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Abstract

By practicing the manner of semigroup theory and Banach contraction theorem, the existence and uniqueness
of mild and classical solutions of nonlinear integrodi�erential equations with time varying delay in Banach
spaces is showed. Certainly, an example is revealed to justify the abstract idea.
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1. Introduction

In this work, we examine the class of nonlinear integrodi�erential equations with time varying delay of
form:

x′(t) +Ax(t) = F1

(
t, x(γ1(t)), ..., x(γn(t)),

∫ t

t0

h1(t, s, x(γn+1(s)))ds
)

+ F2

(
t, x(η1(t)), ..., x(ηm(t)),

∫ t

t0

h2(t, s, x(ηm+1(s)))ds
)
, t ∈ (t0, t0 + b] (1)

and

x(t0) + g(x) = x0, (2)
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in which t0 ≥ 0, b > 0. The in�nitesimal generator that is expressed by −A, of a C0 semigroup of operators
on a Banach spaces. F1, h1, F2, h2 are functions which is stated in (1) and these functions gratifying some
assumptions and x0 ∈ E. Assigning the tool of semigroup, the existence of solutions for semilinear evolution
equations is analyzed by Pazy [11]. The same classes of evolution equations as present in [11] with nonlocal
condition are explored by Byszewskii [6]. During previous years, di�erential and integrodi�erential system
with time varying delay is considered by various investigators like [1] - [5], [7] - [10], [13], [14]. They have
used di�erent tools and techniques for discussing the outcomes.

2. Preliminaries

In this section, we give some de�nitions, notations and basic facts which are applied in the next sections.

De�nition 2.1. [11] A one parameter family T (t), 0 ≤ t < ∞, of bounded linear operators from E → E,
where E is a Banach space, is said to be the semigroup of bounded linear operators on E if

(i) T (0) = I, the identity operator on E;

(ii) T (t)T (s) = T (t+ s);∀ t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators T (t) is uniformly continuous

lim
t→0
‖ T (t)− I‖ = 0.

If the linear operator A explained by

D(A) =

[
y ∈ E : lim

t→0

T (t)y − y
t

exists

]

and

Ay = lim
t→0

T (t)y − y
t

, y ∈ D(A)

is the in�nitesimal generator of the semigroup T (t). Here D(A) is the domain of A.

De�nition 2.2. [11] A semigroup T (t), 0 ≤ t <∞, of bounded linear operators on E is a strongly continuous
semigroup of bounded linear operators if

lim
t→0

T (t)y = y, ∀y ∈ E.

A strongly continuous semigroup of bounded linear operators on E will be termed as C0-semigroup.

Theorem 2.3. Suppose T (t) be a C0-semigroup. The constants Ω ≥ 0 and M ≥ 1 exist such that

‖ T (t)‖ ≤MeΩt, 0 ≤ t <∞.

If Ω = 0 then T (t) is called uniformly bounded and if M = 1 it is said to be C0-semigroup of contraction.

Now, if E is assumed as a Banach space with norm ‖ .‖. Also, C0-semigroup of operators on E is written
by {T (t)}t≥0. Throughout paper, in�nitesimal generator is represented by −A and the same is C0-semigroup
of operators on E. Here the domain of A is given by D(A) and also t0 ≥ 0, b > 0,

J := [t0, t0 + b],
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∆ := {(t, s) : t0 ≤ s ≤ t ≤ t0 + b},

M := sup
t∈[0,b]

‖ T (t)‖BL(E,E),

X := C(J,E)

and F1 : J × En+1 → E, h1 : ∆ × E → E,F2 : J × Em+1 → E, h2 : ∆ × E → E, g : X → E, γi : J →
J (i = 1, 2, ..., n + 1), ηj : J → J (j = 1, 2, ...,m + 1) are stated functions and these functions meet some
assumptions.
For the suitability, the operator norm ‖ .‖BL(E,E) will be indicated by ‖ T (t)‖.

The following two de�nitions will be mandatory for the mild and classical solutions of the system (1) -
(2).

