PAPER DETAILS

TITLE: Parçacik Fiziginde Anomaliler

AUTHORS: Halil GAMSIZKAN

PAGES: 83-99

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/228431

Parçacık fiziğinde anomaliler

Halil GAMSIZKAN^{*}

Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü, Eskişehir

Özet

Parçacık fiziğinde standart model, güçlü bir kuramsal altyapıya sahip olup yıllar içerisinde hemen tüm deneysel testlerden geçmeyi başarmıştır. Öte yandan SM çerçevesinin ötesinde keşfedilmeyi bekleyen fizik olduğu da parçacık fiziği camiasında genel olarak kabul gören bir durumdur. Bilimin her alanında, kısaca ölçüm ve kuramsal öngörü arasındaki uyuşmazlık olarak tanımlanabilecek olan anomaliler doğa hakkında öğrenebileceğimiz yeni bilgiler olduğunun işaretçileri olabilir. Bu çalışmada SM ötesi fizik hakkında işaretler taşıma ihtimali bulunan başlıca iki anomali, yani müon g-2 anomalisi ve LHCb B⁰ \rightarrow K^{*0}µ⁺µ⁻anomalisi incelenmektedir.

Anahtar kelimeler: Standart model, Standart model ötesi fizik, Anomali, Müon anomal manyetik momenti, LHCb, Nadir B mezon bozunumları

Anomalies in particle physics

Abstract

The Standard Model of particle physics has a strong theory structure and did prove exceedingly successful in almost all experimental tests through the years. It is also commonly accepted among the particle physics community that there is physics beyond the Standard Model waiting to be discovered. In every field of science, anomalies; which can briefly be defined as the disagreement between measurements and theoretical predictions; might point to new information we can learn about nature. In this study, we review two anomalies that might be signaling beyond the Standard Model physics: The muon g-2 anomaly, and the LHCb B⁰ $\rightarrow K^{*0}\mu^+\mu^-$ anomaly.

Keywords: Standard model, Physics beyond the standard model, Anomaly, Muon anomalous magnetic moment, LHCb, Rare B meson decays

^{*} Halil GAMSIZKAN, halilgamsizkan@gmail.com, Tel: (222) 3350580-4762.

1. Anomaliler

Anomali kavramı deney yoluyla ölçülen bir niceliğin kuramsal öngörü ile uyuşmaması olarak özetlenebilir. Anomaliler yeni fiziğe işaret edebildikleri için gözlemlendiklerinde sıklıkla heyecan yaratırlar. Öte yandan deneysel bir ölçümün kuramsal öngörüden sapma göstermesi, yeni fiziğin dışında da çeşitli deneysel ve kuramsal sebeplerden kaynaklanabilir. Bu tür bir sapma aşağıdaki deneysel nedenlerle ortaya çıkabilir:

- İstatistiksel etkiler. Eldeki verinin artmasıyla sapma ortadan kalkabilir.
- Sistematik etkiler. Eksik değerlendirilmiş veya gözden kaçmış sistematik hatalar sonuçlarda anlaşılamayan sapmalar doğurabilir.
- Nötrino fiziği örneğinde olduğu gibi çalışılan alanın tabiatından kaynaklanan içsel güçlükler bulunabilir.
- Veri analizinden kaynaklanan (ör. Analiz yöntemi, Monte Carlo simülasyonu ayrıntıları) nedenler.
- Parçacık fiziği deneylerinin gittikçe artan karmaşıklığının da neden olduğu yazılım sorunları, yerine tam oturmamış fiber-optik kablolar gibi çeşitli nedenler [1].

Kuramsal açıdan da aşağıdaki nedenler deneysel ölçümlerle uyuşmayan hesaplama sonuçlarına neden olabilir:

- Hesaplardaki eksiklikler ve belirsizlikler. Ölçülen niceliğin kuramsal açıdan yeterince çalışılmamış/detaylandırılmamış olması mümkündür.
- Hesaplamalarda yapılan (kimi zaman yapılmış olduğu unutulan) bazı basitleştirici varsayımlar. Bir hesaplamanın literatürdeki yaşam süresinin erken bir aşamasında yapılmış olan kuramsal varsayımların, ileri aşamalarda güncellenmesi gerekebilir.

Bir sapma, saymış olduğumuz bu nedenler ile açıklanamıyorsa, elbette yeni fiziğe işaret ediyor da olabilir.

Öznel bir tanım olmasından ötürü bir sapmanın anomali olarak değerlendirilmesi genellikle bilim camiası tarafından ne kadar kabul gördüğü ile ilintilidir. Bir sapmanın, anomali olarak kabul görmesi konusunda inandırıcılığı ile bağlantılı olarak aşağıdaki nesnel kriterler sıralanabilir:

- Anomalinin istatistiki bir dalgalanma neticesinde tesadüfi olarak ortaya çıkmış olma olasılığı nedir? Bu olasılığın sayısal karşılığı istatistiksel anlamlılıktır (kaç standart sapmalık bir gerilim?). Bir anomali zaman içerisinde çeşitli nedenlerle, özellikle de toplanan verinin artmasıyla birlikte ortadan kaybolabilir. Bu geçmişte pek çok kez yaşanmış bir durumdur.
- Sapma tekil bir deneyde mi ortaya çıkıyor, yoksa bir deney çiftinin her ikisinde de mi? Sapma benzer deneylerde de gözlemlendi mi? (ör. *Tevatron üst kuark çifti asimetri anomalisi*). Benzeri bir deney veya çift deneyi olmayan bir deneyin ulaştığı sonuçlardaki sapmaların karşılaştırılabileceği bir ölçüm olmamasından ötürü deneyden kaynaklanan bilinmeyen sorunlara mal edilmesi, veya göz ardı edilmesi daha olasıdır. Bu örnek ayrıca çift-deneylerin önemini ve çift olarak kurulmalarındaki önemli bir motivasyonu da ortaya koymakta (ör. D0 ve CDF, CMS ve ATLAS gibi). Çift deneylerde deneylerin birinde ortaya çıkan herhangi bir sonuç diğeri tarafından onanabilir veya değillenebilir.

• Hiçbir kuramsal yapıya oturtulamayan veya temel fizik önermeleriyle çelişen bir sapmanın da deneysel sorunlardan ortaya çıkmış olması muhtemeldir.

