PAPER DETAILS

TITLE: On (1, 2)*-g#-Continuous Functions

AUTHORS: O RAVI,I RAJASEKARAN,A PANDI

PAGES: 69-79

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/407824

http://www.newtheory.org

On $(1,2)^*$ - $g^\#$ -Continuous Functions

O. Ravi^{1,*}(siingam@yahoo.com)
I. Rajasekaran¹ (rajasekarani@yahoo.com)
A. Pandi¹ (pandi2085@yahoo.com)

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract – The aim of this paper is to study and characterize $(1,2)^*-g^\#$ -continuous functions and $(1,2)^*-g^\#$ -irresolute functions formed with the help of $(1,2)^*-g^\#$ -closed sets.

Keywords – Bitopological space, $(1,2)^*$ - $g^\#$ -closed set, $(1,2)^*$ - $g^\#$ -continuous function, $(1,2)^*$ - $g^\#$ -irresolute function.

1 Introduction

Several authors ([1, 4, 5, 19]) working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous functions. A weak form of continuous functions called g-continuous functions were introduced by Balachandran et al [3]. Recently Sheik John [18] have introduced and studied another form of generalized continuous functions called ω -continuous functions.

In this paper, we first study $(1,2)^*-g^\#$ -continuous functions and investigate their relations with various generalized $(1,2)^*$ -continuous functions. We also discuss some properties of $(1,2)^*-g^\#$ -continuous functions. We also introduce $(1,2)^*-g^\#$ -irresolute functions and study some of its applications. Finally using $(1,2)^*-g^\#$ -continuous function we obtain a decomposition of $(1,2)^*$ -continuity.

2 Preliminary

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1, τ_2) , (Y, σ_1, σ_1) and (Z, η_1, η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [9] if $A = P \cup Q$, for some $P \in \tau_1$ and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -O(X)).

Definition 2.2. Let A be a subset of a bitopological space X. Then

^{**} Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editors-in-Chief).

^{*} Corresponding Author.

- 1. the $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{U: U \subseteq A \text{ and } U \text{ is } \tau_{1,2}\text{-open}\};$
- 2. the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{U: A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed}\}$.

Remark 2.3. Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition 2.4. Let A be a subset of a bitopological space X is called

- 1. $(1,2)^*$ -semi-open set [9] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).
- 2. $(1,2)^*$ -preopen set [9] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- 3. $(1,2)^*$ - α -open set [9] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).
- 4. $(1,2)^*$ - β -open set [12] if $A \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(A))).
- 5. $(1,2)^*$ -regular open set [13] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -preclosure [11] (resp. $(1,2)^*$ -semi-closure [11], $(1,2)^*$ - α -closure [11], $(1,2)^*$ - β -closure [16]) of a subset A of X, denoted by $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - α cl(A), $(1,2)^*$ - β cl(A)) is defined to be the intersection of all $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ - α -closed, $(1,2)^*$ - α -closed) sets of X containing A. It is known that $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - α -closed, $(1,2)^*$ -pcl(A)) is a $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ - α -closed, $(1,2)^*$ - α -closed) set. For any subset A of an arbitrarily chosen bitopological space, the $(1,2)^*$ -semi-interior [11] (resp. $(1,2)^*$ - α -interior [11], $(1,2)^*$ -preinterior [11]) of A, denoted by $(1,2)^*$ -sint(A) (resp. $(1,2)^*$ - α -int(A), $(1,2)^*$ -print(A)), is defined to be the union of all $(1,2)^*$ -semi-open (resp. $(1,2)^*$ - α -open, $(1,2)^*$ -preopen) sets of X contained in A.

Definition 2.5. Let A be a subset of a bitopological space X is called

- 1. a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [17] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- 2. $a\ (1,2)^*-g^*$ -closed set [17] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -g-open in X. The complement of $(1,2)^*-g^*$ -closed set is called $(1,2)^*-g^*$ -open set.
- 3. $a(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [2] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X.
 - The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open set.
- 4. $a(1,2)^*$ -generalized semi-closed (briefly, $(1,2)^*$ -gs-closed) set [2] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set.
- 5. an $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - αg -closed) set [6] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open set.
- 6. a $(1,2)^*$ -generalized semi-preclosed (briefly, $(1,2)^*$ -gsp-closed) set [6] if $(1,2)^*$ - $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set.
- 7. $a(1,2)^*$ - $g\alpha$ -closed set [15] if $(1,2)^*$ - α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - α -open in X. The complement of $(1,2)^*$ - $g\alpha$ -closed set is called $(1,2)^*$ - $g\alpha$ -open set.