De�nition 2.4. The following integral equation is ful�lled by the function x ∈ X,

x(t) = T (t− t0)x0 − T (t− t0)g(x)

+

∫ t

t0

T (t− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

+

∫ t

t0

T (t− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds,

t ∈ (t0, t0 + b] (3)

is remarked to be mild solution of the system (1) - (2) on J .

De�nition 2.5. A function x : J → E is termed as classical solution of the system (1) - (2) on J if:

(i) x is a continuous on J and is continuously di�erentiable on J/{t0}.

(ii) x′(t) +Ax(t) = F1

(
t, x(γ1(t)), ..., x(γn(t)),

∫ t

t0

h1(t, s, x(γn+1(s)))ds
)

+F2

(
t, x(η1(t)), ..., x(ηm(t)),

∫ t

t0

h2(t, s, x(ηm+1(s)))ds
)
, t ∈ J/{t0}

(iii) x(t0) + g(x) = x0

3. Main Results

3.1. Existence of Mild Solution

The existence of mild solution is discussed by means of following theorem.

Theorem 3.1. Presume that

(i) −A is the in�niesimal generator of a C0-semigroup T (t), t ≥ 0 in E such that ‖T (t)‖ ≤ M , for some
M ≥ 1.

(ii) Here the function F1 : J × En+1 → E and F2 : J × Em+1 → E are continuous. We take constants
M1 > 0,M2 > 0 in such a manner that ∀ xi, yi ∈ E, i = 1, 2, ..., n+1 and ∀ xj , yj ∈ E, j = 1, 2, ...,m+1,
we get

‖ F1(t, x1, x2, ..., xn+1)− F1(t, y1, y2, ..., yn+1)‖ ≤M1

( n+1∑
i=1

‖ xi − yi‖
)

(4)

and

‖ F2(t, x1, x2, ..., xm+1)− F2(t, y1, y2, ..., ym+1)‖ ≤M2

(m+1∑
j=1

‖ xj − yj‖
)

(5)
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(iii) Next, h1, h2 : ∆×E → E are continuous functions and we consider constants H1 > 0, H2 > 0 in such
a way that ∀ x, y ∈ E,

‖ h1(t, s, x)− h1(t, s, y)‖ ≤ H1‖ x− y‖
and

‖ h2(t, s, x)− h2(t, s, y)‖ ≤ H2‖ x− y‖

(iv) The function g : X → E and there is a constant G > 0 such that

‖ g(u)− g(v)‖ ≤ G‖ u− v‖X ,∀ u, v ∈ E

(v) The functions γi ∈ C(J, J), i = 1, 2, ..., n+ 1 and the function ηj ∈ C(J, J), j = 1, 2, ...,m+ 1 .

(vi) �nally
M
[
G+M1b(n+H1b) +M2b(m+H2b)

]
< 1 (6)

If all the above conditions are satis�ed then the equations (1) - (2) has a unique mild solution on J .

Proof. By explaining a mapping φ on X by the formula

(φu)(t) = T (t− t0)x0 − T (t− t0)g(u)

+

∫ t

t0

T (t− s)F1

(
s, u(γ1(s)), ..., u(γn(s)),

∫ s

t0

h1(s, τ, u(γn+1(τ)))dτ
)
ds

+

∫ t

t0

T (t− s)F2

(
s, u(η1(s)), ..., u(ηm(s)),

∫ s

t0

h2(s, τ, u(ηm+1(τ)))dτ
)
ds,

for u ∈ X and t ∈ J .

It is simple to understand that φ : X → X.

Just now, we shall try to demonstrate that φ is a contraction on x. For this plan, make the di�erence

(φu)(t)− (φv)(t) = −T (t− t0)[g(u)− g(v)]

+

∫ t

t0

T (t− s)

[
F1

(
s, u(γ1(s)), ..., u(γn(s)),

∫ s

t0

h1(s, τ, u(γn+1(τ)))dτ
)

− F1

(
s, v(γ1(s)), ..., v(γn(s)),

∫ s

t0

h1(s, τ, v(γn+1(τ)))dτ
)]
ds

+

∫ t

t0

T (t− s)

[
F2

(
s, u(η1(s)), ..., u(ηm(s)),

∫ s

t0

h2(s, τ, u(ηm+1(τ)))dτ
)

