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Abstract. This study investigates how altering the aperture size and impedance characteristics of a circular
strip, when excited by a cylindrical wave, influences electromagnetic scattering. The focus is on understanding
the impact of shifting the position of an H-polarized line source and adjusting parameters such as strip aperture,
wave number, and impedance values on the overall behavior of the electromagnetic field. Our findings reveal that
changes in the strip’s aperture dimensions or wave number, even when regarding the latter’s relation to the source,
lead to significant alterations in the surrounding electromagnetic field. This scrutiny unveils a detailed interplay
between these factors within this electromagnetic scenario. By examining these intricacies, our study sheds light
on the substantial impact of subtle modifications in the strip’s dimensions, combined with adjustments in wave and
source characteristics, on the electromagnetic field. This understanding holds promise for advancements in diverse
engineering applications.
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1. Introduction

Electromagnetic scattering by conical objects has captivated researchers for decades, offering pivotal insights for
electromagnetic theory, antenna theory, and remote sensing [10, 15, 19]. Furthermore, the study of electromagnetic
scattering and propagation in 2D problems plays a significant role in engineering design. These problems may yield
analytical solutions or provide valuable physical insights into real-life scenarios [4–6, 12]. In the past century, there
was extensive research into electromagnetic or acoustic scattering by discontinuities, edges, and tips, often made
under certain approximations or assumptions [3, 8, 17, 18]. Understanding diffraction from finite objects in 2D or 3D
canonical problems is crucial for comprehending various engineering challenges, including aperture-type antennas,
remote sensing, wave propagation in different mediums, and material characterization [1, 7, 13, 16]. Specifically, there
exists an extensive body of literature on diffraction by 2D problems, approached through different methods. The
proposed approach involves an integral equation based on a method where the current induced on the scatterer is
represented by a carefully chosen complete set of orthogonal polynomials.

*Corresponding Author
Email addresses: karacuha17@itu.edu.tr (K. Karaçuha), vasilitabatadze@gmail.com (V. Tabatadze)
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In free space, the total field around a scatterer results from the vector sum of incident and scattered field compo-
nents [2,14]. In direct scattering problems, the incident field components are known beforehand, motivating the search
for scattered field components. Given that electromagnetic waves for sinusoidal excitation adhere to the Helmholtz
equation in a defined space with specific boundary conditions, obtaining scattered field components involves mathe-
matically representing the field component and satisfying boundary, edge, and radiation conditions. This is achieved by
representing the scattered field components through the convolution of the induced unknown current density with the
corresponding Green’s function [1, 12]. The unknown current density is determined by applying boundary conditions
to formulate the boundary value problem. Solving this problem typically involves representing the current density
using basis functions in the Method of Moments [15]. In this case, the current densities are expressed in terms of a
complete set of orthogonal polynomials with unknown coefficients. Determining these coefficients involves utilizing
orthogonal properties. Additionally, the proposed approach enables enforcing edge conditions by expressing current
densities with suitable weighting functions, selected based on the problem’s geometry and edge conditions.

The methodology proposed for solving the circular arc problem involves analytical-numerical methods. These
methods provide closed-form expressions or solutions, offering insights into scattering behavior and aiding in under-
standing the underlying physical phenomena. They are computationally efficient, enabling rapid analysis and aiding
in engineering design. Moreover, they serve as benchmarks for validating complex simulations or experimental mea-
surements. Impedance boundary conditions are pivotal in describing electromagnetic field behavior at a scatterer’s
boundary. They establish the correlation between electric and magnetic fields, allowing accurate modeling of wave
interactions with different scatterers, such as conducting lossy surfaces. Analyzing scattering by circular strips with
impedance boundaries helps comprehend how impedance values affect resonator properties and scattering patterns,
assisting in designing and optimizing electromagnetic systems. Two-dimensional problems are crucial for validating
methodologies before tackling more intricate geometries. This study deviates from previous works by considering a
circular strip geometry excited by cylindrical waves with varying impedance values on inner and outer surfaces. It ex-
plores resonance phenomena not observed previously and investigates location dependencies, noting higher Q-factors
for specific impedance values compared to perfect conducting surfaces.