Bu çalışmada, günümüz parçacık fiziğindeki mevcut sapma/anomalilerden yeni fiziğe işaret etme ihtimali bulunan başlıca ikisi incelenmekte. Bunlardan ilki 2000'li yıllarda ortaya çıkmış olan müon anomal manyetik moment (g-2) anomalisi. Bu anomalinin anlaşılabilmesi için halihazırda kurulum aşamasında olan iki deney bulunuyor. Diğeri ise LHC'de ve görece yeni ortaya çıkmış olan $B^0 \rightarrow K^{*0}\mu^+\mu^-$ anomalisi. Bu anomali ise yeni fizik işaretlerine hassas olan bir nadir *B* mezonu bozunum kanalında ortaya çıktı ve hem kuramsal, hem de deneysel parçacık fiziği camiasının ilgisini çekmiş bulunuyor.

2. Müon g-2 anomalisi

Müon parçacığının anomal manyetik momenti, en hassas ölçülebilmiş (milyonda bir mertebesinde) ve kuramsal açıdan da en ayrıntılı hesaplanmış olan fiziksel niceliklerden biridir. Kuramsal zayıf etkileşim hesaplarındaki hassasiyetin artması sonucunda BNL E821 deneyinden 2000 yılında gelen hassas ölçüm sonuçlarıyla kuram arasında 3 standart sapma'dan büyük bir uyumsuzluk olduğu ortaya çıktı. Bu sapma takip eden ölçümlerde de devam etti (Tablo 1). Günümüzde kuram ile deney arasındaki bu uyumsuzluk, standart model (SM) öngörülerinden en büyük ve parçacık fiziği camiasında yeni fizik işareti olarak en fazla kabul gören sapmalardan birini ifade etmektedir.

Deney	Yıl	Parçacık Isını	$a_{\mu} (imes 10^{-3})$	$\delta a_{\mu}/a_{\mu}$
Columbia-Nevis [2]	1960	μ^+	$1.13^{+(16)}_{-(12)}$	12.4%
CERN 1 [3]	1961	μ^+	1.45 (22)	1.9%
CERN 1 [4]	1962	μ^+	1.162(5)	0.43%
CERN 2 [5]	1968	μ^{\pm}	1.166 16(31)	265 ppm
CERN 3 [6]	1975	μ^{\pm}	1.165 895(27)	23 ppm
CERN 3 [7]	1979	μ^{\pm}	1.165 911(11)	7.3 ppm
BNL E821 [8]	2000	μ^+	1.165 919 1(59)	5 ppm
BNL E821 [9]	2001	μ^+	1.165 920 2(16)	1.3 ppm
BNL E821 [10]	2002	μ^+	1.165 920 3(8)	0.7 ppm
BNL E821 [11]	2004	μ^{-}	1.165 921 4(9)	0.7 ppm
Dünya Ortalaması [11, 12]		μ^{\pm}	1.165 920 80 (63)	0.54 ppm

Tablo 1: Mevcut müon anomal manyetik moment a_{μ} ölçüm sonuçları. Parantez içindeki değerler toplam ölçüm hatalarıdır (δa_{μ}).

Müon parçacığı, elektron kütlesine kıyasla yüksek kütleye sahip olması nedeniyle etkileşimleri ışınımsal etkiler aracılığıyla SM ötesi fiziğe hassasiyet gösterir. Müon ayrıca parçacık hızlandırıcılar kullanılarak yüksek sayılarda ve farklı enerjilerde üretilebilmesi ve görece uzun bir bozunum süresine sahip olması nedeniyle deneysel fizikçilerin ilgisini çekmektedir. Müon parçacığının özelliklerini ölçen deneyler SM ötesi fiziğin işaretlerini ortaya çıkarma konusunda avantaja sahiptir ve anomal manyetik moment sapmasının yeni fizik için ipucu olması mümkündür.

2.1. Anomal manyetik moment

Kuantum fiziğine göre, dönmesi olan tüm parçacıklar manyetik momente sahiptir. m kütlesine ve $q = \pm e$ elektron elektrik yüküne sahip bir ½ dönmeli parçacığın manyetik moment vektörü μ ile dönme vektörü s arasındaki ilişki aşağıdaki şekildedir:

$$\boldsymbol{\mu} = g\left(\frac{q}{2m}\right)\boldsymbol{s} \tag{1}$$

Bu ifadede g sabiti **jiromanyetik sabit** olarak adlandırılır. Jiromanyetik sabit, klasik Dirac göreli kuantum kuramında 2 değerini alır [13]. Bu değer, kuantum alan kuramı hesaplarında ağaç seviyesi etkileşimine karşılık gelir. Kuantum alan kuramı kullanılarak manyetik moment için ağaç seviyesinin ötesinde kuramsal hesaplama yapıldığında ışınım ve vakum etkileri nedeniyle ağaç seviyesi değerinden sapma olması beklenir (Tablo 2). Bu sapma, manyetik anomali, veya **anomal manyetik moment** (a) ile ifade edilir:

$$g = 2(1+a)$$
, veya $a = \frac{g-2}{2}$ (2)

Özellikle elektron ve müon gibi temel parçacıkların anomal manyetik momentleri için kuramsal hesaplar ve deneysel ölçümler ayrıntılı şekilde yapılmış olup bu fiziksel nicelikler için elde edilmiş olan hassas sayısal değerler mevcuttur.

Tablo 2: Çeşitli parçacıklar için ölçülmüş jiromanyetik sabit değerleri [14]. Proton ve nötron gibi bileşik parçacıklarda jiromanyetik sabit efektif bir büyüklüğü temsil eder ve g=2 değerinden görece uzak değerler alır.

Parçacık	Jiromanyetik sabit (g)
Elektron	2.002 319 304 361 53 (53)
Müon	2.002 331 841 8(13)
Proton	5.585 694 713 (46)
Nötron	3.826 085 45 (90)

2.2. Müon anomal manyetik momentinin kuramsal hesabı

Müon anomal manyetik momentinin standart model kuramsal yapısı içerisinde hesabı kuantum elektrodinamik, zayıf ve güçlü etkileşim katkılarının ayrı ayrı hesaplanarak toplanmasını içerir:

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm KED} + a_{\mu}^{\rm ZE} + a_{\mu}^{\rm GE} \tag{3}$$

Bu bileşenler, ilgili Feynman köşe diyagramları aracılığıyla hesaplanır (Şekil 1).

Şekil 1: a_{μ} değerine katkı yapan başlıca etkileşimleri temsil eden birinci mertebe diyagramlar [15]. Birinci kolon: Üstte anomali içermeyen Dirac etkileşimi, altta KED diyagramı (Schwinger terimi). İkinci kolon: Üstte hadronik vakum polarizasyonu etkileşimleri ve altta hadronik ışıktan-ışığa saçılım katkısı. Üçüncü kolon: Zayıf etkileşim diyagramları. Dördüncü kolonda müon g-2 anomalisine katkısı bulunabilecek standart model ötesi fizik diyagramları görülmektedir (bu örnekte süpersimetri).