− F2

(
s, v(η1(s)), ..., v(ηm(s)),

∫ s

t0

h2(s, τ, v(ηm+1(τ)))dτ
)]
ds

Now, taking norm both sides, we obtain

‖ (φu)(t)− (φv)(t)‖ ≤ ‖ T (t− t0)‖‖ g(u)− g(v)‖

+

∫ t

t0

‖ T (t− s)‖

∥∥∥∥∥ F1

(
s, u(γ1(s)), ..., u(γn(s)),

∫ s

t0

h1(s, τ, u(γn+1(τ)))dτ
)

− F1

(
s, v(γ1(s)), ..., v(γn(s)),

∫ s

t0

h1(s, τ, v(γn+1(τ)))dτ
)∥∥∥∥∥ds
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+

∫ t

t0

‖ T (t− s)‖

∥∥∥∥∥ F2

(
s, u(η1(s)), ..., u(ηm(s)),

∫ s

t0

h2(s, τ, u(ηm+1(τ)))dτ
)

− F2

(
s, v(η1(s)), ..., v(ηm(s)),

∫ s

t0

h2(s, τ, v(ηm+1(τ)))dτ
)∥∥∥∥∥ds (7)

≤MG‖ u− v‖X +MM1

∫ t

t0

(
n∑
i=1

∥∥∥ u(γi(s))− v(γi(s))
∥∥∥

+

∫ s

t0

∥∥∥ h1(s, τ, u(γn+1(τ)))− h1(s, τ, v(γn+1(τ)))
∥∥∥dτ)ds

+MM2

∫ t

t0

(
m∑
j=1

∥∥∥ u(ηj(s))− v(ηj(s))
∥∥∥

+

∫ s

t0

∥∥∥ h2(s, τ, u(ηm+1(τ)))− h2(s, τ, v(ηm+1(τ)))
∥∥∥dτ)ds

≤MG‖ u− v‖X +MM1b
[
n‖ u− v‖X +H1b‖ u− v‖X

]
+MM2b

[
m‖ u− v‖X +H2b‖ u− v‖X

]
, ∀ u, v ∈ J, t ∈ I.

Let λ = M
[
G+M1b(n+H1b) +M2b(m+H2b)

]
. Then, by (7) and by assumption (6), we have

‖ (φu)(t)− (φv)(t)‖ ≤ λ‖ u− v‖X , for u, v ∈ X

with 0 < λ < 1. This shows that the operator φ is a contraction on X.

3.2. Existence of Classical Solution

In this section, we shall study the existence of classical solution through the following theorem.

Theorem 3.2. Suppose that

(i) The assumptions (i) and (iv) of Theorem 3.1 holds.

(ii) E is re�exive Banach space, x0 ∈ D(A) and g(x) ∈ D(A), where x reveals the unique mild solution of
system (1) - (2).

(iii) There are constants M1 > 0,M2 > 0 in such way that

‖ F1(t, x1, x2, ..., xn+1)− F1(s, x̃1, x̃2, ..., x̃n+1)‖ ≤M1

[
|t− s|+

n+1∑
i=1

‖ xi − x̃i‖
]

for t, s ∈ J, xi, x̃i ∈ E, i = 1, 2, ..., n+ 1
and

‖ F2(t, x1, x2, ..., xm+1)− F2(s, x̃1, x̃2, ..., x̃m+1)‖ ≤M2

[
|t− s|+

m+1∑
j=1

‖ xj − x̃j‖

]
for t, s ∈ J, xj , x̃j ∈ E, j = 1, 2, ...,m+ 1;

(iv) There exist constants H1, H2 > 0 such that

‖ h1(t1, s, x)− h1(t2, s, x̃)‖ ≤ H1

[
|t1 − t2|+ ‖ x− x̃‖

]
and

‖ h2(t1, s, x)− h2(t2, s, x̃)‖ ≤ H2

[
|t1 − t2|+ ‖ x− x̃‖

]
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(v) There are constants C3 > 0, C4 > 0 such that

‖ x(γi(t))− x(γi(s))‖ ≤ C3‖ x(t)− x(s)‖, i = 1, 2, ..., n+ 1

and
‖ x(ηj(t))− x(ηj(s))‖ ≤ C4‖ x(t)− x(s)‖, j = 1, 2, ...,m+ 1

for t, s ∈ J .