Remark 2.6. The collection of all $(1,2)^*$ - g^* -closed (resp. $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -ag-closed, $(1,2)^*$ -sg-closed, $(1,2)^*$ -ag-closed, $(1,2)^*$ -sg-closed, $(1,2)^*$ -semi-closed) sets of X is denoted by $(1,2)^*$ - $G^*C(X)$ (resp. $(1,2)^*$ -GC(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSPC(X), $(1,2)^*$ -GC(X), $(1,2)^*$ -GC(X), $(1,2)^*$ -GC(X).

The collection of all $(1,2)^*$ - g^* -open (resp. $(1,2)^*$ -g-open, $(1,2)^*$ -g-o

We denote the power set of X by P(X).

Definition 2.7. [10] Let A be a subset of a bitopological space X. Then A is called

- 1. $(1,2)^*$ - $g^\#$ -closed set if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - αg -open in X. The family of all $(1,2)^*$ - $g^\#$ -closed sets in X is denoted by $(1,2)^*$ - $G^\#$ C(X).
- 2. $(1,2)^*$ - $g_{\alpha}^{\#}$ -closed set if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - αg -open in X. The family of all $(1,2)^*$ - $g_{\alpha}^{\#}$ -closed sets in X is denoted by $(1,2)^*$ - $G_{\alpha}^{\#}C(X)$.

Definition 2.8. A function $f: X \to Y$ is called:

- 1. $(1,2)^*-g^*$ -continuous [7] if $f^{-1}(V)$ is a $(1,2)^*-g^*$ -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 2. $(1,2)^*$ -g-continuous [7] if $f^{-1}(V)$ is a $(1,2)^*$ -g-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 3. $(1,2)^*$ - αg -continuous [16] if $f^{-1}(V)$ is an $(1,2)^*$ - αg -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 4. $(1,2)^*$ -gs-continuous [16] if $f^{-1}(V)$ is a $(1,2)^*$ -gs-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 5. $(1,2)^*$ -gsp-continuous [16] if $f^{-1}(V)$ is a $(1,2)^*$ -gsp-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 6. $(1,2)^*$ -sg-continuous [14] if $f^{-1}(V)$ is a $(1,2)^*$ -sg-closed set in X for every $\sigma_{1,2}$ -closed set V of
- 7. $(1,2)^*$ -semi-continuous [11] if $f^{-1}(V)$ is a $(1,2)^*$ -semi-open set in X for every $\sigma_{1,2}$ -open set V of Y.
- 8. $(1,2)^*$ - α -continuous [11] if $f^{-1}(V)$ is an $(1,2)^*$ - α -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.

Definition 2.9. A function $f: X \to Y$ is called:

- 1. $(1,2)^*$ - αg -irresolute [16] if the inverse image of every $(1,2)^*$ - αg -closed (resp. $(1,2)^*$ - αg -open) set in Y is $(1,2)^*$ - αg -closed (resp. $(1,2)^*$ - αg -open) in X.
- 2. $(1,2)^*$ -gc-irresolute [7] if the inverse image of every $(1,2)^*$ -g-closed set in Y is $(1,2)^*$ -g-closed in X.
- 3. $(1,2)^*$ -sg-irresolute [16] if the inverse image of every $(1,2)^*$ -sg-closed (resp. $(1,2)^*$ -sg-open) set in Y is $(1,2)^*$ -sg-closed (resp. $(1,2)^*$ -sg-open) in X.

Definition 2.10. [16] A function $f: X \to Y$ is called pre- $(1, 2)^*$ - αg -closed if f(U) is $(1, 2)^*$ - αg -closed in Y, for each $(1, 2)^*$ - αg -closed set U in X.

Definition 2.11. A bitopological space X is called:

- 1. $(1,2)^*$ - $T_{1/2}$ -space [14] if every $(1,2)^*$ -g-closed set in it is $\tau_{1,2}$ -closed.
- 2. $(1,2)^{\star}$ - $T_{\star 1/2}$ -space [12] if every $(1,2)^{\star}$ - \star g-closed set in it is $\tau_{1,2}$ -closed.
- 3. $(1,2)^*$ -* $T_{1/2}$ -space [12] if every $(1,2)^*$ -g-closed set in it is $(1,2)^*$ -g*-closed.
- 4. $(1,2)^*$ -T_b-space [12] if every $(1,2)^*$ -gs-closed set in it is $\tau_{1,2}$ -closed.

- 5. $(1,2)^*$ - $_{\alpha}T_b$ -space [16] if every $(1,2)^*$ - $_{\alpha}g$ -closed set in it is $\tau_{1,2}$ -closed.
- 6. $(1,2)^*$ - T_d -space [16] if every $(1,2)^*$ - αg -closed set in it is $(1,2)^*$ -g-closed.
- 7. $(1,2)^*$ - α -space [11] if every $(1,2)^*$ - α -closed set in it is $\tau_{1,2}$ -closed.
- 8. $(1,2)^*$ - $T_{\#_q}$ -space [10] if every $(1,2)^*$ - $g^{\#}$ -closed set in it is $\tau_{1,2}$ -closed.

