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Abstract 
A module 𝑀 is called 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑙𝑦	𝑠𝑒𝑚𝑖𝑠𝑖𝑚𝑝𝑙𝑒 (resp. 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑙𝑦	𝑒𝑥𝑡𝑒𝑛𝑑𝑖𝑛𝑔) if every submodule (resp. 
complement submodule) of 𝑀 is isomorphic to a direct summand of 𝑀. It is known that virtually extending 
modules is a generalization of virtually semisimple modules. In this paper, the relationships between virtually 
extending modules and other generalizations of virtually semisimple modules are examined. Moreover, we 
introduce a new generalization of virtually semisimple modules; namely CH modules: We say a module 𝑀 is a 
c-epi-retractable (or briefly CH module) if any complement submodule of 𝑀 is a homomorphic image of 𝑀. 
CH modules contains the class of virtually extending modules and the class of epi-retractable modules. We also 
give some basic properties of this new module class.  
 
Keywords: virtually semisimple module, virtually extending module, epi-retractable module, CH module 

 

 
Her Alt Modülü Bir Diktoplanana İzomorf Olan Modüllerin Genellemeleri Üzerine 

Bir Araştırma  

Öz 

Eğer bir 𝑀 modülünün her alt modülü (sırasıyla tamamlayıcı alt modülü), 𝑀 modülünün bir dik toplananına 
izomorfik ise, 𝑀 modülüne sanal yarı basit (sırasıyla sanal genişleyen) modül denir. Sanal genişleyen 
modüllerin, sanal yarı basit modüllerin bir genellemesi olduğu bilinmektedir. Bu yazıda, sanal genişleyen 
modüller ile sanal yarı basit modüllerin diğer genellemeleri arasındaki ilişkiler incelenmektedir. Ayrıca, sanal 
yarı basit modüllerin yeni bir genellemesini de tanıtıyoruz; yani 𝐶𝐻 modülleri: Bir 𝑀 modülünün herhangi bir 
tamamlayıcı alt modülü, 𝑀 modülünün bir homomorfik görüntüsü ise, 𝑀 modülüne bir epi-c-geri-çekilebilir 
modül (ya da kısaca CH modül) olarak adlandırıyoruz. 𝐶𝐻 modüllerin sınıfı, sanal genişleyen modüllerin sınıfını 
ve epi-geri-çekilebilir modüllerin sınıfını içerir. Ayrıca bu yeni modül sınıfının bazı temel özelliklerini de 
veriyoruz. 
 
Anahtar Kelimeler:  sanal yarı-basit modül, sanal genişleyen modül, epi-geri-çekilebilir modül, 𝐶𝐻 modül. 
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1. Introduction 
 

Throughout this note, any ring is associative with unity and is denoted by 𝑅, any module 
is unital right module. Some notations, which we will use in this paper, are listed below: 

 𝐴 ≤ 𝑀  : 𝐴 is a submodule of 𝑀. 
 𝐴 ≤! 𝑀 : 𝐴 is a complement (closed) submodule of 𝑀. 
 𝐴 ≤"## 𝑀 : 𝐴 is an essential submodule of 𝑀. 
 𝐴 ≤⊕ 𝑀 : 𝐴 is a direct summand of 𝑀. 
 𝐴 ≲⊕ 𝑀  : 𝐴 is isomorphic to a direct summand of 𝑀. 
 𝐴 ≅ 𝐵  : 𝐴 is isomorphic to 𝐵. 
 𝐸(𝑀)  : The injective hull of 𝑀. 
 𝐻𝑜𝑚%(𝑀,𝑁) : The set of all 𝑅-homomorphisms from 𝑀 to 𝑁. 
 𝐸𝑛𝑑%(𝑀) : The endomorphism ring of 𝑀. 

We recall some of the definitions we used throughout the article: A submodule 𝐶 of 𝑀 
is called closed if for any 𝐴 ≤ 𝑀 such that 𝐶 ≤"## 𝐴 in 𝑀, we have 𝐶 = 𝐴. A submodule 𝐶 of 
𝑀 is called complement of a submodule 𝐴 of 𝑀 if 𝐶 is maximal with respect to the property that 
𝐶 ∩ 𝐴 = 0. In modules, being a closed submodule is equivalent to being a complement 
submodule [1, 1.10].   