If all the above assumptions are ful�l, then x is the unique classical solution of the system (1) - (2) on J .

Proof. The equation (1) - (2) possess a unique mild solution if all the conditions of Theorem 3.1 are satis�ed,
which is represented by x.

Next, we want to manifest that x is the unique classical solution of (1) - (2) on J . At this stage, we
initiate

C5 = max
s∈J

∥∥∥∥∥ F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)∥∥∥∥∥,

C6 = max
s∈J

∥∥∥∥∥ F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)∥∥∥∥∥,

C7 = max
t,s∈∆

∥∥∥ h1(t, s, x(γn+1(s)))
∥∥∥, and C8 = max

t,s∈∆

∥∥∥ h2(t, s, x(ηn+1(s)))
∥∥∥.
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For this purpose, consider the di�erence

x(t+ h)− x(t)

= [T (t+ h− t0)x0 − T (t− t0)x0]− [T (t+ h− t0)g(x)− T (t− t0)g(x)]

+

∫ t0+h

t0

T (t+ h− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

+

∫ t+h

t0+h
T (t+ h− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

−
∫ t

t0

T (t− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

+

∫ t0+h

t0

T (t+ h− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds

+

∫ t+h

t0+h
T (t+ h− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds

−
∫ t

t0

T (t− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds

= T (t− t0)[T (h)− I]x0 − T (t− t0)[T (h)− I]g(x)

+

∫ t0+h

t0

T (t+ h− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

+

∫ t

t0

T (t− s)×[
F1

(
s+ h, x(γ1(s+ h)), ..., x(γn(s+ h)),

∫ s+h

t0

h1(s+ h, τ, x(γn+1(τ)))dτ
)

− F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)]
ds

+

∫ t0+h

t0

T (t+ h− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds
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+

∫ t

t0

T (t− s)×[
F2

(
s+ h, x(η1(s+ h)), ..., x(ηm(s+ h)),

∫ s+h

t0

h2(s+ h, τ, x(ηm+1(τ)))dτ
)

− F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)]
ds

≤Mh‖ Ax0‖+Mh‖ Ag(x)‖+ hMC5

+

∫ t

t0

MM1

[
h+

n∑
i=1

∥∥∥ x(γi(s+ h))− x(γi(s))
∥∥∥+

∫ s

t0

H1|s+ h− s|dτ

+

∫ s+h

s
C7dτ

]
ds+ hMC6 +

∫ t

t0

MM2

[
h+

m∑
j=1

∥∥∥ x(ηj(s+ h))− x(ηj(s))
∥∥∥

+

∫ s

t0

H2|s+ h− s|dτ +

∫ s+h

s
C8dτ

]
ds

≤Mh‖ Ax0‖+Mh‖ Ag(x)‖+ hMC5 +MM1bh

+MM1

∫ t

t0

n∑
i=1

‖ x(γi(s+ h))− x(γi(s))‖ds+MM1hbH1 +MM1C7hb

+ hMC6 +MM2hb+MM2

∫ t

t0

m∑
j=1

‖ x(ηj(s+ h))− x(ηj(s))‖ds

+MM2H2hb+MM2C8hb

≤Mh‖ Ax0‖+Mh‖ Ag(x)‖+ hMC5 +MM1bh

+MM1nC3

∫ t

t0

∥∥ x(s+ h)− x(s)
∥∥ds+MM1bhH1 +MM1C7bh+ hMC6

+MM2bh+MM2mC4

∫ t

t0

∥∥ x(s+ h)− x(s)
∥∥ds+MM2bhH2 +MM2C8bh

≤Mh
[
‖ Ax0‖+ ‖ Ag(x)‖+ C5 +M1b+M1bH1 +M1C7b+ C6 +M2b

+M2bH2 +M2C8b
]