2.2.1. KED ve zayıf etkileşim katkıları

Kuantum elektrodinamiği (KED) katkıları Schwinger katkısı ile başlar ve artan mertebelerle foton ve elektrik yükü taşıyan lepton (e, μ, τ) ilmekleri için hesaplanır. 5 ilmek seviyesinde bu katkı:

$$a_{\mu}^{\text{KED}} = 116\ 584\ 718.951\ (0.080) \times 10^{-11}$$
 (4)

olarak hesaplanmıştır [16]. Bu hesaptaki başlıca belirsizlik kaynağı bağlaşım sabiti α 'nın değerindeki belirsizliktir.

Zayıf etkileşim katkısı ise görece ağır kütleye sahip olan W^{\pm} , Z ve Higgs parçacığı barındıran diyagramlar aracılığıyla ifade edilir ve hesaplanır. Bu diyagramların katkıları, $m_{\mu}^2/m_{W/Z/Higgs}^2$ çarpanı içermeleri nedeniyle önemli ölçüde ($\mathcal{O}(10^{-9})$) baskılanır. 3 ilmek seviyesine ulaşıldığında zayıf etkileşim katkıları göz ardı edilebilir değerlere düşer, bu nedenle zayıf etkileşimin anomali terimi katkısında 2 ilmek seviyesi sonuçları kullanılır [17, 18]:

$$a_{\mu}^{\rm ZE} = 153.6(1.0) \times 10^{-11} \tag{5}$$

2.2.2. Hadronik katkılar

Hadronik katkılar KED katkılarına kıyasla düşük sayısal değerlere sahip olmalarıyla birlikte toplam kuramsal öngörüye deneysel ölçüm belirsizliğine denk belirsizlikler taşır. Bu katkılar başlıca üç bileşenden oluşur; düşük mertebe vakum polarizasyonu katkısı (a_{μ}^{VP}) , yüksek mertebe etkileşim katkısı (a_{μ}^{YM}) ve ışıktan-ışığa saçılım katkısı (a_{μ}^{IS}) .

Hadronik katkıların hesabında KED hesabında kullanılan pertürbasyon yöntemini izlemek başlıca iki güçlükten ötürü mümkün değildir:

- 1. Kuantum renk dinamiğine (KRD) göre kuarklar hadronlar içinde hapsolmuş olup yalın halde gözlemlenemezler. Bu nedenle pertürbasyon yöntemi hesaplarında ihtiyaç duyulan kuark kütlelerinin hangi değerleri alacağı lepton kütlesi değerleri kadar aşikar değildir.
- 2. a_{μ} hesabina etkisi olan hadronik katkılarda görece uzun mesafelere karşılık gelen dinamik süreçler baskındır. Bu da uzun mesafelerde güçlü etkileşim sabiti $\alpha(s)$ çok yüksek değerler aldığı için pertürbasyon yönteminin a_{μ}^{GE} hesaplarında güvenilir bir araç olarak kullanılamayacağı anlamına gelir.

Pertürbasyon yöntemleri kullanılamadığı için vakum polarizasyonu ve yüksek mertebe etkileşim katkılarının hesabı sıklıkla dağılma bağıntısı yaklaşımına [19] dayanan yarı-fenomenolojik bir yöntemle yapılır. Bu yaklaşımda analitiklik ilkesine dayanan dağılma bağıntısı, üniterlik ilkesinden gelen optik teorem ile birleştirilir ve e^+e^- yok olma tesir kesiti ölçüm verisi kullanılarak sonuca ulaşılır. Vakum polarizasyonu süreçleri için katkı,

$$a_{\mu}^{\rm VP} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \frac{K(s)}{s} R^{(0)}(s) \tag{6}$$

biçiminde yazılır. Bu bağıntıda K(s) KED kernel fonksiyonu [20] olup $R^{(0)}(s)$ fonksiyonu, \sqrt{s} kütle merkezi enerjisinde e^+e^- yokolma hadronik ışınım tesir kesitinin müon çifti oluşum tesir kesitine oranı kullanılarak bulunur. İzospin simetrisi aracılığıyla $e^+e^- \rightarrow hadronlar$ tesir kesitiyle ilişiklendirilebildiği için, $\tau \rightarrow v_{\tau} + hadronlar$ bozunumundan elde edilen spektral vektör fonksiyonlar da hesaplamaya katkı sağlar. Toplam hadronik katkı hesaplandığında,

$$a_{\mu}^{\rm VP} = 6\ 923(42) \times 10^{-11} \tag{7}$$

değerine ulaşılır [21]. Bu sonuçta dikkat çeken nokta kuramsal hesaptaki belirsizliğin aldığı yüksek sayısal değerdir. Belirsizliğin başlıca kaynağı hesapta ihtiyaç duyulan e^+e^- tesir kesiti ve τ bozunumu ölçümlerinin taşıdığı belirsizliktir. Bu belirsizliklerin yakın gelecekte CMD3, SND, BES III, KLOE-2 ve DAFNE deneylerinde elde edilecek veri ile ciddi şekilde azalması bekleniyor.

Yüksek mertebe katkıların kuramsal hesabında da dağılma bağıntısı yaklaşımı kullanılır [22]:

$$a_{\mu}^{\rm YM} = -98.4(0.8) \times 10^{-11} \tag{8}$$

Hadronik ışıktan-ışığa saçılım katkısının hesabı zor bir kuantum alan kuramı problemi olup hesaplamalar ancak oluşturulmuş çeşitli modeller çerçevesinde yapılabilmektedir [23]:

$$a_{\mu}^{\rm IS} = 105(26) \times 10^{-11} \tag{9}$$

Bu sonucun hesap modeli kaynaklı yüksek bir kuramsal belirsizlik taşıdığı görülmektedir. Sonuç olarak hadronik katkılar, a_{μ}^{SM} hesabındaki başlıca kuramsal belirsizlik kaynağı olarak karşımıza çıkar.

Tüm SM katkıları bir araya getirildiğinde, toplam SM kuramsal hesap sonucu [24]

$$a_{\mu}^{\rm SM} = 116\,591\,802(2)(42)(26) \times 10^{-11} \tag{10}$$

olarak bulunur. Belirsizlikler sırasıyla EZ, düşük mertebe KRD ve yüksek mertebe KRD katkılarının belirsizlikleridir. Kuramsal öngörü ile deneysel ölçüm sonucu arasındaki fark ise

$$\Delta a_{\mu} = a_{\mu}^{\text{BNL}} - a_{\mu}^{\text{SM}} = 287(80) \times 10^{-11}$$
(11)

olarak bulunur. Yaklaşık 1 standart sapma belirsizliğe sahip olan bu fark, deney ile kuram arasında 3.6 σ 'lık bir uyuşmazlığa karşılık gelir.

