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Abstract. The present work is focused on the study of a cotangent sum
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1. Introduction

For rational number p/q with (q, p) = 1 and q > p > 0, the Vasyunin cotangent

sum V (p/q) [24] is defined by

V (p/q) =

q−1∑
k=1

{
pk

q

}
cot

πk

q
.

V (p/q) is a periodic function of period 1 and its value is an algebraic number.

It is a generalization of Dedekind sums with which it shares the law of reciprocity

[3,13]. The Vasyunin cotangent sums appear in the study of the Riemann hypothesis

through the following identity of the Vasyunin formula [24]:∫ +∞

0

{
t

p

}{
t

q

}
dt

t2
=

log 2π − γ
2

(
1

p
+

1

q

)
+
q − p
2pq

log
p

q

− π

2pq
(V (p/q) + V (q/p)) .

The above formula is related to the Báez-Duarte-Balazard approach [2] to the

Riemann hypothesis. The Riemann zeta function is defined by Dirichlet series

ζ(s) =
∑
n≥1

1

ns
,

for whom the Euler product formula is

ζ(s) =
∏

p:prime

1

1− p−s
.
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The zeta function is also found in other areas of algebra such as group and ring

theory. We can cite zeta function of a finitely generated group [14,25], Hasse Zeta

Functions of Non-commutative Rings [9] and zeta function in integral Representa-

tion Theory [23]. All these functions are expressed as product or sum of infinite

numbers. Almost they keep the same properties as in analytical number theory.

The sum V (p/q) is closely connected with the cotangent sum

c0(p/q) = −
q−1∑
k=1

k

q
cot

(
πkp

q

)
by virtue of the relation

V (p/q) = −c0(p̄/q),

where p̄ is the inverse of p modulo q. The sum c0(p/q) appears in the Estermann

zeta function E (s, p/q, α) [15,20] defined by the Dirichlet series

E (s, p/q, α) =
∑
n≥1

σα(n) exp(2πinp/q)

ns
,

where σα(n) =
∑
d|n d

α. At s = α = 0 we have

E (0, p/q, 0) =
1

4
+
i

2
c0 (p/q) ,

which means that

c0 (p/q) = − 1

2i
+

2

i

∑
n≥1

d(n) exp(2πinp/q),

with d(n) = σ0(n) =
∑
d|n 1 is the divisor function which counts the number of

divisors of n. The writing of c0(p/q) as a function of c0(1/q) is given by the relation

(see [17, Proposition 3.2] and [20, Proposition 3.2.2])

c0(p/q) =
1

p
c0(1/q)− 1

p

q−1∑
k=1

cot

(
πkp

q

)⌊
kp

q

⌋
.

M. Th. Rassias [20,21] proved the following Dirichlet series of c0(1/q):

c0(1/q) =
1

π

∑
n≥1
q-n

[
q

n

(
1 + 2

⌊
n

q

⌋)
− 2

]
. (1)

Separately M. Goubi et al. [13] investigated the sum V (1/q) and showed that

V (1/q) = − 1

π

∫ 1

0

(
(q − 2)tq − qtq−1 + qt− q + 2

)
fq(t)dt, (2)

where

fq(t) =
1

(1− t)2 (1− tq)
.
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It is easily checked that

(q − 2)tq − qtq−1 + qt− q + 2 = (t− 1)
3
q−1∑
r=1

(q − r − 1) rtr−1,

and then

V (1/q) = − 1

π

∫ 1

0

∑q−1
r=1 (q − r − 1) rtr−1

1 + t+ · · ·+ tq−1
dt.

fq is a generating function, it is written under the form

fq(t) =
∑
n≥0

bq(n)tn, |t| < 1,

with bq(n) is the sequence of positive integers defined by the recurrence relation[10].

Using this sequence, we transformed the integral (2) to the following series expan-

sion of V (1/q):

V (1/q) = − 1

π
q (q − 1) (q − 2)

∑
n≥0

bq(n)

(n+ 1) (n+ 2) (n+ q) (n+ q + 1)
.