A module 𝑀 is called semisimple if for any 𝑋 ≤ 𝑀, we have 𝑋 ≤⊕ 𝑀 (see [1, 1.15]). 
Semisimple modules and rings has significant role in module and ring theory. In 2018, the 
authors [2] introduced and investigated a new module class, namely virtually semisimple 
modules: A module 𝑀 is called virtually semisimple if for any 𝑋 ≤ 𝑀, we have 𝑋 ≲⊕ 𝑀. For 
virtually semisimple rings, they proved a generalization of the reowned Weddernburn-Artin 
theorem (which characterize semisimple rings). Later, this interesting module family and 
related concepts were studied by many algebraist. Karabacak and his co-author(s) introduced 
several generalizations of virtually semisimple modules: Generalized SIP and SSP modules, 
and virtually extending modules [3,4,5]. Virtually extending modules is a generalization of both 
virtually semisimple modules and extending modules: A module 𝑀 is called extending or 𝐶𝑆 
(resp. virtually extending) if for any 𝑋 ≤! 𝑀, we have 𝑋 ≤⊕ 𝑀 (𝑋 ≲⊕ 𝑀). The authors proved 
a generalization of the Osofsky-Smith Theorem in [3].  

At the beginning of the study, we provide some equivalent definitions for virtually 
extending modules (Theorem 2). Then the relationships among the generalizations of virtually 
semisimple modules are examined. We proved in Propositions 3 and 4 that any virtually 
extending 𝑈𝐶 module has GSIP, any virtually extending module with CSP has GSSP. Then, a 
new module class, which are called 𝐶𝐻 modules, is introduced and its basic properties are 
examined. A module 𝑀 is called 𝐶𝐻 if any complement submodule of 𝑀 is a homomorphic 
image of 𝑀. An example is given in Example 9 that the 𝐶𝐻 condition is not inherited by direct 
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summands. After giving this example, we ensure some results on the 𝐶𝐻 condition to be 
inherited by direct summands and direct sums (Propositions 10, 11 and 12). We also give some 
results about that when 𝐶𝑆, virtually extending and 𝐶𝐻 modules coincide (Proposition 13, 14 
and 15). In Theorem 17, a characterization of quasi-projective virtually extending modules is 
given by using 𝐶𝐻 modules: A module 𝑀 is virtually extending and quasi-projective if and only 
if it is a 𝐶𝐻 module and all of its complement submodules are 𝑀-projective. In Theorem 18, it 
is proved that if a module 𝑀 is morphic and 𝐶𝐻, then 𝑀 is finitely generated if and only if 𝑀 
is 𝐶𝐹 (i.e., any closed submodule is finitely generated). 

2. Results 
 

We begin the paper by giving some equivalent definitions for virtually extending modules.  

Theorem 2. The next statements are equivalent for a module 𝑀: 

a. 𝑀 is virtually extending. 
b. For any 𝑋 ≤ 𝑀, there exists a	𝑍 ≤! 𝑀 such that 𝑋 ≤"## 𝑍 and 𝑍 ≲⊕ 𝑀. 
c. For any 𝑋, 𝑌 ≤ 𝑀 with 𝑋 ∩ 𝑌 = 0, there exists a 𝑍 ≤! 𝑀 such that 𝑌 ≤ 𝑍, 𝑋 ∩ 𝑍 = 0 

and 𝑍 ≲⊕ 𝑀. 
d. For given 𝑒& = 𝑒 ∈ 𝐸𝑛𝑑(𝐸(𝑀)), there exists 𝑑& = 𝑑 ∈ 𝐸𝑛𝑑(𝑀) such that 𝑒𝐸(𝑀) ∩

𝑀 ≅ 𝑑𝑀. 

Proof. (𝑎) ⇒ (𝑐) Let 𝑀 be virtually extending, 𝑋, 𝑌 ≤ 𝑀 with 𝑋 ∩ 𝑌 = 0. There exists a 𝑍 ≤
𝑀 satisfying that 𝑌 ≤ 𝑍 and 𝑍 is complement of 𝑋 in 𝑀. By (a), 𝑍 ≲⊕ 𝑀. 

(𝑐) ⇒ (𝑎) Let 𝑌 ≤! 𝑀. There exists a 𝑋 ≤ 𝑀 satisfying that 𝑌 is complement of 𝑋 in 𝑀. By 
(c), there exists a 𝑍 ≤! 𝑀 satisfying that 𝑌 ≤ 𝑍, 𝑋 ∩ 𝑍 = 0 and 𝑍 ≲⊕ 𝑀. Since 𝑌 ≤! 𝑀, then 
𝑌 = 𝑍. 