2.3. Yeni fizik yorumları

Müon g-2 anomalisi, standart model ötesi bir fizik kuramı ile açıklanabilir mi? Eğer doğada süpersimetrik parçacıklar varsa, bu parçacıkların vakum ve ışınım süreçleri aracılığıyla müon anomal manyetik momenti üzerinde etkileri olacaktır.

SM ötesi fizik için popüler bir kuramsal çerçeve çizen süpersimetri prensibi, temel parçacıklar için doğada fermiyonlar ve bozonlar arasında bir simetri olduğunu belirtir. Bu prensip üzerine kurulan modellere göre bilinen tüm temel parçacıkların dönmesi ½ farklı ve kütlesi kendinden daha yüksek olan bir "süpereş" parçacığı vardır (süpersimetri hakkında genel bilgi için bkz. [25]).

Süpersimetrik katkılar aşağıdaki genel biçimde ifade edilir [26]:

$$a_{\mu}^{\text{SUSY}} \simeq \text{sgn}(\mu) \times 130 \times 10^{-11} \cdot \left(\frac{100 \text{ GeV}}{m_{\text{SUSY}}}\right)^2 \tan\beta$$
 (12)

Bu ifadede sgn(μ) = \pm süpersimetri modellerindeki μ teriminin işareti, m_{SUSY} süpersimetri kütle skalası ve tan $\beta = \langle \varphi_2 \rangle / \langle \varphi_1 \rangle$ iki skaler vakum beklenen değerinin oranıdır. Bu parametreler için deney sonuçlarında dışlanmamış değerler kullanıldığında kütlesi 100–500 GeV arasında bulunan süpersimetrik parçacıkların Δa_{μ} sapmasından sorumlu olabileceği sonucuna ulaşılır.

Bir diğer olasılık 4. Fermiyon ailesinin varlığıdır [27]. Doğada 4. aile mevcutsa, bu aileye mensup nötrinoların oldukça yüksek kütleye sahip olmaları gerekir ($m_{\nu'} > 45 \ GeV$) çünkü ek hafif kütleli nötrinoların varlığı LEP deneylerinde dışlanmıştır. 4. aile için mevcut deneysel sınırlar ağır bir lepton için $m_{l'} > 100 \ GeV$ ve ağır bir kuark için $m_{a'} > 200 \ GeV$ biçimindedir [28].

 Δa_{μ} sapmasının U(1)' gibi ek bir simetriye ait ayar bozonlarının varlığı nedeniyle ortaya çıkmış olması mümkündür. Bu tür bir simetri, ek bir Z bozonunun varlığını öngörebilir. Bu yeni Z' bozonu SM Z bozonu ve foton ile karışım yoluyla etkileşimlere etkide bulunabilir [28].

Sapmayı açıklamaya aday diğer yeni fizik senaryoları da mevcuttur. Bunlardan biri de karanlık foton modelidir [29][30]. Karanlık maddeyi açıklamak için ortaya çıkmış bir

fikir olarak karanlık foton farazi bir vektör bozondur, kütlelidir ve foton ile karışım yoluyla elektromanyetik etkileşime girer. Bu etkileşim de Δa_{μ} sapmasını açıklamaya adaydır. Ancak RHIC'te bulunan PHENIX kolaborasyonu [31] tarafından yakın zamanda açıklanan karanlık foton arama sonuçlarına göre Δa_{μ} sapmasını açıklayabilecek $U - \gamma$ karışım uzayı $30 < m_U < 36 \text{ MeV/c}^2$ dar aralığı dışında 90% eminlik seviyesiyle dışlanmış bulunmaktadır [32].

2.4. Gelecek için deneysel planlar

Mevcut a_{μ} ölçüm hassasiyetini 4 kat artırmayı hedefleyen ve birbirini tamamlayıcı nitelik taşıyan iki yeni deney için çalışmalar sürüyor. Bu deneylerden biri Fermilab'da (ABD), diğeri de J-PARC'ta (Japonya) kurulmakta.

2.4.1. Müon g-2 deneyi (Fermilab)

Fermilab g-2 deneyinde (E989) [33], BNL deneylerinde kendini kanıtlanmış olan bir ölçüm yöntemi kullanılacak.

Boyuna polarize olan müonların dönme vektörü, parçacığa hareket yönünden farklı bir yönde homojen bir manyetik alan uygulandığında momentum vektörünün ekseni etrafında presesyon hareketi yapar (Larmor presesyonu). Müonun anomal manyetik momenti ise parçacığa elektrik ve manyetik alan uygulanması durumunda dönme vektöründe Larmor presesyonuna ek olarak frekans vektörü ω_a olan bir presesyonun ortaya çıkmasına neden olur:

$$\boldsymbol{\omega}_{\boldsymbol{a}} = -\frac{e}{m_{\mu}} \left[a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right]$$
(13)

Bu ifadede γ terimi parçacığın görelilik çarpanıdır. "Sihirli" gama değeri olarak adlandırılan $\gamma = 29.4$ seçildiğinde elektrik alana bağlı olan terim sıfırlanır ve frekans ifadesi yalın bir biçime indirgenir:

$$\boldsymbol{\omega}_{\boldsymbol{a}} = -\frac{e}{m_{\mu}}a_{\mu}\boldsymbol{B} \tag{14}$$

Bu ifadede görüldüğü üzere hassas bir a_{μ} ölçümü, ω_a değerinin hassas biçimde ölçülmesini ve depolama halkası boyunca **B** değerinin hassas bir biçimde bilinmesini ve kontrol edilebilmesini gerektirir.

Fermilab (FNAL) deneyinde müon parçacıkları yaklaşık 15 metre çapındaki bir depolama halkasında 1.5 T'lık manyetik alana tabi tutarak, ω_a presesyon frekansı ölçülecek ve a_{μ} değerine ulaşılacak (Şekil 2).

Deneyde müonların depolama halkası yörüngesinin radyal boyutunda tutulmaları için presesyon için kullanılan manyetik alan, dikey boyut sınırlaması ve odaklama için ise elektrik alan kullanılacak. Müon ışını sihirli gama enerjisinde yani yaklaşık 3 GeV enerjide olacak. Bu enerjiye sahip müonların bir parçacık hızlandırıcı kullanarak üretilmesi mümkündür, bu da bahsedilen enerjinin sihirli gama değeri olarak anılmasının bir diğer sebebidir.