Theorem 2.12. [10] A set A of X is $(1,2)^*$ - $g^\#$ -open if and only if $F \subseteq \tau_{1,2}$ -int(A) whenever F is $(1,2)^*$ - αg -closed and $F \subseteq A$.

Theorem 2.13. [10] For a space X, the following properties are equivalent:

- 1. $X \text{ is } a (1,2)^* T_a^\# space.$
- 2. Every singleton subset of X is either $(1,2)^*$ - αg -closed or $\tau_{1,2}$ -open.

3 $(1,2)^*$ - $g^\#$ -Continuous Functions

We introduce the following definitions:

Definition 3.1. A function $f: X \to Y$ is called:

- 1. $(1,2)^*$ - $g^\#$ -continuous if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $(1,2)^*$ - $g^\#$ -closed set in X.
- 2. $(1,2)^*$ - $g_{\alpha}^{\#}$ -continuous if $f^{-1}(V)$ is an $(1,2)^*$ - $g_{\alpha}^{\#}$ -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 3. strongly $(1,2)^*$ - $g^\#$ -continuous if the inverse image of every $(1,2)^*$ - $g^\#$ -open set in Y is $\tau_{1,2}$ -open in X

Example 3.2. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{c\}, Y\}$. Then the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#$ $C(X) = \{\phi, \{b\}, \{a, b\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $g^\#$ -continuous.

Proposition 3.3. Every $(1,2)^*$ -continuous function is $(1,2)^*$ - $g^\#$ -continuous but not conversely.

Example 3.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#$ -continuous but not $(1, 2)^*$ -continuous, since $f^{-1}(\{a, c\})$ is not $\tau_{1,2}$ -closed in X.

Proposition 3.5. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ - $g^\#_\alpha$ -continuous but not conversely.

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#$ $C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $G^\#_\alpha$ $C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $g^\#_\alpha$ -continuous but not $(1, 2)^*$ - $g^\#$ -continuous, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ - $g^\#$ -closed in X.

Proposition 3.7. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ - g^* -continuous but not conversely.

Example 3.8. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{b\}, \{a, b\}, X\}$ and $(1, 2)^*$ - $G^*C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - g^* -continuous but not $(1, 2)^*$ - g^* -continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ is not $(1, 2)^*$ - g^* -closed in X.

Proposition 3.9. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ -g-continuous but not conversely.

Example 3.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{c\}, Y\}$. Then the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^\#C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ -GC(X) = P(X). Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -g-continuous but not $(1,2)^*$ -g-continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not $(1,2)^*$ -g-closed in X.

Proposition 3.11. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ - αg -continuous but not conversely.

Example 3.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -closed and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1, 2)^*$ -GC(X) = P(X). Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - σg -continuous but not $(1, 2)^*$ - $g^\#$ -continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1, 2)^*$ - $g^\#$ -closed in X.

Proposition 3.13. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ -gs-continuous but not conversely.

Example 3.14. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^\#C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*$ - $GSC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -g-continuous but not $(1,2)^*$ -g-continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ -g-closed in X.

Proposition 3.15. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ -gsp-continuous but not conversely.

Example 3.16. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $GSPC(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ -g-sp-continuous but not $(1, 2)^*$ -g-continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1, 2)^*$ -g-closed in X.

Proposition 3.17. Every $(1,2)^*$ - $g^\#$ -continuous function is $(1,2)^*$ -sg-continuous but not conversely.

Example 3.18. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1, 2)^*$ - $G^\#C(X) = P(X)$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ -g-continuous but not $(1, 2)^*$ -g-continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1, 2)^*$ -g-closed in X.

Remark 3.19. The following examples show that $(1,2)^*$ - $g^\#$ -continuity is independent of $(1,2)^*$ - α -continuity and $(1,2)^*$ -semi-continuity.

Example 3.20. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^\#C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha C(X) = \{(1,2)^*$ - $SC(X) = \{\phi, \{c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - $g^\#$ -continuous but it is neither $(1,2)^*$ - α -continuous nor $(1,2)^*$ -semi-continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ is neither $(1,2)^*$ - α -closed nor $(1,2)^*$ -semi-closed in X.

Example 3.21. In Example 3.14, we have $(1,2)^*-G^\#C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*-\alpha C(X) = \{1,2)^*-SC(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is both $(1,2)^*-\alpha$ -continuous and $(1,2)^*$ -semi-continuous but it is not $(1,2)^*-g^\#$ -continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*-g^\#$ -closed in X.