(𝑎) ⇒ (𝑏) Let 𝑋 ≤ 𝑀. There exists a	𝑍 ≤! 𝑀 satisfying that 𝑋 ≤"## 𝑍. By (a), 𝑍 ≲⊕ 𝑀. 

(𝑏) ⇒ (𝑑) Suppose (𝑏) holds. Then 𝑒𝐸(𝑀) ∩ 𝑀 ≤"## 𝐶 ≤! 𝑀 such that 𝐶 ≅ 𝐷 ≤⊕ 𝑀. It 
implies that  𝑒𝐸(𝑀) = 𝐸(𝐶) and so, 𝐶 ≤ 𝑒𝐸(𝑀) ∩ 𝑀. Thus	𝐶 = 𝑒𝐸(𝑀) ∩ 𝑀. Now, by (b), 
there exists a 𝑑& = 𝑑 ∈ 𝐸𝑛𝑑(𝑀) satisfying that 𝐶 = 𝑒𝐸(𝑀) ∩ 𝑀 ≅ 𝑑𝑀 = 𝐷. 

(𝑑) ⇒ (𝑎) Let 𝐴 ≤ 𝑀. There exists a	𝑁 ≤ 𝑀 such that 𝐴 ≤"## 𝑁 ≤! 𝑀. Then, we have   
𝐴 ≤"## 𝑁 ≤"## 𝐸(𝑁) ≤⊕ 𝐸(𝑀). 

Then, there exists a 𝑒& = 𝑒 ∈ 𝐸𝑛𝑑(𝐸(𝑀)) satisfying that 𝑒𝐸(𝑀) = 𝐸(𝑁). Since 𝑁 ≤"## 𝐸(𝑁) 
and 𝑀 ≤"## 𝑀 and by [6, Lemma 1.1(2)], we have 𝑁 ∩𝑀 = 𝑁 ≤"## 𝐸(𝑁) ∩ 𝑀. Now 

𝑁 ≤"## 𝐸(𝑁) ∩ 𝑀 ≤ 𝑀. 
Since 𝑁 ≤! 𝑀, we have 𝑁 = 𝐸(𝑁) ∩ 𝑀, and hence 𝑁 = 𝑒𝐸(𝑀) ∩ 𝑀. By (d), there exist 𝑑& =
𝑑 ∈ 𝐸𝑛𝑑(𝑀) satisfying that 𝑒𝐸(𝑀) ∩ 𝑀 ≅ 𝑑𝑀. Therefore, 𝑀 is virtually extending. 

A module 𝑀 is said to have GSIP if for any  𝑋, 𝑌 ≤⊕ 𝑀, we have 𝑋 ∩ 𝑌 ≲⊕ 𝑀 [4].  𝑀 
is called 𝑈𝐶 if and only if for any 𝑋, 𝑌 ≤! 𝑀, we have 𝑋 ∩ 𝑌 ≤! 𝑀 [7].  
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Now, we give a result showing that virtually extending modules are related to modules 
having GSIP. 

Proposition 3. If a module 𝑀 is both virtually extending and 𝑈𝐶, then 𝑀 has GSIP.  

Proof. Let 𝑋, 𝑌 ≤⊕ 𝑀. Clearly, 𝑋, 𝑌 ≤! 𝑀. Since 𝑀 is UC, we have  𝑋 ∩ 𝑌 ≤! 𝑀. Now, 𝑋 ∩
𝑌 ≲⊕ 𝑀 because 𝑀 is virtually extending. It means that 𝑀 has GSIP. 

A module 𝑀 is said to have GSSP if for any pair of 𝑋, 𝑌 ≤⊕ 𝑀, we have 𝑋 + 𝑌 ≲⊕ 𝑀 
[5]. M is said to have closed sum property (CSP) if for any 𝑋, 𝑌 ≤! 𝑀, we have 𝑋 + 𝑌 ≤! 𝑀 
[8]. 

Now, we give a result showing that virtually extending modules are related to modules 
having GSSP. 

Proposition 4. If a module 𝑀 is virtually extending and has CSP, then 𝑀 has GSSP. 

Proof. Let 𝑋, 𝑌 ≤⊕ 𝑀. Clearly, 𝑋, 𝑌 ≤! 𝑀. Since 𝑀 has CSP, we have  𝑋 + 𝑌 ≤! 𝑀. Now, 
𝑋 + 𝑌 ≲⊕ 𝑀 because 𝑀 is virtually extending. It means that 𝑀 has GSSP. 

In the next section, we introduce a new generalization of virtually semisimple modules. 

