPD(R) = 0.

(6) ⇒ (1) FPD(R) = 0 yields, in particular, that P1 = P(R) and thus P1I(R) =

P⊥1 = P(R)⊥ = Mod(R), completing the proof. �

Corollary 3.6. Let R be a ring. If any R-module is weak-injective, then FPD(R) =

0.

It turns out that in the commutative rings context the rings over which all

modules are P1-injective are exactly the perfect rings. Moreover, the next result

presents an alternate and simple proof of Lee’s theorem [19, Theorem 5.1].

Corollary 3.7. Let R be a commutative ring. Then the following conditions are

equivalent.

(1) Any R-module is P1-injective;

(2) Any R-module is weak-injective;

(3) R is a perfect ring.

Proof. (2) ⇒ (1) It is direct as, by Lemma 2.4, any weak-injective module is P1-

injective.

(1) ⇔ (3) First, note that, by Kaplansky’s theorem [3, Kaplansky’s theorem, page

466] and by [3, Example 6, page 476], R is perfect if and only if FPD(R) = 0.

Therefore we are done by Proposition 3.5.

(3) ⇒ (2) Assume that R is perfect. Then FPD(R) = 0 and F1 = P1 so that, by

Proposition 2.5, P1I(R) =W. Now, Proposition 3.5 completes the proof. �

We deduce the following characterization of self-injective rings R on which the

class of P1-injective modules is stable under direct limit.

Corollary 3.8. Let R be a self-injective ring. Then the following assertions are

equivalent.
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(1) P1I(R) is stable under direct limit;

(2) Any R-module is P1-injective;

(3) FPD(R) = 0.

Moreover, if R is commutative, then the above assertions are equivalent to

the following:

(4) R is a perfect ring.

Recall that R is a Quasi-Frobenius ring (QF-ring for short) if R is left Artinian

and RR is injective, equivalently if any projective left R-module is injective (see [1,

Theorem 31.9]).

Corollary 3.9. Let R be a QF-ring. Then any left R-module is P1-injective.

Proof. Let R be a QF-ring. We prove that FPD(R) = 0. In fact, as l-silp(R) :=

max{idR(M) : M ∈ P(R)} = 0 and l-spli(R) = max{pdR(M) : M ∈ I(R)} = 0,

we get, by [6, Theorem 3.3], that

G-gldim(R) = max{l-silp(R), l-spli(R)} = 0.

Then FPD(R) = GFPD(R) = 0 [17, Theorem 2.28], where GFPD(R) :=

sup{GpdR(M) : M ∈ Mod(R) and GpdR(M) < +∞} denotes the finitistic Goren-

stein projective dimension of R. Hence FPD(R) = 0, so that, by Proposition 3.5,

P1I(R) = Mod(R), as desired. �

The following result characterizes rings of finite global dimension such that

P1I(R) = Mod(R).

Corollary 3.10. Let R be a ring such that l-gl-dim(R) < +∞. Then the following

conditions are equivalent.

(1) Any R-module is P1-injective;

(2) R is a semi-simple;

(3) R is a QF-ring.

A ring R is called a PP-ring if each principal ideal of R is projective. Note that

any left semi-hereditary ring is a PP-ring. Next, we prove that any von Neumann

regular ring is a left semi-hereditary ring and thus a PP-ring and if R is moreover

self P1-injective, then the converse holds as well.

Proposition 3.11. Let R be a ring. Then

(1) If R is a von Neumann regular ring, then R is left semi-hereditary and thus

a PP-ring.
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(2) If moreover R is self P1-injective ring, then the following assertions are

equivalent:

(i) R is a von Neumann regular ring;

(ii) R is left semi-hereditary;

(iii) R is a PP-ring.

Proof. (1) Assume that R is a von Neumann regular ring. Let I be a finitely

generated ideal of R. As I is finitely generated,
R

I
is finitely presented. Now, since

R is von Neumann regular,
R

I
is a flat R-module. Hence

R

I
is projective over R and

thus the exact sequence 0 −→ I −→ R −→ R

I
−→ 0 splits, so that I is projective

over R. Consequently, R is left semi-hereditary.