FNAL g-2 deneyi halihazırda kurulma aşamasında olup 2017 yılında veri almaya başlaması planlanıyor.

Şekil 2: Modülüs zamanın fonksiyonu olarak E821 deneyinde gözlemlenmiş olan positron olayı sayıları [34].

2.4.2. J-PARC g-2 deneyi (J-PARC / Japonya)

J-PARC deneyi [35] de FNAL g-2 deneyi gibi a_{μ} ölçümünü ω_a presesyon frekansı ölçümü aracılığıyla gerçekleştirmeyi planlıyor. Öte yandan iki deney arasında tasarım açısından önemli farklılıklar da bulunuyor (Tablo 3).

Parametre	BNL-E821	Fermilab	J-PARC
Müon momentumu	3.09 GeV/c		0.3 GeV/c
Görelilik γ değeri		29.3	3
Depolama manyetik alanı		1.45 T	3.0 T
Işın odaklama yöntemi	Elektrik alan, dört-kutuplu		Yok
μ^+ bozunumları (adet)	5.0×10 ⁹	1.8×10^{11}	1.5×10^{12}
μ^{-} bozunumları (adet)	3.6×10 ⁹	—	_
İstatistiki g-2 ölçüm	0.46 ppm	0.1ppm	0.1ppm
hassasiyeti			

Tablo 3: BNL, FNAL ve J-PARC g-2 deneylerinin başlıca parametreleri [35]

Dönme presesyonu ve depolama halkası içinde müon ışınının radyal yönde sınırlanması için ihtiyaç duyulan manyetik alanın deney hassasiyetinde büyük önemi olmasından ötürü J-PARC deneyinde sadece 66 cm çapa sahip oldukça küçük bir depolama halkası tercih edilmiştir. Bu çapta bir depolama halkasında tek parçadan oluşan bir elektromıknatıs kullanılabilir, bu da gelişen teknoloji sayesinde 1 ppm mertebesine kadar düşen son derece yüksek bir manyetik alan uygulama hassasiyeti anlamına gelir.

Deneyin FNAL deneyinden bir diğer farklılığı depolama halkasındaki müon ışınının dikey sınırlaması ve odaklanması için elektrik alan kullanılmayacak olmasıdır. Bu durum deneye ölçümde elektrik alandan kaynaklanan etkilerin ortadan kalkması (hatta

avantaja çevrilmesi) ve sihirli gama değerinin dışında enerjiye sahip bir müon ışını kullanabilme gibi avantajlar sağlamıştır.

Bir dikey sınırlama ve odaklama mekanizması barındırmadığı için deneyde kullanılan müon ışınının düşük enerjili ve enine dağılım parametresi $\sigma(p_T)$ 'nin son derece sınırlı olması zorunludur. Bu tür bir ışın elde etmek için ışın hattında müonyum (Mu) üretimi ve lazer rezonant iyonizasyon tekniği kullanılacaktır. J-PARC deneyinde ilk aşamada 3 GeV enerjili proton ışınının grafit hedefe gönderilmesi ile 28 MeV/c enerjili yüzey müon ışını elde edilecek. Bu ışın müonyum üretim hedefinden geçişi esnasında birer elektron yakalayarak müonyuma (Mu) dönüşecek (mu⁺e⁻). Mu ışını daha sonra lazer ışınıyla iyonize edilecek, ve elde edilen ultra-soğuk 2.4 keV/c enerjili müon ışını doğrusal bir hızlandırıcıda 300 MeV/c enerjiye çıkarılarak depolama halkasına iletilecek (Şekil 3).

Şekil 3: J-PARC deneyi müon ışın kaynağının genel yapısı [36].

J-PARC deneyinde 0.3 GeV/c enerjiye sahip bir müon ışını kullanılacak. Deneyde kullanılacak olan ışının son derece düşük bir enine dağılım değerine sahip olması hedefleniyor:

$$\frac{\sigma(p_{\rm T})}{p_{\rm L}} \sim 10^{-5} \tag{15}$$

Deneyin tasarım farklılıkları sistematik hataların FNAL g-2 deneyinden bütünüyle farklı, ancak toplamda oldukça yakın olması sonucunu doğuruyor. Dolayısıyla J-PARC deneyinin FNAL g-2 için tamamlayıcı sonuçlar sunması bekleniyor. Deneyin veri almaya 2017 yılında başlaması planlanıyor.

3. LHCb $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ anomalisi

B kuark/çeşni fiziğinin önemli bir özelliği nadir bozunumlar aracılığıyla standart model (SM) ötesi fiziğe hassas olmasıdır. SM'e göre *B* fiziği süreçlerinde ağaç seviyesinde çeşni geçişli yüksüz akım süreçleri mümkün değildir, ayrıca kuark aileleri arasındaki geçişler CKM kuark karışım matris elemanları tarafından baskılanır. Yeni fizik (YF) etkileri, SM tarafından yasaklanan/baskılanmış bozunum süreçleri üzerine etki edebilir ve varlığını gösterebilir. Ayrıca *B* mezonlarının özellikle lepton/foton bozunum kanalları hadronik bozunum kanallarına kıyasla daha düşük kuramsal belirsizlikler içerir ve bu durum yine YF gözlemi açısından üstünlük sunar.

3.1. $B^0 \rightarrow K^{*0} \mu^+ \mu^- bozunumu$

B fiziğinde önemli nadir bozunumlardan birisi dallanma oranı 10^{-6} [37] mertebesinde olan $B^0 \rightarrow K^{*0}\mu^+\mu^-$ bozunumudur. B^0 parçacığı kuark içeriği ($\overline{b}d$) olan bir psödoskalar mezondur ve $B^0 \rightarrow K^*(892)^0 (\rightarrow K^+ + \pi^-)\mu^+\mu^-$ bozunum kanalı parton seviyesinde $b \rightarrow s\mu^+\mu^-$ dönüşümü ile gerçekleşir. Bu dönüşümün genliği standart modelde CKM matris elemanlarının çok küçük değerler alması ($V_{\rm bs} \ll 1$) ve ilmek ilişkisi nedeniyle baskılanır (Şekil 4):

Şekil 4: Standart modelde $b \rightarrow sl^+l^-$ geçişimi için en düşük mertebe Feynman diyagramları [42].

Öte yandan Λ_{YF} enerji skalasına sahip bir SM ötesi yeni fizik etkileşiminin bu baskılamaya tabi olması için bir neden yoktur:

$$M \sim \frac{1}{\Lambda_{\rm YF}^2} \tag{17}$$

 $B^0 \rightarrow K^{*0}\mu^+\mu^-$ bozunumu kuramsal olarak çalışılmış olup başlıca kuramsal belirsizlik kaynakları hadronik yapı çarpanlarından ve yüksek geri tepme bölgesiyle sınırlı olarak üstel düzeltme terimlerindeki belirsizliklerden ileri gelir. Bu bozunum kanalında, kuramsal belirsizliklerin asgari seviyeye indiği ölçülebilir bir nicelikler tabanı oluşturulduğu taktirde yeni fizik etkilerini gözlemlemek mümkündür.