 Khuri [9] calls a module 𝑀 retractable if for every 𝑋 ≤ 𝑀, there exists a 𝜏 ∈ 𝐸𝑛𝑑%(𝑀) 
satisfying that 𝜏(𝑀) ⊆ 	𝑋 (i.e., 𝐻𝑜𝑚(𝑀, 𝑋) ≠ 	0). 

Ghorbani and Vedadi [10] call a module 𝑀 epi-retractable if for every 𝑋 ≤ 𝑀, there 
exists a 𝜏 ∈ 𝐸𝑛𝑑%(𝑀) satisfying that 𝜏(𝑀) = 	𝑋.  

Chatters and Khuri [11] call a module 𝑀 c-retractable if for every 𝑋 ≤! 𝑀, there exists 
a 𝜏 ∈ 𝐸𝑛𝑑%(𝑀) satisfying that 𝜏(𝑀) ⊆ 	𝑋 (i.e., 𝐻𝑜𝑚(𝑀, 𝑋) ≠ 	0). 

Now, we introduce c-epi-retractable modules which is a generalization of epi-retractable 
modules: 

Definition 5. We call a module 𝑀 c-epi-retractable if for any 𝑋 ≤! 𝑀, there exists a 𝜏 ∈
𝐸𝑛𝑑%(𝑀) satisfying that 𝜏(𝑀) = 	𝑋. 

As it can be seen from the definition, since the complement submodules are the 
homomorphic image of the module 𝑀, we will briefly call this module class as 𝐶𝐻 modules, 
where, "C" is the first letter of the word "complement" and "H" is the first letter of the word 
"homomorphic".  

First, we should state that any 𝐶𝑆 module is a 𝐶𝐻 module. More generally we have the 
following hierarchy: 
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CS                              c-epi-retractable (CH)                               c-retractable 

 

                                        epi-retractable                                            retractable 

In the next theorem, we give some equivalent conditions for 𝐶𝐻 modules: 

Theorem 6. The next statements are equivalent for a module 𝑀: 

a. 𝑀 is a 𝐶𝐻 module. 
b. For any 𝑋 ≤ 𝑀, there exists a	𝑍 ≤! 𝑀 such that 𝑋 ≤"## 𝑍 and 𝑍 is homomorphic image 

of 𝑀. 
c. For any 𝑋, 𝑌 ≤ 𝑀 with 𝑋 ∩ 𝑌 = 0, there exists a 𝑍 ≤! 𝑀 such that 𝑌 ≤ 𝑍, 𝑋 ∩ 𝑍 = 0 

and 𝑍 is homomorphic image of 𝑀. 
d. There exist epimorphisms 𝑀 → 	𝑁 and 𝑁 → 	𝑀 for some 𝐶𝐻 module 𝑁. 
e. There exists an epimorphism 𝑀/𝑋 → 	𝑀 for some 𝐶𝐻 factor module 𝑀/𝑋. 

 

Proof. (𝑎) ⇒ (𝑏) Let 𝑋 ≤ 𝑀. There exists a	𝑍 ≤! 𝑀 satisfying that 𝑋 ≤"## 𝑍. By (a), 𝑍 is 
homomorphic image of 𝑀. 

(𝑏) ⇒ (𝑎) Let 𝑋 ≤! 𝑀. By (b), there exists a	 𝑍 ≤! 𝑀 satisfying that 𝑋 ≤"## 𝑍 and 𝑍 is 
homomorphic image of 𝑀. Thus 𝑋 = 𝑍, and hence 𝑀 is 𝐶𝐻. 

(𝑎) ⇒ (𝑐) Assume 𝑀 is 𝐶𝐻. Let 𝑋, 𝑌 ≤ 𝑀 with 𝑋 ∩ 𝑌 = 0.	There exists a complement 𝑍 of 𝑋 
in 𝑀 satisfying that	𝑌 ≤ 𝑍. Then 𝑍 is homomorphic image of 𝑀 by the hypothesis. 

(𝑐) ⇒ (𝑎) Let 𝑌 ≤! 𝑀. There exists 𝑋 ≤ 𝑀 such that 𝑌 is complement of 𝑋 in 𝑀. By the 
hypothesis, there exists a 𝑍 ≤! 𝑀 satisfying that 𝑌 ≤ 𝑍, 𝑋 ∩ 𝑍 = 0 and 𝑍 is homomorphic 
image of 𝑀. Then 𝑌 = 𝑍, and 𝑀 is 𝐶𝐻. 