(2) Assume that R is self P1-injective.

(i) ⇒ (ii) It holds by (1).

(ii) ⇒ (iii) It is straightforward.

(iii) ⇒ (i) Assume that R is a PP-ring. Let I = aR be a principal ideal of R.

Then, by Proposition 2.2(1), I, being a homomorphic image of R, is P1-injective

and, as R is a PP-ring, I is projective. Consider the following exact sequence

0 −→ I −→ R −→ R

I
−→ 0. Then pdR

(R
I

)
≤ 1. Since I is P1-injective, we

get Ext1
R

(R
I
, I
)

= 0. Therefore, the exact sequence 0 −→ I −→ R −→ R

I
−→ 0

splits and thus I is a direct summand of R. It follows that I is generated by an

idempotent element, that is, there exists e ∈ R such that e = e2 and I = eR. Then

there exist p, q ∈ R such that e = pa, and a = qe. Hence ae = (qe)e = qe = a and

a = ae = apa. Consequently, R is von Neumann regular. �

Recall that a ring R is left Noetherian if and only if each left R-module is

FP-projective [20, Proposition 2.6]. Our next proposition refines this theorem via

P1-injective modules.

Proposition 3.12. Let R be a ring. Then the following conditions are equivalent.

(1) R is left Noetherian;

(2) Every P1-injective left R-module is FP-projective.

Proof. (1) ⇒ (2) It is obvious by [20, Proposition 2.6].

(2) ⇒ (1) Let N be an FP-injective left module. Then, for each P1-injective R-

module M , we get, by assumption, Ext1
R(M,N) = 0. Hence N ∈ (P1I(R))⊥. As,

by Proposition 2.3, (P1I(R))⊥ = I(R), it follows that N is injective. Consequently,

R is Noetherian, by [21, Theorem 3]. �

Corollary 3.13. Let R be a domain. Then the following conditions are equivalent.
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(1) R is Noetherian;

(2) Every divisible R-module is FP-projective.

It is well known that a ring R is left coherent if and only if FP-I(R) = {M ∈
Mod(R) : M+ is flat} [7, Theorem 1]. Also, FP-I(R) = {M ∈ Mod(R) : M+ is

projective} if and only if R is left coherent and right perfect [7, Theorem 3]. The

following theorem and corollary discuss the class of rings R such that P1I(R) ⊆
{M ∈ Mod(R) : M+ is flat} as well as those rings R satisfying P1I(R) ⊆ {M ∈
Mod(R) : M+ is projective}.

Recall that a module M over a ring R is said to be coflat if Ext1
R

(R
A
,M
)

= 0 for

each finitely generated left ideal A of R. The class of coflat R-modules is denoted

by co-F(R).

Theorem 3.14. Let R be a ring. Then the following assertions are equivalent:

(1) P1I(R) ⊆ {M ∈ Mod(R) : M+ is flat};
(2) P1I(R) ⊆ FP-I(R);

(3) P1I(R) ⊆ co-F(R).

(4) R is left semi-hereditary.

Proof. (1) ⇒ (2) Assume that (1) holds, that is, P1I(R) ⊆ {M ∈ Mod(R) : M+

is flat}. First, let us prove that a right R-module M is flat if and only if so is

M++. In fact, suppose that M is a flat right R-module. Then M+ is injective and

thus a P1-injective left R-module, and so, using (1), M++ is a flat right R-module.

Conversely, suppose that M++ is a flat right R-module. Then M is flat since M is

a pure submodule of M++ and it is known that the class of flat modules is closed

under pure submodules. This proves our claim and yields that R is left coherent,

by [7, Theorem 1]. Therefore, FP-I(R) = {M ∈ Mod(R) : M+ is flat}, by [7,

Theorem 1]. It follows that P1I(R) ⊆ FP-I(R) proving (2).