We refer to [6,7,18] for recent algebraic developments of various formal series

such as Z-transform and Fourier series in symbolic calculus. We remember that Z-

transform is defined as sum of an infinite number of addends and used for example

as a controllable way of solving linear, constant-coefficient difference equations [19].

The idea contained in the Z-transform is also not far from the method of generating

functions as introduced by de Moivre in probability theory [16]. To explicitly

calculate the sequence bq(n) we first define the divisor function dq(n) by the relation

dq(n) =

{
1 if q | n,
0 otherwise.

Let r be the remainder obtained when n is divided into q. Moreover, r = 0 if,

and only if, q | n, which justifies the expression

dq(n) = I(r + 1),

where I is the so-called identity arithmetical function [1] which takes the form

I(n) =

⌊
1

n

⌋
=

{
1 if n = 1,

0 if n > 1.

The divisor function d(n) is related to this function by the relation

d(n) =

n∑
k=1

dk(n).
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Therefore we can write bq(n) in the form

bq(n) =

n∑
k=0

(n− k + 1) dq(k). (3)

The proof consists to write

fq(t) =

∑
n≥0

(n+ 1) tn

∑
n≥0

dq(n)tn

 ,

and the result follows from the Cauchy product of generating functions. A simple

calculation shows that

n∑
k=0

(n− k + 1) dq(k) =

bn/qc∑
j=0

(n− jq + 1) ,

and then
n∑
k=0

(n− k + 1) dq(k) = (n+ 1)

(⌊
n

q

⌋
+ 1

)
− q

2

⌊
n

q

⌋(⌊
n

q

⌋
+ 1

)
.

Finally we have

bq(n) =

(
n+ 1− q

2

⌊
n

q

⌋)(⌊
n

q

⌋
+ 1

)
; (4)

which is a special case of [4, Proposition 4] for p̄ = 1. If q | n, it is obvious to remark

that

2bq(n) = (n+ 2)

(
n

q
+ 1

)
and bq(n) ≡

(
n

q
+ 1

)
(mod p).

The exponential partial Bell polynomials [5] Bn,k := Bn,k (x1, · · · , xn−k+1) are

defined by the generating function

1

k!

∑
n≥1

xn
tn

n!

k

=
∑
n≥k

Bn,k
tn

n!
(5)

and admit for explicit formula the expression

Bn,k =
n!

k!

∑
sn(k)

(
k

k1, · · · , kn−k+1

) n−k+1∏
r=1

(xr
r!

)kr
, (6)

where sn(k) is the set of all k1, k2, · · · , kn−k+1 for which k1 +k2 + · · ·+kn−k+1 = k

and k1 + 2k2 + · · ·+ nkn−k+1 = n, and(
k

k1, · · · , kn−k+1

)
=

k!

k1! · · · kn−k+1!
.

The following are some particular values Bn,k [5]:

Bn,k (1, 1, · · · ) = S (n, k) , (Stirling numbers of second kinds) ,
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Bn,k (1!, 2!, · · · ) =
n!

k!

(
n− 1

k − 1

)
, (Lah numbers) ,

Bn,k (1, 2, · · · ) =

(
n

k

)
kn−k, (idempotent numbers) .

The Bell polynomials are used to calculate the coefficients of a generating func-

tion resulting from the composition of two generating functions. Let f(t) =
∑
n≥0 ant

n

and g(t) =
∑
n≥0 bnt

n be two generating functions and we consider xj = j!bj . The

series expansion of f ◦ g is given by the expression [11]:

f ◦ g(t) = f(b0) +
∑
n≥1

n∑
k=1

Bn,kf
(k)(b0)

tn

n!
. (7)

Consequently for b0 = 0 we have

f ◦ g(t) = a0 +
∑
n≥1

n∑
k=1

k!akBn,k
tn

n!
. (8)

For the special case f(t) = tα, where α ∈ C and b0 6= 0, the identity (7) is

written under the form

gα(t) = bα0 +
∑
n≥1

n∑
k=1

(α)kb
α−k
0 Bn,k

tn

n!
. (9)

For the proof we refer to [12] and references therein. Otherwise Bn,k appear in

the Faà di Bruno formula [8] for computing the n-th derivative of f ◦ g. Let Dnf

the n-th derivative of f then

Dnf (g(t)) =

n∑
k=0

(
Dkf

)
(g (t))Bn,k

(
D1g(t), D2g(t), · · ·

)
.