3.2. Bozunumun açısal dağılımları

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ bozunumu, dört değişken ile karakterize edilir [38]:

- Müon çiftinin değişmez kütle karesi q^2 .
- Üç bozunum açısı, θ_l , θ_K ve ϕ . θ_l açısı dimüon sisteminin duran çerçevesinde $\mu^+(\mu^-)$ ile $B^0(\overline{B}^0)$ mezonu arasındaki açı, θ_K açısı $K^{*0}(\overline{K}^{*0})$ mezonunun duran çerçevesinde elektrik yükü taşıyan K mezonu ile $B^0(\overline{B}^0)$ mezonu arasındaki açı, ve ϕ açısı $B^0(\overline{B}^0)$ mezonun duran çerçevesinde $K^{*0}(\overline{K}^{*0})$ ile dimüon sistemi arasındaki açı olarak tanımlanır (Şekil 5).

 θ_l , θ_K ve ϕ açılarının diferansiyel dağılımları aşağıdaki şekilde parametrize edilebilir [39].

$$\frac{1}{\Gamma} \frac{d^{3}(\Gamma + \overline{\Gamma})}{d\cos\theta_{l}d\cos\theta_{K}d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{L})\sin^{2}\theta_{K} + F_{L}\cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{L})\sin^{2}\theta_{K}\cos2\theta_{l} - F_{L}\cos^{2}\theta_{K}\cos2\theta_{l} + S_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{L}\cos2\varphi + S_{4}\sin2\theta_{K}\sin2\theta_{l}\cos\varphi + S_{5}\sin2\theta_{K}\sin\theta_{l}\cos\varphi + S_{6}^{5}\sin^{2}\theta_{K}\cos\theta_{l} + S_{7}\sin2\theta_{K}\sin\theta_{l}\sin\varphi + S_{8}\sin2\theta_{K}\sin2\theta_{l}\sin\varphi + S_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{l}\sin2\varphi \right]$$

$$(18)$$

Bu ifadede Γ bozunma sıklığı olup, F_L ve $S_i q^2$ 'ye bağlı parametrizasyon fonksiyonlarıdır. Kuramsal açıdan bakıldığında bu fonksiyonlar Wilson çarpanlarının fonksiyonları olarak karşımıza çıkar. Wilson çarpanları kısa mesafe etkileri ifade edip yeni fiziğe hassas olan, ayrıca uzun mesafe etkilere de bağlı yapı çarpanları hakkında da bilgi içerir. F_L ve S_i terimlerinin yapı çarpanı belirsizliklerinden önemli ölçüde bağımsız olan bir kombinasyonu olarak P'_i fonksiyonları aşağıdaki şekilde tanımlanmıştır [40]:

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$
(19)

Bu parametreler özellikle yüksek geri tepme bölgesinde (düşük q^2) yapı çarpanı belirsizliklerinden neredeyse tamamen bağımsızdır.

Şekil 5: $B^0 \to K^{*0} \mu^+ \mu^-$ bozunumunun karakteristik açıları θ_l , θ_K ve ϕ [41].

3.3. Anomali

 $B^0 \to K^{*0}\mu^+\mu^-$ bozunumunun dallanma oranı, K^{*0} polarizasyon oranı ve dimüon sisteminin ileri-geri asimetrisi gibi bazı özellikleri önceden *b*-fabrikalarında [42][43], Tevatron'da [44-46] ve LHC'de [38, 47, 48] ölçülmüştü ve sonuçlarda SM öngörülerinden belirgin bir sapma gözlenmemişti. Bozunumun yapı çarpanlarından bağımsız açısal parametrizasyonu için ise ilk ölçüm 1 fb⁻¹ integral ışınlık verisi için LHCb deneyi tarafından yapıldı ve Ağustos 2013'te yayınlandı [39]. LHCb sonuçlarında ölçümlerin SM öngörüleri ile genel olarak uyum içinde olduğu görüldü. Bununla birlikte bazı açısal dağılım parametrelerinde SM öngörüsünden çeşitli sapmalar olduğu gözlemlendi. Bu sapmalar içerisinde en dikkat çekici olan P'_5 parametresinin $4.30 < q^2 < 8.68 \text{ GeV}^2/c^2$ aralığında gösterdiği 3.7 standart sapmalık farklılıktır (Şekil 6).

Şekil 6: LHCb deneyinde P'_5 parametresi ölçüm sonucu [39].

3.4. Yeni fizik yorumları

 $b \rightarrow s$ geçişimini ifade edebilecek efektif Hamiltonyen aşağıdaki genel biçime sahiptir:

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{\rm tb} V_{\rm ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + \text{h.c.}$$
(20)

Bu ifadede O_i ve O'_i terimleri efektif operatörler olup C_i ve C'_i terimleri Wilson çarpanlarına karşılık gelir. $B^0 \rightarrow K^{*0}\mu^+\mu^-$ bozunumunda rol alan üç operatör şunlardır [49]:

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\alpha\beta}P_{R}b) F^{\alpha\beta},$$

$$\mathcal{O}_{9} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma_{\alpha}P_{L}b) (\bar{\mu}\gamma^{\alpha}\mu), \quad \text{ve}$$

$$\mathcal{O}_{10} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma_{\alpha}P_{L}b) (\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$$
(21)

Bu tanımlamalardan yola çıkıldığında, P'_5 parametresinde gözlemlenen sapma, C_9 yarıleptonik Wilson çarpanının SM öngörüsünden küçük bir değere sahip olması biçiminde yorumlanabilir. Bu durum da önceden BELLE deneyinde gözlemlenen küçük sapmalar da [42] göz önüne alındığında, eksi yönde 4.5σ 'lık bir YF katkısı gözlemlendiği anlamına gelir. Yeni 6 boyutlu skaler veya psödoskaler dört kuark operatörlerinin, diğer deney sonuçlarıyla çelişmeden bu sapmayı açıklayabileceği gösterilmiştir [50, 51].