+
[
MM1nC3 +MM2mC4

] ∫ t

t0

∥∥ x(s+ h)− x(s)
∥∥ds

≤ Qh+M
[
M1nC3 +M2mC4

] ∫ t

t0

∥∥ x(s+ h)− x(s)
∥∥ds (8)

for t ∈ [t0, t0 + h), h > 0 and t+ h ∈ (t0, t0 + b], where

Q := M
[
‖ Ax0‖+ ‖ Ag(x)‖+ C5 +M1b(1 +H1) +M1C7b+ C6

+M2b(1 +H2) +M2C8b
]

With the use of Gronwall′s inequality and use of (8), we have∥∥ x(t+ h)− x(t)
∥∥ ≤ Qh expbM [M1nC3+M2mC4]

for t ∈ [t0, t0 + h), h > 0 and t+ h ∈ (t0, t0 + b]. Hence, x is Lipschitz continuous on J .
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The Lipschitz continuity of x on J and inequalities (4), (5) imply that the function

t ∈ J → Z(t) := F1

(
t, x(γ1(t)), ..., x(γn(t)),

∫ t

t0

h1(t, s, x(γn+1(t)))ds
)

+ F2

(
t, x(η1(t)), ..., x(ηm(t)),

∫ t

t0

h2(t, s, x(ηm+1(t)))ds
)
∈ E

is Lipschitz continuous on J . This property of t → z(t) along with assumptions of Theorem 3.2 suggested
by Theorem 1 given in of [12] and by Theorem 3.1 together with equation (3), we conclude that the linear
Cauchy problem

v′(t) +Av(t) = z(t), t ∈ J/{t0}
v(t0) = x0 − g(x)

has a unique classical solution v in such a manner

v(t) = T (t− t0)x0 − T (t− t0)g(x) +

∫ t

t0

T (t− s)z(s)ds

= T (t− t0)x0 − T (t− t0)g(x)

+

∫ t

t0

T (t− s)F1

(
s, x(γ1(s)), ..., x(γn(s)),

∫ s

t0

h1(s, τ, x(γn+1(τ)))dτ
)
ds

+

∫ t

t0

T (t− s)F2

(
s, x(η1(s)), ..., x(ηm(s)),

∫ s

t0

h2(s, τ, x(ηm+1(τ)))dτ
)
ds

= x(t), t ∈ J

As a result, x(t) is the unique classical solution of the initial value problem (1) - (2) on J . This completes
the proof of Theorem 3.2.

3.3. Applications

Now, we discuss two examples in favour of our results.

(1) We assume the following partial integrodi�erential equation of the form:

∂z(t, x)

∂t
− ∂2z(t, x)

∂x2

= f1

(
t, z(γ1(t), x), ..., z(γn(t), x),

∫ t

t0

H1(t, s, z(γn+1(s), x))ds
)

+ f2

(
t, z(η1(t), x), ..., z(ηm(t), x),

∫ t

t0

H2(t, s, z(ηm+1(s), x))ds
)
,

0 < x < π, t ≥ 0, (9)

with initial and boundary conditions

z(0, t) = z(π, t) = 0, t ≥ 0 (10)

z0(x) = z(t0, x) +
k∑
p=1

cpz(tp, x), x ∈ [0, π]. (11)
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In continuation E = L2[0, π] and A : D(A) ⊂ E → E is the operator Az = z′′ with domain D(A) = {z ∈
E : z, z′ are absolutely contiuous, z′′ ∈ E, z(0) = z(π) = 0}.

It is well known that A is the in�nitesimal generator of C0-semigroup {T (t)}t≥0 on E. It is assumed that
for certain constants Ni > 0, i = 1, 2, 3, 4, 5, the following conditions are satis�ed:

‖ f1(t, y1, y2, ..., yn+1)− f1(t, z1, z2, ..., zn+1)‖ ≤ N1

n+1∑
i=1

‖ yi − zi‖

‖ f2(t, y1, y2, ..., ym+1)− f2(t, z1, z2, ..., zm+1)‖ ≤ N2

m+1∑
j=1

‖ yj − zj‖

‖ H1(t, s, y)−H1(t, s, z)‖ ≤ N3(‖ y − z‖)

‖ H2(t, s, y)−H2(t, s, z)‖ ≤ N4(‖ y − z‖)

‖ G(s1)−G(s2)‖ ≤ N5(‖ s1 − s2‖)

where (Gz)(x) =
∑k

p=1 cpz(tp, x).