(𝑎) ⇒ (𝑑) Clear. 

(𝑑) ⇒ (𝑒) Suppose that there exists a 𝐶𝐻 module 𝑁 and epimorphisms 𝑓:𝑀 → 	𝑁, 𝑔:𝑁 → 	𝑀. 
Say 𝑋 = 𝐾𝑒𝑟(𝑓). Then, 𝑓 induces an isomorphism 𝑓:̅𝑀/𝑋 → 𝑁. Thus, 𝑀/𝑋 is a 𝐶𝐻 module.  

(𝑒) ⇒ (𝑎) Let 𝐶 ≤! 𝑀. By our assumption, there exists an isomorphism 𝑓:̅𝑀/𝑌 → 𝑀 for some 
submodule 𝑌 of 𝑀 with 𝑋 ⊆ 𝑌. Let 𝑓̅(𝐴/𝑌) = 𝐶 for some 𝐴 ≤! 𝑀. Since 𝐴 ≤! 𝑀 and by [7, 
Corollary 2(ii)], we have 𝐴/𝑋 ≤! 𝑀/𝑋. Since 𝑀/𝑋 is 𝐶𝐻, then there exists an epimorphism 
ℎ:𝑀/𝑋 → 𝐴/𝑋. Consider 𝑔: 𝐴/𝑋 → 𝐴/𝑌 with 𝑔(𝑎 + 𝑋) = 𝑎 + 𝑌, and the canonical 
epimorphism 𝜋:𝑀 → 𝑀/𝑋. Then, the map 𝑓�̅�ℎ𝜋:𝑀 → 𝐶 is an epimorphism, and hence 𝑀 is 
𝐶𝐻. 

Example 7.  Let 𝑀 be an 𝑅-module as in [12, Example 2.6 or 2.7]. The authors show that 𝑀 is 
𝐶𝑆 (and hence 𝐶𝐻) but not retractable (and hence not epi-retractable). Thus the reverse 
implication of (III) in above diagram doesn't hold, in general. Another example can also be 
given: the ℤ-module ℚ which is 𝐶𝐻 but not retractable (see [10, Remark 2.12]). 

I II 

III IV 
V 
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As prior studies have indicated that the direct sum of 𝐶𝑆 (uniform) modules need not to 
be a 𝐶𝑆 module [13]. The next is a well-known example of this. In addition, the next example 
is a 𝐶𝐻 module. 

Example 8. Let 𝑝 be a prime number. The ℤ-module ℤ'⊕ℤ'! is a 𝐶𝐻 module because every 
finitely generated module over a PID is epi-retractable (see [10, Example 2.4(3)]). But it is not 
𝐶𝑆 (see [13, p. 56]). Hence the reverse implication of (I) in above diagram doesn't hold, in 
general. 

As prior studies have indicated that the 𝐶𝑆 property is inherited by direct summands 
[13], but the next example shows that the 𝐶𝐻 condition is not inherited by direct summands. 

Example 9. [10, Remark 2.12] Let 𝔽 be a free ℤ-module with an infinite countable basic set 
and 𝐴 be any countable ℤ-module which is not 𝐶𝐻. Then 𝑀ℤ = 𝔽⊕ 𝐴 is epi-retractable by [10, 
Remark 2.12], and hence it is 𝐶𝐻. 
 

In the next results, we give some conditions which ensure that direct summands of 𝐶𝐻 
modules are again 𝐶𝐻. 

 
Proposition 10. Let 𝑀 be a 𝐶𝐻 module. Then 
 

a. 𝑀/𝐹 is a 𝐶𝐻 module for any fully invariant complement submodule 𝐹 of 𝑀. 
b. If 𝑀 = 𝑀)⊕𝑀& such that 𝐻𝑜𝑚%(𝑀), 𝑀&) = 0, then 𝑀& is 𝐶𝐻. 

Proof. (a) Let 𝐹 be a fully invariant complement submodule of 𝑀, and 𝐶/𝐹 be any complement 
submodule of 𝑀/𝐹. Since 𝐹 ≤! 𝑀 and 𝐶/𝐹 ≤! 𝑀/𝐹, we have 𝐶 ≤! 𝑀 by [7, Corollary 2(iii)]. 
Then there is an epimorphism 𝜖:𝑀 → 𝐶. Now, 𝜖(𝐹) ⊆ 𝐹 by our assumption, and hence 
𝜖:̅𝑀/𝐹 → 𝐶/𝐹 with  𝜖(̅𝑚 + 𝐹) = 𝜖(𝑚) + 𝐹 is an epimorphism. It means that 𝑀/𝐹 is 𝐶𝐻. 