Proposition 3.22. A function $f: X \to Y$ is $(1,2)^*-g^\#$ -continuous if and only if $f^{-1}(U)$ is $(1,2)^*-g^\#$ -open in X for every $\sigma_{1,2}$ -open set U in Y.

Proof. Let $f: X \to Y$ be $(1,2)^*-g^\#$ -continuous and U be an $\sigma_{1,2}$ -open set in Y. Then U^c is $\sigma_{1,2}$ -closed in Y and since f is $(1,2)^*-g^\#$ -continuous, $f^{-1}(U^c)$ is $(1,2)^*-g^\#$ -closed in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is $(1,2)^*-g^\#$ -open in X.

Conversely, assume that $f^{-1}(U)$ is $(1,2)^*-g^\#$ -open in X for each $\sigma_{1,2}$ -open set U in Y. Let F be a $\sigma_{1,2}$ -closed set in Y. Then F^c is $\sigma_{1,2}$ -open in Y and by assumption, $f^{-1}(F^c)$ is $(1,2)^*-g^\#$ -open in X. Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is $(1,2)^*-g^\#$ -closed in X and so f is $(1,2)^*-g^\#$ -continuous.

Remark 3.23. The composition of two $(1,2)^*$ - $g^\#$ -continuous functions need not be a $(1,2)^*$ - $g^\#$ -continuous function as is shown in the following example.

Example 3.24. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $Z = \{a, b, c\}$, $\eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, \{b\}, Z\}$. Then the sets in $\{\phi, \{b\}, Z\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Z\}$ are called $\eta_{1,2}$ -closed. Let $f: X \to Y$ and $g: Y \to Z$ be the identity functions. Then f and g are $(1,2)^*$ - $g^\#$ -continuous but their g of $f: X \to Z$ is not $(1,2)^*$ - $g^\#$ -continuous, since for the set $V = \{a, c\}$ is $\eta_{1,2}$ -closed in Z, (g of $f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(g^{-1}(\{a, c\})) = f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1,2)^*$ - $g^\#$ -closed in X.

Proposition 3.25. Let X and Z be bitopological spaces and Y be a $(1,2)^*$ - $T_g^\#$ -space. Then the composition g of $: X \to Z$ of the $(1,2)^*$ - $g^\#$ -continuous functions $f: X \to Y$ and $g: Y \to Z$ is $(1,2)^*$ - $g^\#$ -continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set of Z. Then $g^{-1}(F)$ is $(1,2)^*-g^\#$ -closed in Y, since g is $(1,2)^*-g^\#$ -continuous. Since Y is a $(1,2)^*-T_g^\#$ -space, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since f is $(1,2)^*-g^\#$ -continuous, $f^{-1}(g^{-1}(F))$ is $(1,2)^*-g^\#$ -closed in X. But $f^{-1}(g^{-1}(F)) = (g \ o \ f)^{-1}(F)$ and so $g \ o \ f$ is $(1,2)^*-g^\#$ -continuous.

Proposition 3.26. Let X and Z be bitopological spaces and Y be a $(1,2)^*$ - $T_{1/2}$ -space (resp. $(1,2)^*$ - T_b -space, $(1,2)^*$ - αT_b -space). Then the composition g of $: X \to Z$ of the $(1,2)^*$ -g#-continuous function f: $X \to Y$ and the $(1,2)^*$ -g-continuous (resp. $(1,2)^*$ -gs-continuous, $(1,2)^*$ - αg -continuous) function g: $Y \to Z$ is $(1,2)^*$ -g#-continuous.

Proof. Similar to Proposition 3.25.

Proposition 3.27. If $f: X \to Y$ is $(1,2)^*-g^\#$ -continuous and $g: Y \to Z$ is $(1,2)^*$ -continuous, then their composition g of $f: X \to Z$ is $(1,2)^*-g^\#$ -continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set in Z. Since $g: Y \to Z$ is $(1,2)^*$ -continuous, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since $f: X \to Y$ is $(1,2)^*$ - $g^\#$ -continuous, $f^{-1}(g^{-1}(F)) = (g \ o \ f)^{-1}(F)$ is $(1,2)^*$ - $g^\#$ -closed in X and so $g \ o \ f$ is $(1,2)^*$ - $g^\#$ -continuous.

Proposition 3.28. Let A be $(1,2)^*$ - $g^\#$ -closed in X. If $f: X \to Y$ is $(1,2)^*$ - αg -irresolute and $(1,2)^*$ -closed, then f(A) is $(1,2)^*$ - $g^\#$ -closed in Y.