(4) ⇒ (2) Assume that R is left semi-hereditary. Then pdR(M) ≤ 1 for each

finitely presented left R-module M , that is, P1 includes all finitely presented mod-

ules. Therefore, every P1-injective left R-module is FP-injective proving (2).

(2) ⇒ (4) Let I be a finitely generated ideal I of R. Then
R

I
is finitely presented.

Hence Ext1
R

(R
I
,N
)

= 0 for any P1-injective R-module N . Therefore, by Propo-

sition 2.11, pdR

(R
I

)
≤ 1. It follows that I is projective. Consequently, R is left

semi-hereditary.

(3) ⇔ (4) It follows easily from Proposition 3.1.

(4) ⇒ (1) Assume that R is semi-hereditary. Then, in particular, (2) holds and R
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is left coherent and thus, by [7, Theorem 1], FP-I(R) = {M ∈ Mod(R) : M+ is

flat}. Hence (1) holds using (2). This completes the proof. �

Corollary 3.15. Let R be a ring. Then

(1) If P1I(R) ⊆ {M ∈ Mod(R) : M+ is projective}, then R left semi-hereditary.

(2) If, moreover, R is right perfect, then the following assertions are equivalent:

(i) P1I(R) ⊆ {M ∈ Mod(R) : M+ is flat };
(ii) P1I(R) ⊆ FP-I(R);

(iii) P1I(R) ⊆ co-F(R);

(iv) R is left semi-hereditary;

(v) P1I(R) ⊆ {M ∈ Mod(R) : M+ is projective}.

Proof. (1) It is direct using Theorem 3.14 as {M ∈ Mod(R) : M+ is projective} ⊆
{M ∈ Mod(R) : M+ is flat}.
(2) It is straightforward since, when R is right perfect, a right module is flat if

and only if it is projective and thus {M ∈ Mod(R) : M+ is projective} = {M ∈
Mod(R) : M+ is flat}. �

It is worth reminding that a ring R is left Artinian if and only if I(R) = {M ∈
Mod(R) : M+ is projective} (see [7, Theorem 4]). Also, by [21, Theorem 3], a ring

R is Noetherian if and only if I(R) = FP-I(R). Our focus next is to provide the

analog of these theorems for the P1-injective modules, namely, we seek the class of

rings R such that P1I(R) = {M ∈ Mod(R) : M+ is projective} as well as those

rings R such that P1I(R) = FP-I(R).

Theorem 3.16. Let R be a ring.

(1) Consider the following assertions.

(i) P1I(R) = {M ∈ Mod(R) : M+ is projective}.
(ii) P1I(R) = {M ∈ Mod(R) : M+ is flat}.

(iii) P1I(R) = FP-I(R).

Then (i) ⇒ (ii) ⇔ (iii).

(2) Assume that R is commutative. Then the following assertions are equiva-

lent.

(i) P1I(R) = {M ∈ Mod(R) : M+ is projective};
(ii) R is a semisimple ring.

Proof. (1) (ii) ⇔ (iii) It is straightforward using Theorem 3.14 since R is left

coherent in case either (ii) or (iii) is satisfied and thus, by [7, Theorem 1], FP-

I(R) = {M ∈ Mod(R) : M+ is flat}.
(i) ⇒ (iii) Assume that P1I(R) = {M ∈ Mod(R) : M+ is projective}. Let M be
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an FP-injective left R-module and let 0 −→ M −→ E −→ K −→ 0 be a short

exact sequence with E an injective left R-module. Then it is pure and thus the

associated exact sequence of character modules

0 −→ K+ −→ E+ −→M+ −→ 0

splits. As E is injective, it is P1-injective. Then E+ is projective and therefore

M+ is projective. Hence, by assumptions, we get M is P1-injective. Conversely,

let M be a P1-injective left R-module. Then M+ is projective and thus M++ is

injective. It follows, by [24, Proposition 2.6], since M is pure in M++, that M is

FP-injective. Therefore P1I(R) = FP-I(R).