(b) Note that  𝐸𝑛𝑑%(𝑀) = Y𝐸𝑛𝑑%(𝑀)) 𝐻𝑜𝑚%(𝑀&, 𝑀))
0 𝐸𝑛𝑑%(𝑀&)

Z . Thus 𝐸𝑛𝑑%(𝑀) [
𝑀)
0 \ ⊆ [𝑀)

0 \.  

It implies that 𝑀)⊕0 is a fully invariant submodule of 𝑀. Now, we get result applying (a). 

More generally, we can give the following result. 
 

Proposition 11. Let 𝑀 = ⨁ 𝑀**∈,  be an 𝑅-module with 𝐸𝑛𝑑%(𝑀) is abelian. Then 𝑀 is 𝐶𝐻 if 
and only if each 𝑀* is 𝐶𝐻. 

Proof.  First we note that 𝐸𝑛𝑑%(𝑀) is abelian if and only if any direct summand of 𝑀 is fully 
invariant in 𝑀 (see [14, Theorem 4.4]).  

(⇒: ) It is immediate by Proposition 10(b).  

(⇐: ) Assume each 𝑀* is 𝐶𝐻 and let 𝐶 ≤! 𝑀. Then by [15, Lemma 2.1], 𝐶 = ⨁ (𝐶 ∩𝑀*)*∈, . 
Clearly, 𝐶 ∩𝑀* ≤! 𝑀* for each 𝑖 ∈ 𝐼. Since each 𝑀* is 𝐶𝐻, for any 𝑖 ∈ 𝐼 there exists 𝑓* ∈
𝐸𝑛𝑑%(𝑀*) such that 𝑓*(𝑀*) = 𝐶 ∩𝑀*. Now we can define the epimorphism  
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𝑓 ≔b𝑓*
*∈,

:b𝑀*
*∈,

		→ 		b(𝐶 ∩𝑀*)
*∈,

 

Consequently,  

𝑓(𝑀) =b𝑓*(𝑀)
*∈,

=b𝑓* cb𝑀*
*∈,

d
*∈,

=b(𝐶 ∩𝑀*)
*∈,

= 𝐶, 

as desired. 

Proposition 12.   Let 𝑀 = ⨁ 𝑀**∈,  be a UC 𝑅-module. Then 𝑀 is 𝐶𝐻 if and only if each 𝑀* is 
𝐶𝐻. 

Proof. (⇒: ) Let M be both 𝐶𝐻 and 𝑈𝐶. Suppose 𝐷 ≤⊕ 𝑀 and 𝐴 ≤ 𝐷. Since 𝑀 is 𝐶𝐻, by 
Theorem 6, there exists a 𝐶 ≤! 𝑀 such that 𝐴 ≤"## 𝐶 and 𝐶 is homomorphic image of 𝑀. On 
the other hand, there exists a 𝐾 ≤! 𝐷 such that 𝐴 ≤"## 𝐾. Then, clearly, 𝐶, 𝐾 ≤! 𝐷.  Since 𝑀 
is 𝑈𝐶, we have 𝐶 = 𝐾.	It means that 𝐷 is 𝐶𝐻. 
 
(⇐: ) Assume each 𝑀* is 𝐶𝐻 and let 𝐶 ≤! 𝑀. Then, by [6, Lemma 6], 𝐶 ∩𝑀* ≤! 𝑀* for all 𝑖 ∈
𝐼. Since each 𝑀* is 𝐶𝐻, for any 𝑖 ∈ 𝐼 there exists 𝑓* ∈ 𝐸𝑛𝑑%(𝑀*) such that 𝑓*(𝑀*) = 𝐶 ∩𝑀*. 
Now we can define the epimorphism 

𝑓 ≔b𝑓*
*∈,

:b𝑀*
*∈,

	→ 	b(𝐶 ∩𝑀*)
*∈,

 

The proof follows by the argument which we use in the proof of Proposition 11. 

Now, in the next three results, we show the relationship between 𝐶𝐻 modules and some 
other known module classes. 

The authors [16] call a module 𝑀 is Rickart if 𝐾𝑒𝑟(𝜖) ≤⊕ 𝑀 for every 𝜖 ∈ 𝐸𝑛𝑑%(𝑀). 
Clearly, the following implications is true for an 𝑅-module 𝑀: 

𝑀 is 𝐶𝑆 ⇒ 𝑀 is virtually extending ⇒ 𝑀 is 𝐶𝐻. 