Proof. Let U be any $(1,2)^*$ - αg -open in Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by hypothesis, $\tau_{1,2}$ -cl $(A) \subseteq f^{-1}(U)$. Thus $f(\tau_{1,2}$ -cl $(A)) \subseteq U$ and $f(\tau_{1,2}$ -cl(A) is a $\sigma_{1,2}$ -closed set. Now, $\sigma_{1,2}$ -cl $(f(A)) \subseteq \sigma_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A)) \subseteq U$ and so f(A) is $(1,2)^*$ -g-closed in Y.

Theorem 3.29. Let $f: X \to Y$ be a pre- $(1,2)^*$ - αg -closed and $(1,2)^*$ -open bijection. If X is a $(1,2)^*$ - $T_{q\#}$ -space, then Y is also a $(1,2)^*$ - $T_{q\#}$ -space.

Proof. Let $y \in Y$. Since f is bijective, y = f(x) for some $x \in X$. Since X is a $(1,2)^*$ -T_g#-space, $\{x\}$ is $(1,2)^*$ - αg -closed or $\tau_{1,2}$ -open by Theorem 2.13. If $\{x\}$ is $(1,2)^*$ - αg -closed then $\{y\} = f(\{x\})$ is $(1,2)^*$ - αg -closed, since f is pre- $(1,2)^*$ - αg -closed. Also $\{y\}$ is $\sigma_{1,2}$ -open if $\{x\}$ is $\tau_{1,2}$ -open since f is $(1,2)^*$ -open. Therefore by Theorem 2.13, Y is a $(1,2)^*$ -T_g#-space.

Theorem 3.30. If $f: X \to Y$ is $(1,2)^* - g^\#$ -continuous and pre- $(1,2)^*$ - αg -closed and if A is an $(1,2)^*$ - $g^\#$ -open (or $(1,2)^* - g^\#$ -closed) subset of Y, then $f^{-1}(A)$ is $(1,2)^* - g^\#$ -open (or $(1,2)^* - g^\#$ -closed) in X.

Proof. Let A be an $(1,2)^*-g^\#$ -open set in Y and F be any $(1,2)^*-\alpha g$ -closed set in X such that $F \subseteq f^{-1}(A)$. Then $f(F) \subseteq A$. By hypothesis, f(F) is $(1,2)^*-\alpha g$ -closed and A is $(1,2)^*-g^\#$ -open in Y. Therefore, $f(F) \subseteq \sigma_{1,2}$ -int(A) by Theorem 2.12, and so $F \subseteq f^{-1}(\sigma_{1,2}\text{-int}(A))$. Since f is $(1,2)^*-g^\#$ -continuous and $\sigma_{1,2}$ -int(A) is $\sigma_{1,2}$ -open in Y, $f^{-1}(\sigma_{1,2}\text{-int}(A))$ is $(1,2)^*-g^\#$ -open in X. Thus $F \subseteq \tau_{1,2}\text{-int}(f^{-1}(\sigma_{1,2}\text{-int}(A))) \subseteq \tau_{1,2}\text{-int}(f^{-1}(A))$. i.e., $F \subseteq \tau_{1,2}\text{-int}(f^{-1}(A))$ and by Theorem 2.12, $f^{-1}(A)$ is $(1,2)^*-g^\#$ -open in X. By taking complements, we can show that if A is $(1,2)^*-g^\#$ -closed in Y, $f^{-1}(A)$ is $(1,2)^*-g^\#$ -closed in Y

Corollary 3.31. If $f: X \to Y$ is $(1,2)^*$ -continuous and pre- $(1,2)^*$ - αg -closed and if B is a $(1,2)^*$ - $g^\#$ -closed (or $(1,2)^*$ - $g^\#$ -open) subset of Y, then $f^{-1}(B)$ is $(1,2)^*$ - $g^\#$ -closed (or $(1,2)^*$ - $g^\#$ -open) in X.

Proof. Follows from Proposition 3.3, and Theorem 3.30.

Corollary 3.32. Let X, Y and Z be any three bitopological spaces. If $f: X \to Y$ is $(1,2)^*-g^\#$ -continuous and pre- $(1,2)^*$ - αg -closed and $g: Y \to Z$ is $(1,2)^*-g^\#$ -continuous, then their composition $g \circ f: X \to Z$ is $(1,2)^*-g^\#$ -continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set in Z. Since $g: Y \to Z$ is $(1,2)^*-g^\#$ -continuous, $g^{-1}(F)$ is $(1,2)^*-g^\#$ -closed in Y. Since $f: X \to Y$ is $(1,2)^*-g^\#$ -continuous and pre- $(1,2)^*-\alpha g$ -closed, by Theorem 3.30, $f^{-1}(g^{-1}(F)) = (g \ o \ f)^{-1}(F)$ is $(1,2)^*-g^\#$ -closed in X and so $g \ o \ f$ is $(1,2)^*-g^\#$ -continuous.