De�ne the function F1 : J ×En+1 → E; F2 : J ×Em+1 → E; h1, h2 : J ×J ×E → E and G : X → E
as follows

F1(t, x1(t), ..., xn+1(t))(x) = f1(t, x1(x, t), ..., xn+1(x, t))

F2(t, x1(t), ..., xm+1(t))(x) = f2(t, x1(x, t), ..., xm+1(x, t))

h1(t, s, x1(t))(x) = H1(t, s, x1(x, t))

h2(t, s, x1(t))(x) = H2(t, s, x1(x, t))

for t ∈ J and 0 < x < π. Then the above problem (9) -(11) can be formulated in (1) -(2). Since all the
hypothesis of Theorem 3.1 are satis�ed. Consequently, Theorem 3.1 can be applied for the equations (9) -(11).

(2) Consider the another partial integrodi�erential equation of the form:

∂w(t, y)

∂t
− ∂2w(t, y)

∂y2

= c1(t)w(sin t, y) + c2(t) sinw(t, y) +
1

t2 + 1

∫ t

t0

c3(s)w(sin s, y)ds

+ c̃1(t)w(sin t, y) + c̃2(t) sinw(t, y) +
1

t2 + 1

∫ t

t0

c̃3(s)w(sin s, y)ds, (12)

w(t, 0) = w(t, π) = 0; (13)

w(0, y) +

k∑
p=1

Cpw(tp, y) = w0(y) (14)

where we state the conditions as follows:
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(i) The function cj(.) and c̃j(.), j = 1, 2, 3 are continuous on [0, 1] with condition

lj = sup
0≤s≤1

‖cj(s)| < 1, j = 1, 2, 3

and

l̃j = sup
0≤s≤1

‖c̃j(s)| < 1, j = 1, 2, 3

(b) The function Cp ∈ R, p = 1, 2, ..., k.

Let us consider that E = L2[0, π]. Explain A = D(A) ⊂ E → E is linear operator which is described by
Aw = w′′ with domain D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}
Then operator A can be expressed

Aw =
∞∑
n=1

n2(w,wn)wn, w ∈ D(A)

where wn(y) =
(√

2
π

)
sinny, n = 1, 2, ... is the orthogonal set of eigenvalues of A. Further, for w ∈ E, we

have

T (t)w =
∞∑
n=1

exp

(
−n2t

1 + n2

)
(w,wn)wn.

It common that A is the in�nitesimal generator of C0-semigroup {T (t)}≥0 on E.

To solve this system, we will de�ne the operators F1, F2 : J × E × E → E; h1, h2 : J × J × E → E; g :
X → E by

F1

(
t, w(α(t)),

∫ t

0
h1(t, s, w(α(t)))ds

)
(y)

= c1(t)w(sin t, y) + c2(t) sinw(t, y) +
1

t2 + 1

∫ t

t0

c3(s)w(sin s, y)ds;

F2

(
t, w(α(t)),

∫ t

0
h2(t, s, w(α(t)))ds

)
(y)

= c̃1(t)w(sin t, y) + c̃2(t) sinw(t, y) +
1

t2 + 1

∫ t

t0

c̃3(s)w(sin s, y)ds;

∫ t

0
h1(t, s, w(α(t)))ds =

1

t2 + 1

∫ t

t0

c3(s)w(sin s, y)ds;

∫ t

0
h2(t, s, w(α(t)))ds =

1

t2 + 1

∫ t

t0

c̃3(s)w(sin s, y)ds

g(w)(y) =
k∑
p=1

tpw(tp, y)

Then system (12) - (14) yields the abstract form (1) - (2). With the choice of the above functions it is clear
that all the conditions of the Theorem 3.1 are ful�lled. Thus with the help of Theorem 3.1, we assume that
the system (12) - (14) has a mild solution on J .
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