The module in Example 8 is a 𝐶𝐻 module but not virtually extending. On the other hand 
an example of virtually extending module which is not 𝐶𝑆 is given in [3, Example 2.1]. 

The next result illustrates that the class of virtually extending modules and the class of 
CH modules coincide when the module is Rickart: 

Proposition 13. Let 𝑀 be a Rickart module. Then 𝑀 is virtually extending if and only if 𝑀 is 
𝐶𝐻. 

Proof. (⇒: ) Clear. 

(⇐: ) Let 𝑋 ≤! 𝑀. Since 𝑀 is 𝐶𝐻, there exists an epimorphism 𝜖:𝑀 → 𝑋. Let 𝑖: 𝑋 → 𝑀 be the 
inclusion map. We have, 𝐾𝑒𝑟(𝑖𝜖) = 𝐾𝑒𝑟(𝜖) ≤⊕ 𝑀 because of Rickartness. Then 𝑀/
𝐾𝑒𝑟(𝜖) ≅ 𝐼𝑚(𝜖). Therefore, 𝐼𝑚(𝜖) = 𝑋 ≲⊕ 𝑀, as desired. 



A Research on the Generalizations of Modules Whose Submodules are Isomorphic to a Direct Summand 

 
275 

 

Corollary 14.    Let 𝑅 be right hereditary ring. Then every projective 𝐶𝐻 right 𝑅-module 𝑀 is 
virtually extending. 

Proof. Let 𝑋 ≤! 𝑀. Since 𝑀 is 𝐶𝐻, there exists an epimorphism 𝜖:𝑀 → 𝑋. Since 𝑅 is right 
hereditary, 𝑋 is projective, and hence 𝐾𝑒𝑟(𝜖) ≤⊕ 𝑀. Therefore, 𝐼𝑚(𝜖) = 𝑋 ≲⊕ 𝑀, as desired. 

The authors [17] call a module 𝑀 is dual Rickart if 𝐼𝑚(𝜖) ≤⊕ 𝑀 for every 𝜖 ∈
𝐸𝑛𝑑%(𝑀). 

Proposition 15. The next statements are equivalent for a dual Rickart module 𝑀: 
a. 𝑀 is 𝐶𝑆. 
b. 𝑀 is virtually extending. 
c. 𝑀 is 𝐶𝐻. 

Proof. (𝒂) ⇒ (𝒃) ⇒ (𝒄) Clear. 

(𝒄) ⇒ (𝒂) Let 𝑋 ≤! 𝑀. Since 𝑀 is 𝐶𝐻, there exists an epimorphism 𝜖:𝑀 → 𝑋. We have 
𝐼𝑚(𝜖) = 𝑋 ≤⊕ 𝑀 because of dual Rickartness. Hence, 𝑀 is 𝐶𝑆. 

 𝑀 is called 𝐶2 if for any 𝑋 ≤ 𝑀 with 𝑋 ≲⊕ 𝑀, we have 𝑋 ≤⊕ 𝑀. 𝑀 is called 
continuous if it is 𝐶𝑆 and 𝐶2 [18]. 

Corollary 16. Any dual Rickart 𝐶𝐻 module is continuous. 

Proof.  By [17, Proposition 2.21], 𝑀 is 𝐶2. Now, it is clear by Proposition 15. 

Let 𝑀 and 𝑃 be 𝑅-modules. 𝑃 is 𝑀-projective if and only if 𝐻𝑜𝑚%(𝑃, −) is exact with 
respect to all exact sequences 0	 → 	𝐾	 → 	𝑀	 → 	𝑁 → 	0. If 𝑃 is 𝑃-projective, then 𝑃 is also 
called quasi-projective (see [19, p.148]). 

In the next theorem, we give a characterization of quasi-projective virtually extending 
modules with using 𝐶𝐻 modules. 

Theorem 17. A module 𝑀 is virtually extending and quasi-projective if and only if it is a 𝐶𝐻 
module and all of its complement submodules are 𝑀-projective. 

Proof. (⇒: ) 𝑀 is 𝐶𝐻 because any virtually extending module is 𝐶𝐻. Since 𝑀 is virtually 
extending then any complement submodule of 𝑀 is isomorphic to a direct summand of 𝑀. Thus 
by [19, Proposition 18.1], all complements submodules of 𝑀 are 𝑀-projective. 