4 $(1,2)^*$ - $g^\#$ -Irresolute Functions

We introduce the following definition.

Definition 4.1. A function $f: X \to Y$ is called an $(1,2)^*$ - $g^\#$ -irresolute if the inverse image of every $(1,2)^*$ - $g^\#$ -closed set in Y is $(1,2)^*$ - $g^\#$ -closed in X.

Remark 4.2. The following examples show that the notions of $(1,2)^*$ -sg-irresolute functions and $(1,2)^*$ -g#-irresolute functions are independent.

Example 4.3. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{a\}, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1, 2)^*$ - $G^\#C(Y) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$ and $(1, 2)^*$ - $G^\#C(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $g^\#$ -irresolute but it is not $(1, 2)^*$ -g-irresolute, since $f^{-1}(\{b\}) = \{b\}$ is not $(1, 2)^*$ -g-closed in X.

Example 4.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^\#C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $SGC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1,2)^*$ - $G^\#C(Y) = \{\phi, \{a\}, \{a, c\}, Y\}$ and $(1,2)^*$ - $SGC(Y) = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -g-irresolute but it is not $(1,2)^*$ -g-irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)^*$ -g-closed in X.

Proposition 4.5. A function $f: X \to Y$ is $(1,2)^*-g^\#$ -irresolute if and only if the inverse of every $(1,2)^*-g^\#$ -open set in Y is $(1,2)^*-g^\#$ -open in X.

Proof. Similar to Proposition 3.22.

Proposition 4.6. If a function $f: X \to Y$ is $(1,2)^*-g^\#$ -irresolute then it is $(1,2)^*-g^\#$ -continuous but not conversely.

Example 4.7. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\# C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $G^\# C(Y) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $g^\#$ -continuous but it is not $(1, 2)^*$ - $g^\#$ -irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ - $g^\#$ -open in X.

Proposition 4.8. Let X be any bitopological space, Y be a $(1,2)^*$ - $T_{g^\#}$ -space and $f: X \to Y$ be a function. Then the following are equivalent:

- 1. f is $(1,2)^*$ - $q^\#$ -irresolute.
- 2. f is $(1,2)^*-g^\#$ -continuous.

Proof. (1) \Rightarrow (2) Follows from Proposition 4.6.

(2) \Rightarrow (1) Let F be a $(1,2)^*-g^{\#}$ -closed set in Y. Since Y is a $(1,2)^*-T_{g^{\#}}$ -space, F is a $\sigma_{1,2}$ -closed set in Y and by hypothesis, $f^{-1}(F)$ is $(1,2)^*-g^{\#}$ -closed in X. Therefore f is $(1,2)^*-g^{\#}$ -irresolute.

Definition 4.9. A function $f: X \to Y$ is called pre- $(1,2)^*$ - αg -open if f(U) is $(1,2)^*$ - αg -open in Y, for each $(1,2)^*$ - αg -open set U in X.

Proposition 4.10. If $f: X \to Y$ is bijective pre- $(1,2)^*$ - αg -open and $(1,2)^*$ - $g^\#$ -continuous then f is $(1,2)^*$ - $g^\#$ -irresolute.

Proof. Let A be $(1,2)^*-g^\#$ -closed set in Y. Let U be any $(1,2)^*-\alpha g$ -open set in X such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is $(1,2)^*-g^\#$ -closed and f(U) is $(1,2)^*-\alpha g$ -open in Y, $\sigma_{1,2}$ -cl(A) $\subseteq f(U)$ holds and hence $f^{-1}(\sigma_{1,2}\text{-cl}(A)) \subseteq U$. Since f is $(1,2)^*-g^\#$ -continuous and $\sigma_{1,2}\text{-cl}(A)$ is $\sigma_{1,2}$ -closed in Y, $f^{-1}(\sigma_{1,2}\text{-cl}(A))$ is $(1,2)^*-g^\#$ -closed and hence $\tau_{1,2}\text{-cl}(f^{-1}(\sigma_{1,2}\text{-cl}(A))) \subseteq U$ and so $\tau_{1,2}\text{-cl}(f^{-1}(A)) \subseteq U$. Therefore, $f^{-1}(A)$ is $(1,2)^*-g^\#$ -closed in X and hence f is $(1,2)^*-g^\#$ -irresolute.

The following examples show that no assumption of Proposition 4.10 can be removed.

Example 4.11. The identity function defined in Example 4.7 is $(1,2)^*$ - $g^\#$ -continuous and bijective but not pre- $(1,2)^*$ - αg -open and so f is not $(1,2)^*$ - $g^\#$ -irresolute.