We refer to [22] for a detailed proof. In this work we purpose a new reformulation

of bq(n) based on Bell polynomials and we revisit the proof of the Dirichlet series

of c0(1/q).

2. Bell polynomials associated to the inverse of generating functions

When b0 6= 0; 1/g(t) is a generating function. We can always assume b0 = 1 and

we take xk = k!bk. Substitute α = −1 in the identity (9) to obtain

1/g(t) = 1 +
∑
n≥1

n∑
k=1

(−1)kk!Bn,k
tn

n!
. (10)

Let an be the sequence

an =
1

n!

n∑
k=1

(−1)kk!Bn,k,
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with the first term a0 = 1. Thus

g(t)
∑
n≥0

ant
n = 1.

By means of Cauchy product of generating function we deduce that

n∑
u=0

aubn−u = 0, n ≥ 1,

and we have already proved the following theorem.

Theorem 2.1. The sequence bn satisfies the inversion relation

n∑
u=1

1

u!
bn−u

u∑
k=1

(−1)kk!Bu,k = −bn (11)

The identity (11) is useful to show for example that

n∑
u=1

u∑
k=1

(−1)k
(
u− 1

k − 1

)
= −1,

n∑
u=1

(
n

u

) u∑
k=1

(−1)kk!S (n, k) = −1

and
n∑
u=1

u∑
k=1

(−1)kk!

(
n

k

)
Cn,kk

n−k = −1,

where

Cn,u =

{ (
n−1
u

)
if u < n,

1
n if u = n.

2.1. New reformulation of the sequence bq(n). First we began by relating

restricted divisor function d(n) to bq(n) and deduce new reformulation of d(n) by

means of the integer part function b.c . According to the expression of fq(t) we can

write (
1− 2t+ t2

)
fq(t) =

1

1− tq
and (1− tq) fq(t) =

1

(1− t)2
.

Let bn the sequence defined by b0 = 1, b1 = −2, b2 = 1 and the others are zeros.

By means of the Cauchy product of generating functions we obtain respectively

dq(n) =

n∑
k=0

bkbq(n− k)

and

fq(t)− tqfq(t) =
∑
n≥0

(n+ 1)tn
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Furthermore for n ≥ 2 we have

dq(n) = bq(n)− 2bq(n− 1) + bq(n− 2) (12)

and

n+ 1 = bq(n)− bq(n− q), n ≥ q (13)

The reformulation of the identities (12) and (13) by means of the integer part

function gives

dq(n) =

(
n+ 1− q

2

⌊
n

q

⌋)(⌊
n

q

⌋
+ 1

)
− 2

(
n− q

2

⌊
n− 1

q

⌋)(⌊
n− 1

q

⌋
+ 1

)
+

(
n− 1− q

2

⌊
n− 2

q

⌋)(⌊
n− 2

q

⌋
+ 1

)
and

n+ 1 =

(
n+ 1− q

2

⌊
n

q

⌋)(⌊
n

q

⌋
+ 1

)
−
(
n− q + 1− q

2

⌊
n− q
q

⌋)(⌊
n− q
q

⌋
+ 1

)
.

From another point of view, the expression of fq(t) is written under the form

fq = 1/Aq(t) where

Aq(t) = 1− 2t+ t2 − tq + 2tq+1 − tq+2.