(⇐: ) Let 𝑋 ≤! 𝑀. Since 𝑀 is 𝐶𝐻, there exists an epimorphism 𝜖:𝑀 → 𝑋. Since 𝑋 is 𝑀-
projective, we have 𝐾𝑒𝑟(𝜖) ≤⊕ 𝑀 by [18, Lemma 4.30]. For some 𝐾 ≤ 	𝑀, 𝑀 = 𝐾𝑒𝑟(𝜖) ⊕
𝐾. Then 𝐾 ≅ 𝑀/𝐾𝑒𝑟(𝜖) ≅ 𝐼𝑚(𝜖) = 𝑋, i.e, 𝑋 ≲⊕ 𝑀. Thus, 𝑀 is virtually extending. Again by 
[19, Proposition 18.1], 𝑀 is quasi-projective. 

The authors [20] call a module 𝑀 morphic if for any 𝜖 ∈ 𝐸𝑛𝑑%(𝑀), 𝑀/𝐼𝑚(𝜖) ≅
𝐾𝑒𝑟(𝜖); or equivalently, if for any 𝑋, 𝑌 ≤ 𝑀 with 𝑀/𝑋 ≅ 𝑌 then 𝑀/𝑌 ≅ 𝑋. 
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Nguyen V. Dung [21] call a module 𝑀 𝐶𝐹 if any closed (complement) submodule is 
finitely generated. Now, it is proved that if a module 𝑀 is morphic and 𝐶𝐻 then 𝑀 is finitely 
generated if and only if 𝑀 is 𝐶𝐹.  

Theorem 18. The next statements are equivalent for a morphic module 𝑀: 

1) Every closed submodule of 𝑀 is isomorphic to an image of 𝑀 (i.e, 𝑀 is 𝐶𝐻). 
2) For any 𝑋 ≤! 𝑀, 𝑀/𝑋 is isomorphic to a submodule of 𝑀. 

In this case, the next statements hold: 

a) If 𝑋, 𝑌 ≤! 𝑀 then 𝑀/𝑋 ≅ 𝑀/𝑌 if and only if 𝑋 ≅ 𝑌. 
b) 𝑀 is finitely generated if and only if 𝑀 is 𝐶𝐹. 

Proof. (1) ⇒ (2): Let 𝑋 ≤! 𝑀. By (1), there is a 𝑍 ≤ 𝑀 satisfying that 𝑀/𝑍 ≅ 𝑋. Since 𝑀 is 
morphic, we have 𝑀/𝑋 ≅ 𝑍. So, (2) holds. 

 (2) ⇒ (1): Let 𝑋 ≤! 𝑀. By (2), there is a 𝑍 ≤ 𝑀 satisfying that 𝑀/𝑋 ≅ 𝑍. Since 𝑀 is morphic, 
we have 𝑀/𝑍 ≅ 𝑋. So, (1) holds. 

(𝑎)	(⇒: ) Let 𝑋, 𝑌 ≤! 𝑀 with 𝑀/𝑋 ≅ 𝑀/𝑌.  By (2), there exists a 𝑍 ≤ 𝑀 such that 𝑀/𝑋 ≅
𝑀/𝑌 ≅ 𝑍. Since 𝑀 is morphic, we have 𝑋 ≅ 	𝑌 ≅ 	𝑀/𝑍. 

(⇐: ) Let 𝑋, 𝑌 ≤! 𝑀 with 𝑋 ≅ 𝑌. By (2), there is a 𝑍 ≤ 𝑀 such that 𝑀/𝑋 ≅ 𝑍, and there is a 
𝑇 ≤ 𝑀 such that 𝑀/𝑌 ≅ 𝑇. Since 𝑀 is morphic, we have 𝑀/𝑍 ≅ 	𝑋 ≅ 	𝑌 ≅ 𝑀/𝑇. Now, we 
have 𝑀/𝑍 ≅ 		𝑌. Now again, since 𝑀 is morphic, 𝑀/𝑌 ≅ 𝑍. On the other hand, we have just 
said above that 𝑀/𝑋 ≅ 𝑍. Thus,  𝑀/𝑌 ≅ 𝑍 ≅ 𝑀/𝑋. 

(𝑏)	(⇒: ) Let 𝑋 ≤! 𝑀. By (1), there is a 𝑍 ≤ 𝑀 such that 𝑀/𝑍 ≅ 𝑋. Thus, 𝑋 is finitely 
generated because 𝑀 is finitely generated. Hence 𝑀 is 𝐶𝐹. 

(⇐: ) Clear.  
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