This study follows the path set by [13, 16] concerning geometry and theory. However, it takes a different direction
by exploring the impact of aperture size under various boundary conditions. The investigation aims to highlight the sig-
nificance of scatterer surface impedance and aperture size in shaping radiation patterns, crucial for achieving directive
radiation patterns or ensuring wideband stable radiation characteristics from an engineering perspective.

2. Formulation of the Problem

In this section, the theoretical background is provided briefly since the mathematical foundations were analyzed
previously extensively in [13, 16]. However, it would be substantial to give the main goal and the advantages of the
proposed approach. It is worth mentioning that, the actual goal is very straightforward. First, the incident and scattered
fields need to be defined mathematically. Then, the boundary conditions are enforced on the surface and the boundary
value problem is obtained. This part is the first part of the main task. Later, the question arises of how to solve the
initial value problem. There are several approaches including semi-analytical, numerical, etc [7, 13, 16]. The proposed
approach considering the current densities as the infinite summation of the orthogonal polynomials on the normalized
scatterer surface is under semi-analytical methods.

After giving procedure, it is time to present the total field as given in (2.1):

Hz = H0
z + HS

z . (2.1)
Here, H0

z stands for the incident magnetic field whereas HS
z corresponds to the scattered field. since the excitation is

from a line source, the incident cylindrical wave mathematically can be represented by (2.2):

H0
z = −ZH(1)

0 (k |ρ − ρ0|) . (2.2)

Please note that Z = k2A0
4ωϵ0

is a constant coefficient, where k is the wavenumber, ω is the angular frequency, ϵ0 is the
permittivity of free space, and H(1)

0 corresponds to the Hankel functions of the first kind and zeroth order. The scattered
field arises from induced currents on the scatterer surface, excited by the impressed sources. The corresponding field
component can be expressed as the convolution of the current densities with the corresponding Green’s function of the
medium, as provided in Equation (2.3):
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Figure 1. Caption for the figure

HS
z =

∫ θ

−θ

{
µm(φ) + µe(φ)

∂

∂ (kρ′)

}
H(1)

0

(
k
∣∣∣ρ − ρ′∣∣∣) dφ, ρ′ = a. (2.3)

Here, µm and µe are the magnetic and electric current densities representing the scatterer.
The induced current densities are represented by the summation of the Gegenbauer polynomials Cn with unknown

constant coefficients, as given in Equation (2.4). It’s important to note that the strip arc is normalized within the
interval [−1, 1], and at the edges, the edge conditions for electric and magnetic current densities are fulfilled by the
weighting functions (1 − η2)ν [9, 11, 16]. This weighting function serves not only to satisfy the edge condition but also
exploits orthogonality to determine unknown coefficients, facilitating faster convergence and expediting computations
[2, 13, 16].

µe(η) =
(
1 − η2

)ν1 ∞∑
n=0

xnCν1+
1
2

n (η),

µm(η) =
(
1 − η2

)ν2 ∞∑
n=0

ynCν2+
1
2

n (η),

(2.4)

where ν1 = − 1
2 and ν2 = 1

2 to satisfy the edge condition, respectively [9].
Noticed that, the geometry is periodic in φ direction. Therefore, the scattered field can be represented by the Fourier

series employing this periodicity. Further, the addition theorem for Hankel’s function is used to split the argument of
the Hankel function in (2.3) as provided in (2.5) [9, 11, 16].

Gegenbauer polynomials are chosen because the polynomials are defined between -1 to 1, leading to the normaliza-
tion of our strip width from [−a, a] to [−1, 1]. The second reason is that the weighting function for orthogonal is also
suitable for the behavior of the current densities at the edges (edge conditions) [9, 11, 16].