One can extend the sum at infinity and obtain Aq(t) =
∑
n≥0 vnt

n, with vn is

the sequence defined by v0 = 1, v1 = −2, v2 = 1, vq = −1, vq+1 = 2, vq+2 = −1

and the others are zeros. Let sq be the set sq = {1, 2, q, q + 1, q + 2} and sq(k, n)

the set of all (ki)i∈sq for which

k1 + k2 + kq + kp+1 + kq+2 = k

and

k1 + 2k2 + qkq + (q + 1)kq+1 + (q + 2)kq+2 = n.

The explicit formula of bq(n) by means of Bell polynomials is given by the fol-

lowing theorem

Theorem 2.2. Letting xj = j!vj, then we have bq(0) = 1 and for n ≥ 1;

bq(n) =

n∑
k=1

1

n!
(−1)kk!Bn,k. (14)

Explicitly we have

bq(n) =

n∑
k=1

∑
sq(k,n)

(−1)k2+kq+12k1+kq+1

(
k

ki

)
i∈sq

, (15)
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where (
k

ki

)
i∈sq

=
k!

k1!k2!kq!kq+1!kq+2!
.

Proof. It is obvious that

1/Aq(t) = 1 +
∑
n≥1

n∑
k=1

(−1)kk!Bn,k
tn

n!
.

To get explicit formula of bq(n) we must compute the quantity Bn,k. We have

Bn,k =
n!

k!

∑
sq(k,n)

(
k

k1, · · · , kn−k+1

) ∏
r∈sq

vkrr

The computation of the product
∏
r∈sq v

kr
r gives∏

r∈sq

vkrr = (−2)k1(−1)kq2kq+1(−1)kq+2 = (−1)k1+kq+kq+22k1+kq+1

and then ∏
r∈sq

vkrr = (−1)k−k2−kq+12k1+kq+1 .

Furthermore

Bn,k =
n!

k!

∑
sq(k,n)

(−1)k−k2−kq+12k1+kq+1

(
k

ki

)
i∈sq

.

Finally

1/Aq(t) = 1 +
∑
n≥1

n∑
k=1

∑
sq(k,n)

(−1)k2+kq+12k1+kq+1

(
k

ki

)
i∈sq

tn,

and the result follows. �

2.2. Further identities of bq(n). We consider the functions f(t) = 1
1−t and

g(t) = tq, so we have

(1− tq)−1 = f ◦ g(t).

The n-derivatives of f and g are respectively

Dnf(t) = n!(1− t)−n−1 and Dng(t) = (q)nt
q−n,

where (q)n is the falling number given by

(q)n =

{
q (q − 1) · · · (q − n+ 1) if n ≤ q,

0 if n > q.

According to Faà di Bruno formula we have

Dn
(

(1− tq)−1
)

=

n∑
k=0

k! (1− tq)−k−1Bn,k
(
(q)1t

q−1, (q)2t
q−2, · · ·

)
.
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But the n-th derivative of f2(t) is

Dn (1− t)−2 = (n+ 1)! (1− t)−2−n .

We use the well-known Leibniz formula

Dnfg(t) =

n∑
k=0

(
n

k

)
Dkf(t)Dn−kg(t)

to compute the n-th derivative of the product fq = fg:

Dnfq (t) =

n∑
u=0

u∑
k=0

(
n

u

)
k!Bu,k

(
(q)1t

q−1, (q)2t
q−2, · · ·

)
(n− u+ 1)!

× (1− tq)−k−1 (1− t)−2−n+u .

But we have

Bu,k
(
(q)1t

q−1, (q)2t
q−2, · · ·

)
= tqk−uBu,k ((q)1, (q)2, · · · )

Thus

Dnfq (t) = n!

n∑
u=0

u∑
k=0

∑
su(k)

(n− u+ 1)

(
k

k1 · · · ku

) u∏
r=1

(
(q)r
r!

)kr
× (1− tq)−k−1 (1− t)−2−n+u tqk−u.

The following result follows from the fact that Dnfq (t) |t=0 = bq(n)n!.