Example 4.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^\#C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1, 2)^*$ - $SGC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1, 2)^*$ - $G^\#C(Y) = \{\phi, \{a\}, \{b, c\}, Y\}$ and $(1, 2)^*$ -SGC(Y) = P(Y). Let $f: X \to Y$ be the identity function. Then f is bijective and pre- $(1, 2)^*$ - αg -open but not $(1, 2)^*$ - $g^\#$ -continuous and so f is not $(1, 2)^*$ - $g^\#$ -irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ - $g^\#$ -closed in X.

Proposition 4.13. If $f: X \to Y$ is bijective $(1,2)^*$ -closed and $(1,2)^*$ - αg -irresolute then the inverse function $f^{-1}: Y \to X$ is $(1,2)^*$ - $g^\#$ -irresolute.

Proof. Let A be $(1,2)^*$ -g#-closed in X. Let $(f^{-1})^{-1}(A) = f(A) \subseteq U$ where U is $(1,2)^*$ - αg -open in Y. Then $A \subseteq f^{-1}(U)$ holds. Since $f^{-1}(U)$ is $(1,2)^*$ - αg -open in X and A is $(1,2)^*$ -g#-closed in X, $\tau_{1,2}$ -cl(A) $\subseteq f^{-1}(U)$ and hence $f(\tau_{1,2}$ -cl(A)) $\subseteq U$. Since f is $(1,2)^*$ -closed and $\tau_{1,2}$ -cl(A) is $\tau_{1,2}$ -closed in X, $f(\tau_{1,2}$ -cl(A)) is $\sigma_{1,2}$ -closed in Y and so $f(\tau_{1,2}$ -cl(A)) is $(1,2)^*$ -g#-closed in Y. Therefore $\sigma_{1,2}$ -cl($f(\tau_{1,2}$ -cl(A))) $\subseteq U$ and hence $\sigma_{1,2}$ -cl(f(A)) $\subseteq U$. Thus f(A) is f(A)-f(A)-closed in Y and so f(A)-irresolute.

5 Applications

To obtain a decomposition of $(1,2)^*$ -continuity, we introduce the notion of $(1,2)^*$ - $\alpha glc^\#$ -continuous function in bitopological spaces and prove that a function is $(1,2)^*$ -continuous if and only if it is both $(1,2)^*$ - $g^\#$ -continuous and $(1,2)^*$ - $\alpha glc^\#$ -continuous.

Definition 5.1. A subset A of a bitopological space X is called $(1,2)^*$ - αglc^* -set if $A=M\cap N$, where M is $(1,2)^*$ - αg -open and N is $\tau_{1,2}$ -closed in X.

The family of all $(1,2)^*$ - αglc^* -sets in a space X is denoted by $(1,2)^*$ - $\alpha glc^*(X)$.

Example 5.2. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{c\}, X\}$. Then the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1, 2)^*$ - αglc^* -set in X.

Remark 5.3. Every $\tau_{1,2}$ -closed set is $(1,2)^{\star}$ - αglc^{\star} -set but not conversely.

Example 5.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a, b\}$ is $(1, 2)^*$ - αglc^* -set but not $\tau_{1,2}$ -closed in X.

Remark 5.5. $(1,2)^*$ - $g^{\#}$ -closed sets and $(1,2)^*$ - αglc^* -sets are independent of each other.

Example 5.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{b, c\}$ is a $(1,2)^*$ - $g^\#$ -closed set but not $(1,2)^*$ - αglc^* -set in X.

Example 5.7. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a, b\}$ is an $(1, 2)^*$ - αglc^* -set but not $(1, 2)^*$ - $q^\#$ -closed set in X.

Proposition 5.8. Let X be a bitopological space. Then a subset A of X is $\tau_{1,2}$ -closed if and only if it is both $(1,2)^*$ - $g^\#$ -closed and $(1,2)^*$ - αglc^* -set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both $(1,2)^*$ - $g^\#$ -closed and $(1,2)^*$ - αglc^* -set. Then $A=M\cap N$, where M is $(1,2)^*$ - αg -open and N is $\tau_{1,2}$ -closed in X. Therefore, $A\subseteq M$ and $A\subseteq N$ and so by hypothesis, $\tau_{1,2}$ -cl(A) $\subseteq M$ and $\tau_{1,2}$ -cl(A) $\subseteq N$. Thus $\tau_{1,2}$ -cl(A) $\subseteq M\cap N=A$ and hence $\tau_{1,2}$ -cl(A) $\subseteq A$ i.e., A is $\tau_{1,2}$ -closed in X.

We introduce the following definition.

Definition 5.9. A function $f: X \to Y$ is said to be $(1,2)^*$ - $\alpha glc^\#$ -continuous if for each $\sigma_{1,2}$ -closed set V of Y, $f^{-1}(V)$ is an $(1,2)^*$ - αglc^* -set in X.