(2) Assume that R is commutative.

(ii) ⇒ (i) Suppose that R is semisimple. As R is hereditary, by Corollary 3.2,

P1I(R) = I(R) and as R is Artinian, we have {M ∈ Mod(R) : M+ is projective} =

I(R). Then P1I(R) = {M ∈ Mod(R) : M+ is projective} establishing (i).

(i) ⇒ (ii) Assume that (i) holds. Then, by (1), P1I(R) = FP-I(R) = {M ∈
Mod(R) : M+ is projective}. Hence, by [7, Theorem 3], R is a semi-hereditary

and perfect ring. Therefore R is hereditary and thus P1I(R) = I(R), so that

I(R) = {M ∈ Mod(R) : M+ is projective}. It follows, by [7, Theorem 4], that

R is Artinian. Now, using [22, Theorem 3.2.6], we get 0 = dim(R) = FPD(R) =

gl-dim(R) as gl-dim(R) ≤ 1. This means that R is semisimple establishing (ii) and

completing the proof. �

It is well known that if R is a Prüfer domain, then, by [25, Theorem 4.9],

P1I(R) = P⊥1 = FP-I(R). Next, we prove that this last condition totally charac-

terizes Prüfer domains.

Corollary 3.17. Let R be an integral domain. Then the following statements are

equivalent.

(1) R is Prüfer;

(2) P1I(R) = FP-I(R);

(3) P1I(R) = {M ∈ Mod(R) : M+ is flat}.

Proof. Observe that, by Theorem 3.14 and Theorem 3.16, we have (2) ⇔ (3) ⇒
(1). The implication (1) ⇒ (2) holds by [25, Theorem 4.9], as desired. �

Corollary 3.18. Let R be an integral domain. Then the following assertions are

equivalent:

(1) P1I(R) = {M ∈ Mod(R) : M+ is projective};
(2) R is a field.
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Proof. It is straightforward applying Theorem 3.16. �

4. P1-injective modules and Hom

This section studies the behavior of the P1-injective modules with respect to the

functor Hom. It is worthwhile recalling in this context that an R-module M is flat

if and only if HomR(M,N) is injective for each injective R-module N if and only

if the character module M+ is injective. In this section, we seek properties of the

modules M such that HomR(M,N) is P1-injective for each P1-injective module N .

Recall, in this aspect, that Fuchs and Lee proved in [12] that, given an integral do-

main R and an R-module M , HomR(M,N) is weak-injective for any weak-injective

module N if and only if M is flat [12, Theorem 4.3].

In [12, Theorem 4.1], Fuchs and Lee proved, in the context of an integral domain

R, that a module M weak-injective if and only if HomR(F,M) is weak-injective for

any flat module F . We give next an analog of this theorem for P1-injectivity.

Proposition 4.1. Let R be a ring. A left R-module M is P1-injective if and only

if HomR(P,M) is a right P1-injective module for each projective R-module P .

Proof. It is easy as the class of P1-injective modules is stable under direct product

and direct summand. �

Proposition 4.2. Let R be a ring and M an R-module. Then the following asser-

tions are equivalent:

(1) HomR(M,N) is a right P1-injective module for each left injective R-module

N ;

(2) TorR1 (E,M) = 0 for each right module E ∈ P1;

(3) M+ is a right P1-injective module.

Proof. (2)⇔ (3) It is direct using the isomorphism Ext1
R(E,M+) ∼= TorR1 (E,M)+

for any right module E ∈ P1.

(1) ⇒ (2) Let E ∈ P1 be a right module and let 0 −→ Q −→ P −→ E −→ 0 be

an exact sequence of right modules such that P and Q are projective R-modules.

Then the following sequence is exact

0 −→ HomR(E,HomR(M,N)) −→ HomR(P,HomR(M,N)) −→

−→ HomR(Q,HomR(M,N)) −→ 0

for each injective R-module N . Thus we get the following exact sequence for each

injective R-module N

0 −→ HomR(E ⊗R M,N) −→ HomR(P ⊗R M,N) −→ HomR(Q⊗R M,N) −→ 0.
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Hence the sequence

0 −→ Q⊗R M −→ P ⊗R M −→ E ⊗R M −→ 0

is exact which means that TorR1 (E,M) = 0, as desired.