LHCb anomalisi görece tutarlı bir şekilde 0.6 TeV $< \Lambda_{YF} < 35 TeV$ aralığında bir skalaya sahip YF'e işaret ediyor olmakla birlikte, belli bir YF modeline doğrudan işaret etmemektedir. Anomaliye neden olabilecek YF olarak SM katkılarıyla yıkıcı girişime giren (bazı Z' bozonu modelleri örneğinde olduğu) gibi yeni bir vektör akımı düşünülebilir (örneğin $m(Z') \sim 7$ TeV [52]). Z' senaryosunun müon g-2 anomalisi için de Z' parçacığının kütle parametresine bağlı etkileri bulunmaktadır. Bir diğer SM ötesi fizik modeli olarak süpersimetrinin anomaliye olası katkısı çalışılmış ve uyum gözlenmemiştir; çünkü bozunumun açısal dağılımlarında SUSY katkıları hem tüm parametrelere eşit etki etmekte, hem de eksi yönde katkı vermemektedir [51].

LHCb deneyinde açısal parametrizasyon ölçümünde gözlenen sapma acaba bir istatistiksel dalgalanmanın sonucu mu? Bu soru deneyin 8 TeV ve 3 fb⁻¹ integral ışınlık verisi için analiz sonuçları yayınlandığında ortaya çıkacak. Acaba kuramsal belirsizlikler olması gerekenden düşük mü öngörülüyor? Belirsizliklerin azalması ile de anomalinin ortadan kalması ihtimal dahilindeki bir durumdur [53].

4. Sonuç

Anomali öznellik de içeren bir kavram olup, kısaca deney sonuçları ile kuramsal öngörü arasındaki farklılık olarak tanımlanır. Anomaliler yeni fizik dışında deneysel ve kuramsal pek çok sebepten ötürü ortaya çıkabilir. Anomalilerin hem kuramsal hesapların detaylandırılması, hem de deneysel hassasiyetin artırılması yönünde olumlu bir etkisi vardır ve bu sebeple anomaliler bilimsel ilerlemede bir itici güç olarak karşımıza çıkarlar.

Müon *g*-2 anomalisi, yüksek hassasiyetle ölçülmüş bir deneysel nicelik ile yine yüksek hassasiyetle hesaplanabilen bir kuramsal öngörü arasındaki uyuşmazlığı ifade ettiği için SM bünyesindeki en önemli anomalidir. Anomalinin anlaşılabilmesi amacıyla 2017 yılında veri almaya başlaması planlanan iki deney halihazırda kurulum aşamasındadır.

LHCb anomalisi görece yeni bir anomali olup YF katkılarına hassas olan bir nadir *B* mezonu leptonik bozunum kanalında gözlenmiştir. Anomali aynı bozunumun diğer ölçümlerinde de bulunan küçük sapmalar da göz önünde tutulduğunda tutarlı şekilde YF'e işaret edebilmektedir. Öte yandan anomalinin gözlendiği niceliğin karmaşık bir açısal değişken olması bir dezavantajdır. Ayrıca bir istatistiksel dalgalanma neticesinde ortaya çıkmış ise artan veri ile de anomalinin kaybolması mümkündür. LHCb'nin ek veri ile gerçekleştirdiği güncel analiz sonuçlarının yayınlanması ile anomali hakkındaki bazı soru işareti yanıt bulacaktır.

Kaynaklar

- [1]. Kluger, J., Einstein Was Right All Along: 'Faster-Than-Light' Neutrino Was Product of Error (2002). http://newsfeed.time.com/2012/02/22/einstein-was-right-all-along-faster-than-light-neutrino-was-product-of-error/, (04.12.2014).
- [2]. Garwin, R.L., Hutchinson, D.P., Penman, S. and Shapiro, G., Accurate Determination of the μ^+ Magnetic Moment, **Physical Review** 118, 271, (1960).
- [3]. Charpak, G., et al., Measurement of the Anomalous Magnetic Moment of the Muon, Physical Review Letters 6, 128, (1961); Charpak, G., et al., A new limit to the electric dipole moment of the muon, Nuovo Cimento 22, 1043, (1961); Charpak, G., et al., The anomalous magnetic moment of the muon, Nuovo Cimento 37, 1241, (1965).
- [4]. Charpak, G., et al., A new measurement of the anomalous magnetic moment of the muon, **Physics Letters** 1, 16, (1962).
- [5]. Bailey, J., et al., Precision measurement of the anomalous magnetic moment of the muon, **Physics Letters B** 28, 287, (1968).

- [6]. Bailey, J., et al., New Measurement of (G-2) of the Muon, **Physics Letters B** 55, 420, (1975).
- [7]. Bailey, J., et al., Final Report on the CERN Muon Storage Ring Including the Anomalous Magnetic Moment and the Electric Dipole Moment of the Muon, and a Direct Test of Relativistic Time Dilation, **Nuclear Physics B** 150, 1, (1979).
- [8]. Brown, H.N., et al. (Muon (g 2) Collaboration), Improved measurement of the positive muon anomalous magnetic moment, Physical Review D 62, 091101, (2000).
- [9]. Brown, H.N., et al. (Muon (g 2) Collaboration), Precise Measurement of the Positive Muon Anomalous Magnetic Moment, Physical Review Letters 86, 2227, (2001).
- [10]. Bennett, G.W., et al. (Muon (g 2) Collaboration), Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 89, 101804, (2002).
- [11]. Bennett, G.W., et al. (Muon (g-2) Collaboration), Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 92, 161802, (2004).
- [12]. Bennett, G.W., et al. (Muon g 2 Collaboration), Final report of the E821 muon anomalous magnetic moment measurement at BNL, Physical Review D 73 072003, (2006).
- [13]. Dirac, P. A. M., The Quantum Theory of the Electron, Proceedings of Royal Society A 117 610, (1928); Dirac, P. A. M., The Quantum Theory of the Electron, Part II, Proceedings of Royal Society A 118 351, (1928).
- [14]. NIST (2012), CODATA values of the fundamental constants. (04.12.2014)
- [15]. Zhang, Z., Muon g-2: a mini review, LAL 07-88, arXiv:0801.4905, (2008).
- [16]. Aoyama, T., Hayakawa, M., Kinoshita, T. and Nio, M., Complete Tenth-Order QED Contribution to the Muon g-2, Physical Review Letters 109, 111808, (2012).
- [17]. Czarnecki, A., Marciano, W. J. and Vainshtein, A., Refinements in electroweak contributions to the muon anomalous magnetic moment, Physical Review D67, 073006 [Erratum-ibid (2006). D73, 119901], (2003).
- [18]. Gnendiger, C., Stockinger, D. and Stockinger-Kim, H., The electroweak contributions to $(g-2)_{\mu}$ after the Higgs boson mass measurement, **Physical Review D**88, 053005, (2013).
- [19]. Gourdin, M. and De Rafael, E., Hadronic contributions to the muon *g*-factor, Nuclear Physics B 10, 667, (1969).
- [20]. Brodsky, S.J. and De Rafael, E., Suggested Boson-Lepton Pair Couplings and the Anomalous Magnetic Moment of the Muon, **Physical Review** 168, 1620, (1968).
- [21]. Jegerlehner, F. and Szafron, R., $\rho^0 \gamma$ mixing in the neutral channel pion form factor F^e_{π} and its role in comparing e^+e^- with τ spectral functions, **European Physical Journal C**71, 1632, (2011).
- [22]. Hagiwara, K., Liao, R., Martin, A. D., Nomura, D. and Teubner, T., $(g 2)_{\mu}$ and $\alpha(M_Z^2)$ re-evaluated using new precise data, **Journal of Physics G38**, 085003, (2011).
- [23]. Prades, J., De Rafael, E. and Vainshtein, A., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment, Advanced series on directions in high energy physics, Vol.20, p. 303-318, World Scientific, [arXiv:0901.0306 [hep-ph]], (2009).