HS
z =

4j
ε

∞∑
m=−∞

µ̂m
m

{
Jm(kρ)H(1)

m (ε)e jmφ′ρ < a
Jm(ε)H(1)

m (kρ)e jmφ′ρ > a
+

4i
ε

∞∑
m=−∞

µ̂e
m

{
Jm(kρ)H(1)′

m (ε)e jmφ′ρ < a
J′m(ε)H(1)

m (kρ)ejmφ′ρ > a
, (2.5)

where ε = ka and
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µ̂e
m =

θ

Γ
(
ν1 +

1
2

) ∞∑
n=0

jnxnβ
ν1+

1
2

n

Jν1+n+ 1
2
(−mθ)

(−2mθ)(ν1+
1
2 )
,

µ̂m
m =

θ

Γ
(
ν2 +

1
2

) ∞∑
n=0

jnynβ
ν2+

1
2

n

Jν2+n+ 1
2
(−mθ)

(−2mθ)(ν2+
1
2 )
.

Here Γ
(
ν + 1

2

)
is the Gamma function and βνi+

1
2

n =
Γ(2νi+1+n)
Γ(n+1) , and µ̂m =

θ
2π

∫ 1
−1 µ(η)e

− jmθηdη.
After expressing the field components (incident and scattered ones), it is time to force the boundary conditions from

inner and outer surfaces as below:
∂

∂kρ
Hz ± jkξ1,2Hz = 0, ρ = ±a (2.6)

(2.6) is called in general impedance boundary condition (IBC) or Leontovich boundary condition [9, 11, 16]. This
is a generalized boundary condition depending on the value of ξ1,2, the boundary condition can be approximated as
well-known Dirichlet and Neumann boundary conditions for the limit cases. For validation, these limits need to be
checked in numerical analysis.

The final version of the system of linear algebraic equation (SLAE) for the outer surface in case of ρ0 < a as (2.7):

2π
θ

Γ
(
ν2 +

1
2

) ∞∑
p=0

jpxpβ
ν2+

1
2

p Q̃11
kp + 2π

θ

Γ
(
ν1 +

1
2

) ∞∑
p=0

jpypβ
ν2+

1
2

p Q̃12
kp = Ã1

k . (2.7)

Here,

Q̃11
kp =

∞∑
m=−∞

Jm(ε)H̃(1)
m

(
2

mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

Jν2+p+ 1
2
(−mθ)

(−2mθ)(ν2+
1
2 )
,

Q̃12
kp =

∞∑
m=−∞

J′m(ε)H̃(1)
m

(
2

mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

Jν1+p+ 1
2
(−mθ)

(−2mθ)(ν1+
1
2 )
,

Ã1
k =Z

∞∑
m=−∞

Jm (kρ0) H̃(1)
m

( 2
mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

 e−jmφ0 .

The final version of the system of linear algebraic equation (SLAE) for the inner surface in case of ρ0 < a as (2.7)

2π
θ

Γ
(
ν2 +

1
2

) ∞∑
p=0

jpypβ
ν2+

1
2

p Q̃21
kp

+ 2π
θ

Γ
(
ν1 +

1
2

) ∞∑
p=0

jpxpβ
ν1+

1
2

p Q̃22
kp = Ã2

k

.

Here,

Q̃21
kp =

∞∑
m=−∞

H(1)
m (ε)J̃m1

(
2

mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

Jν2+p+ 1
2
(−mθ)

(−2mθ)(ν2+
1
2 )
,

Q̃22
kp =

∞∑
m=−∞

H(1)′
m (ε)J̃m1

(
2

mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

Jν1+p+ 1
2
(−mθ)

(−2mθ)(ν1+
1
2 )
,

Ã2
k =Z

∞∑
m=−∞

Jm (kρ0) H̃m1

( 2
mθ

)ν1+ 1
2

Γ

(
ν1 +

1
2

)
Jk+ν1+ 1

2
(mθ)

 e−jmφ0 .