Example 5.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - $\alpha glc^\#$ -continuous function.

Remark 5.11. From the definitions it is clear that every $(1,2)^*$ -continuous function is $(1,2)^*$ - $\alpha glc^\#$ -continuous but not conversely.

Example 5.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{a, c\}, Y\}$. Then the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then $f: (1, 2)^*$ -continuous function but not $(1, 2)^*$ -continuous. Since for the $\sigma_{1,2}$ -closed set $\{b\}$ in Y, $f^{-1}(\{b\}) = \{b\}$, which is not $\tau_{1,2}$ -closed in X.

Remark 5.13. $(1,2)^*$ - $g^\#$ -continuity and $(1,2)^*$ - $\alpha glc^\#$ -continuity are independent of each other.

Example 5.14. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $g^\#$ -continuous function but not $(1, 2)^*$ - $gglc^\#$ -continuous.

Example 5.15. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - $\alpha glc^\#$ -continuous function but not $(1, 2)^*$ - $g^\#$ -continuous.

We have the following decomposition for $(1,2)^*$ -continuity.

Theorem 5.16. A function $f: X \to Y$ is $(1,2)^*$ -continuous if and only if it is both $(1,2)^*$ - $g^\#$ -continuous and $(1,2)^*$ - $\alpha glc^\#$ -continuous.

Proof. Assume that f is $(1,2)^*$ -continuous. Then by Proposition 3.3 and Remark 5.11, f is both $(1,2)^*$ - $q^\#$ -continuous and $(1,2)^*$ - $\alpha q l c^\#$ -continuous.

Conversely, assume that f is both $(1,2)^*-g^\#$ -continuous and $(1,2)^*-\alpha glc^\#$ -continuous. Let V be a $\sigma_{1,2}$ -closed subset of Y. Then $f^{-1}(V)$ is both $(1,2)^*-g^\#$ -closed set and $(1,2)^*-\alpha glc^*$ -set. By Proposition 5.8, $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set in X and so f is $(1,2)^*$ -continuous.

6 Conclusion

The notions of the sets, functions and spaces in bitopological spaces are highly developed and used extensively in many practical and engineering problems, computational topology for geometric design, computer-aided geometric design, engineering design research and mathematical sciences. Also, topology plays a significant role in space time geometry and high-energy physics. Thus generalized continuity is one of the most important subjects on topological spaces. Hence we studied new types of generalizations of non-continuous functions, obtained some of their properties in bitopological spaces.

References

- [1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] Antony Rex Rodrigo, J., Ravi, O., Pandi, A. and Santhana, C. M.: On $(1,2)^*$ -s-normal spaces and pre- $(1,2)^*$ -gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1) (2011), 29-42.
- [3] Balachandran, K., Sundaram, P. and Maki, H.: On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12 (1991), 5-13.
- [4] Devi, R., Balachandran, K. and Maki, H.: On generalized α -continuous maps and α -generalized continuous maps, Far East J. Math. Sci., Special Volume, part I (1997), 1-15.
- [5] Dontchev, J. and Ganster, M.: On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 15-31.
- [6] Duszynski, Z., Jeyaraman, M., Joseph, M. S., Ravi, O. and Thivagar, M. L.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [7] Kayathri, K., Ravi, O., Thivagar, M. L. and Joseph Israel, M.: Decompositions of $(1,2)^*$ -rg-continuous maps in bitopological spaces, Antarctica J. Math., 6(1) (2009), 13-23.
- [8] Kelly, J. C.: Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- [9] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1, 2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [10] Rajan, C.: Further study of new bitopological generalized continuous functions, Ph. D. Thesis, Madurai Kamaraj University, (2014).
- [11] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of $(1,2)^*$ -continuity and $(1,2)^*$ - α -continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
- [12] Ravi, O. and Thivagar, M. L.: Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [13] Ravi, O., Ekici, E. and Lellis Thivagar, M.: On $(1,2)^*$ -sets and decompositions of bitopological $(1,2)^*$ -continuous mappings, Kochi J. Math., 3 (2008), 181-189.

- [14] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.
- [15] Ravi, O., Thivagar, M. L. and Ekici, E.: Decomposition of $(1,2)^*$ -continuity and complete $(1,2)^*$ -continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.
- [16] Ravi, O., Pandi, A. and Latha, R.: Contra-pre-(1, 2)*-semi-continuous functions, Bessel Journal of Mathematics (To appear).
- [17] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of $(1,2)^*$ -g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [18] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [19] Veera kumar, M. K. R. S.: \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99-112.
- [20] Veera kumar, M. K. R. S.: $g^{\#}$ -closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24 (2003), 1-13.