- [24]. Miller, J.P., De Rafael, E., Roberts, B.L., Stöckinger, D, Muon (g 2): Experiment and Theory, **Annual Review of Nuclear and Particle Science** 62 237-264, (2012).
- [25]. Martin, Stephen P., A Supersymmetry Primer, Advanced Series on Directions in High Energy Physics, Vol 21 pp1-153, (2010).
- [26]. Czarnecki, A. and Marciano, W.J., Muon anomalous magnetic moment: A harbinger for "new physics", **Physical Review D**64, 013014, (2001).
- [27]. Soni, A, Ashutosh, K.A., Giri, A., Mohanta, R., Nandi, S., The Fourth family: A Natural explanation for the observed pattern of anomalies in B– CP asymmetries, Physics Letters B 683 (2010) 302-305, (2008)
- [28]. Jegerlehner, F., Nyffeler, A., The Muon g-2, Physics Reports 477 1–110, (2009).
- [29]. Pospelov, M., Secluded U(1) below the weak scale, Physical Review D80, 095002, (2009).
- [30]. Tucker-Smith, D. and Yavin, I., Muonic hydrogen and MeV forces, Physical Review D83, 101702 (R), (2011).
- [31]. Adcox, K., et al., PHENIX detector overview, Nuclear Instruments and Methods in Physics Research A 499, 469, (2003).
- [32]. Adare, A., et al. (PHENIX Collaboration), Search for dark photons from neutral meson decays in p+p and d+Au collisions at $\sqrt{s_{NN}=200}$ GeV, **arXiv**:1409.0851, (2014).
- [33]. Bennett, G.W., et al. (Muon (g-2) Collaboration), Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 92, 161802. http://muon-g-2.fnal.gov, (2004).
- [34]. Bennett, G.W., et al. (Muon g 2 Collaboration), Final report of the E821 muon anomalous magnetic moment measurement at BNL, Physical Review D 73 072003, (2006).
- [35]. Mibe, T., et al., New g-2 experiment at J-PARC, Chinese Physics C Vol.34, No.6, 745 (2010).
- [36]. Mibe, T., Muon g-2/EDM at J-PARC, SFB Workshop (g-2)mu Quo Vadis?, Berlin (2014).
- [37]. Olive, K.A., et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).
- [38]. Aaij, R., et al. (LHCb Collaboration), Differential branching fraction and angular analysis of the decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, Journal of Energy Physics 08 131, (2013)
- [39]. Aaij, R, et al. (LHCb Collaboration), Measurement of Form-Factor-Independent Observables in the Decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, **Physical Review Letters** 111, 191801, (2013)
- [40]. Descotes-Genon, S., Hurth, T., Matias, J. and Virto, J., Optimizing the basis of $B \rightarrow K^* \ell^+ \ell^-$ observables in the full kinematic range, **Journal of Energy Physics** 05 137, (2013).
- [41]. Falkovski, A., On the Latest anomaly in LHCb (2013), http://resonaances.blogspot.com.tr/2013/08/what-about-b-to-k-star-mu-mu.html (17.03.2015).
- [42]. Wei, J.-T., et al. (BELLE Collaboration), Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for $B \rightarrow K^{(*)} l^+ l^-$, Physical Review Letters 103, 171801, (2009).
- [43]. Lees, J., et al. (BaBar Collaboration), Measurement of branching fractions and rate asymmetries in the rare decays $B \rightarrow K^{(*)} \ell^+ \ell^-$, Physical Review D 86, 032012, (2012).

- [44]. Aaltonen, T., et al. (CDF Collaboration), Observation of the Baryonic Flavor-Changing Neutral Current Decay $\Lambda^0{}_b \rightarrow \Lambda \mu^+ \mu^-$, **Physical Review Letters** 107, 201802, (2011).
- [45]. Aaltonen, T., et al. (CDF Collaboration), Measurements of the Angular Distributions in the Decays $B \rightarrow K^{(*)}\mu^+\mu^-$ at CDF, **Physical Review Letters** 108, 081807, (2012).
- [46]. The CDF Collaboration, Precise Measurements of Exclusive $b \rightarrow s\mu^+\mu^-$ Decay Amplitudes Using the Full CDF Data Set, **CDF public note** 10894, (2012).
- [47]. ATLAS Collaboration, Angular Analysis of $B^0_d \to K^{*0}\mu^+\mu^-$ with the ATLAS Experiment, ATLAS-CONF-2013-038, ATLAS- COM-CONF-2013-043, (2013).
- [48]. The CMS Collaboration, Angular analysis and branching ratio measurement of the decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, CMS-PAS-BPH-11-009, (2013).
- [49]. Datta, A., Duraisamy, M. and Ghosh, D., Explaining the $B \rightarrow K^* \mu^+ \mu^-$ data with scalar interactions, **Physical Review D** 89, 071501(R), (2014).
- [50]. Descotes-Genon, S., Matias, J. and Virto, J., Understanding the $B \rightarrow K^* \mu^+ \mu^$ anomaly, **Physical Review D** 88, 074002, (2013).
- [51]. Altmannshofer, W., Straub, D.M., New physics in $B \rightarrow K^* \mu \mu$?, European Physical Journal C 73:2646, (2013).
- [52]. Buras, A.J., De Fazio, F. and Girrbach, J., 331 models facing new $b \rightarrow s\mu^+\mu^-$ data, Flavour (267104)-ERC-55, BARI-TH/13-681, arXiv:1311.6729, (2013).
- [53]. Jäger, S., Camalich, J.M., On B→Vll at small dilepton invariant mass, power corrections, and new physics, arXiv:1212.2263, (2012).