Here, J̃m = J′m(ε) + jkξ1Jm(ε),H̃(1)
m = H(1)′

m (ε) + jkξ1H(1)
m (ε) and J̃m1 = J′m(ε) − jkξ2Jm(ε).

For the source located outside the circular strip (ρ0 > a), the same procedure can be followed and results can be
obtained as provided in [13, 16].
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(a) ξ1 = 0.001, ξ2 = 0.001 (b) ξ1 = 1000, ξ2 = 1000

(c) ξ1 = i, ξ2 = i (d) ξ1 = i, ξ2 = −i

Figure 2. TRCS for different parameters (a = 1, x0 = y0 = 0.01)

3. Numerical Results

In this section, numerical results for TRCS are presented, encompassing various scenarios. Different cases involv-
ing diverse aperture sizes, impedance values, and source locations are investigated to observe resonances and their
characteristics. Notably, when the aperture size is considerably smaller than the incident wavelength, resonance values
tend to approach the zeros of Bessel functions and their derivatives for Dirichlet and Neumann boundary conditions,
respectively, aligning with expectations. In the case of H-polarization, perfect magnetic conducting (PMC) and perfect
electric conducting (PEC) surfaces serve as the limit cases for the Leontovich boundary conditions [13, 16].

We explore TRCS with the line source positioned at the center, as depicted in Figure 2. Figure 2a represents the
PEC surface, while Figure 2b corresponds to the PMC surface, approximating the Dirichlet boundary conditions due
to resonances observed at Bessel function zeros for very small apertures relative to the incident wavelength (θ =
π − π8 ). When impedance values become imaginary (inductive and capacitive surfaces), notable changes in resonance
characteristics occur, as observed in Figure 2c and Figure 2d. Particularly, when the surface exhibits inductive and
capacitive behavior simultaneously, a double resonance effect is evident, leading to increased resonance bandwidth, as
depicted in Figure 2b.

Later, we investigate the same boundary conditions for the source located far-field to verify our results with plane
wave excitations as given in Figure 3 [13, 16]. As expected, values of TRCS are decreased since the line source
has 1/

√
ρ behavior when it is at the far zone. Again, the same boundary conditions and surface impedance values

are employed. As it is noticed when the resonator has the surface impedance of complex conjugate pair, there exist
numerous resonances as given in Figure 3d [13, 16].
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(a) ξ1 = 0.001, ξ2 = 0.001 (b) ξ1 = 1000, ξ2 = 1000

(c) ξ1 = i, ξ2 = i (d) ξ1 = i, ξ2 = −i

Figure 3. TRCS for different parameters (a = 1, x0 = −1000, y0 = 0)

(a) ξ1 = i, ξ2 = i (b) ξ1 = i, ξ2 = −i

Figure 4. TRCS for different parameters (a = 1, x0 = −2, y0 = 0)

Lastly, the line source is located close to the aperture of the resonator structure Figure 4. Similar characteristics are
obtained when it is compared to Figure 3.
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4. Conclusion

This study reveals the impact of aperture size on the diffraction characteristics of a circular strip with varying
impedance values. Examining different source locations sheds light on how both aperture size and impedance values
influence the overall field distribution. Notably, both parameters—impedance value and aperture size—exhibit sig-
nificant effects on the total field distribution. Moreover, alterations in these parameters lead to distinct variations in
resonance characteristics. Particularly, the aperture size demonstrates a crucial qualitative influence on the directivity
of the scattered field, aligning with expectations. The method’s strength lies in its incorporation of edge conditions into
the system of linear algebraic equations (SLAE), resulting in expedited convergence and a smaller matrix dimension
for inversion. This advantage facilitates more efficient and precise analysis of the diffraction problem, showcasing the
method’s efficacy in handling complex scenarios involving variable impedance values and aperture sizes.
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