(2) ⇒ (1) It is similar by inverting the order of the proof of (1) ⇒ (2). �

Corollary 4.3. Let R be an integral domain and M an R-module. Then the

following assertions are equivalent:

(1) HomR(M,N) is P1-injective for each injective R-module N ;

(2) HomR(M,N) is weak-injective for each injective R-module N ;

(3) M is torsion-free.

Proof. Combine Proposition 4.2 and [18, Lemma 2.3]. �

Corollary 4.4. Let R be a left hereditary ring. Then the following assertions are

equivalent.

(1) HomR(M,N) is P1-injective for each P1-injective R-module N ;

(2) HomR(M,N) is injective for each injective R-module N ;

(3) M is flat.

Proof. (1) ⇔ (2) It holds as P1I(R) = I(R).

(1) ⇔ (3) By Proposition 4.2, HomR(M,N) is P1-injective for each P1-injective

moduleN if and only if TorR1 (E,M) = 0 for each E ∈ P1 if and only if TorR1 (E,M) =

0 for each R-module E if and only if M is flat. �

Next, we present the main theorem of this section. A nice duality arises between

the behavior of P1-injective modules with respect to the Hom and Ext functors,

on the one hand, and the behavior of modules of projective dimension at most one

with respect to the tensor product and Tor functors, on the other.

Theorem 4.5. Let R be a commutative ring and M an R-module. Then the

following assertions are equivalent:

(1) M ∈ P1 and HomR(M,N) is P1-injective for each P1-injective R-module

N ;

(2) Ext1
R(M,N) = 0 and HomR(M,N) is P1-injective for each P1-injective

R-module N ;

(3) TorR1 (E,M) = 0 and E ⊗R M ∈ P1 for each E ∈ P1.

The proof requires the following result of Fuchs and Lee [11, Lemma 2.3].
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Lemma 4.6. Let R be a commutative ring and A, B and C be R-modules. If

Ext1
R(A,B) = 0 and TorR1 (C,A) = 0, then

Ext1
R(C ⊗R A,B) ∼= Ext1

R(C,HomR(A,B)).

Proof of Theorem 4.5. (1)⇔ (2) It is easy as (P1,P1I(R)) is a cotorsion theory.

(2) ⇔ (3) Observe that if (2) holds, then HomR(M, I) is P1-injective for each

injective R-module I, so that, by Proposition 4.2, TorR1 (E,M) = 0 for each E ∈ P1.

Also, if (3) holds, then, taking E = R, we get R ⊗R M ∼= M ∈ P1 and thus

Ext1
R(M,N) = 0 for each P1-injective R-module N . Therefore either (2) or (3)

implies that TorR1 (E,M) = 0 and Ext1
R(M,N) = 0 for each E ∈ P1 and each

P1-injective R-module N . It follows, by Lemma 4.6, that

Ext1
R(E ⊗R M,N) ∼= ExtR1 (E,HomR(M,N))

for each E ∈ P1 and each P1-injective module N . This establishes the desired

equivalence and completes the proof of the theorem. �

Corollary 4.7. Let R be a Matlis domain and M an R-module. Then the following

assertions are equivalent:

(1) M ∈ P1 and HomR(M,N) is divisible for each divisible R-module N ;

(2) M is strongly flat.

Proof. (1) ⇒ (2) By Theorem 4.5, TorR1 (E,M) = 0 for each E ∈ P1. Then, by

[18, Lemma 2.3], M is torsion-free. Hence, using [11, Lemma 6.1] and Theorem 4.5,

we get that M is strongly flat.

(2) ⇒ (1) Combine [11, Lemma 6.1] and Theorem 4.5 noting that any strongly flat

module is torsion-free. �
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