Theorem 2.3.

bq(n) =

n∑
u=0

∑
su(k)
qk=u

(n− u+ 1)

(
k

k1 · · · kq

) u∏
r=1

(
(q)r
r!

)kr
. (16)

The two different forms (15) and (16) of bq(n) permit to conclude that

n∑
u=0

∑
su(k)
qk=u

(n− u+ 1)

(
k

k1 · · · kq

) u∏
r=1

(
(q)r
r!

)kr
=

n∑
k=1

∑
sq(k,n)

(−1)k2+kq+12k1+kq+1 .

(
k

ki

)
i∈sq

.

3. Vasyunin cotangent sums and Bell polynomials

In this section we revisit the identity (1) to give an arithmetical proof different

of that given in [21] which uses Fourier analysis and exponential sum. Let `n be

the sequence defined by means of the generating function

2− q + qt− qtq−1 + (q − 2)tq

(1− t)2 (1− tq)
=
∑
n≥0

`nt
n, |t| < 1.
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First we give some recursive formulas satisfied by the sequence `n. Letting

2− q + qt− qtq−1 + (q − 2)tq =
∑
n≥0

cnt
n

where cn is the sequence defined by c0 = 2 − q, c1 = q, cq−1 = −q, cq = q − 2 and

the others are zeros. According to the identity∑
n≥0

cnt
n

∑
n≥0

bq(n)tn

 =
∑
n≥0

`nt
n,

we conclude that

`n =

n∑
k=0

ckbq(n− k)

and for n ≥ q:

`n = (2− q) bq(n) + qbq(n− 1)− qbq(n− q + 1) + (q − 2)bq(n− q).

Since we have

bq(n) =

n∑
k=1

k!

n!
(−1)kBn,k.

Then

`n = (2− q)
n∑
k=1

(−1)kk!

n!
Bn,k + q

n−1∑
k=1

(−1)kk!

(n− 1)!
Bn−1,k

− q

n−q+1∑
k=1

(−1)kk!

(n− q + 1)!
Bn−q+1,k + (q − 2)

n−q∑
k=1

(−1)kk!

(n− q)!
Bn−q,k.

Otherwise the identity∑
n≥0

vnt
n

∑
n≥0

`nt
n

 =
∑
n≥0

cnt
n

implies that

cn =

n∑
k=0

vk`n−k

and for n ≥ q + 2 we have

`n = 2`n−1 − `n−2 + `n−q − 2`n−q−1 + `n−q−2.

From the integral representation (2), it is easy to check that the Dirichlet series

of πV (1/q) is

πV (1/q) = π
∑
n≥0

`n
n+ 1

.
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In what follows we propose a method to find the explicit formula of `n. According

to the identity

(1− tq)

∑
n≥0

`nt
n

 =

∑
n≥0

cnt
n

∑
n≥0

(n+ 1)tn


we have

`n =

n∑
k=0

(n− k + 1)ck, n ≤ q − 1

and

`n − `n−q =

n∑
k=0

(n− k + 1)ck, n ≥ q.

Thus

`n+q − `n =

n+q∑
k=0

(n+ q − k + 1)ck,

but we have
∑n+q
k=0(n + q − k + 1)ck = 0. Then `n+q = `n and `n is periodic of

period q. To get all the values you just have to calculate `r for 0 ≤ r < q−1. In this

case we have `r = 2(r + 1)− q for r ≤ q − 2 and `q−1 = 0. Let r be the remainder

obtained when n is divided into q, then n = kq + r and `n = `r. Thereafter

πV (1/q) =
∑
k≥0

q−1∑
r=1

2r − q
kq + r

.

Since we have r = n − q
⌊
n
q

⌋
and r is different of q in the last sum, we deduce

that

πV (1/q) = −
∑
n≥1
q-n

2
(
−n+ q

⌊
n
q

⌋)
+ q

n

Finally we have

c0(1/q) = −V (1/q) =
1

π

∑
n≥1
q-n

[
q

n

(
1 + 2

⌊
n

q

⌋)
− 2

]
.
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