PAPER DETAILS

TITLE: Beyin Manyetik Rezonans Görüntüsünde Anatomik Atlas Olusturma yöntemi ve Anatomi

Egitimine Katkisi

AUTHORS: Handan Soysal, Niyazi Acer, Orhan Polat Örs

PAGES: 214-238

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/3868558

Sakarya Tıp Dergisi Sakarya Med J

E-ISSN: 4146-409X Yayıncı / Publisher: Sakarya Üniversitesi Cilt/Vol. 14, Sayı/No. 2, 214-238, 2024 DOI: http://doi.org/10.31832/smj.1469788

Research Article/ Araștırma Makalesi

Beyin Manyetik Rezonans Görüntüsünde Anatomik Atlas Oluşturma Yöntemi ve Anatomi Eğitimine Katkısı

Anatomical Atlas Creation Method in Brain Magnetic Resonance Image and Its Contribution to Anatomy Education

Handan Soysal¹* ^(D), Niyazi Acer² ^(D), Orhan Polat Örs³ ^(D)

¹Ankara Yıldırım Beyazıt Üniversitesi, Diş Hekimliği Fakültesi, Temel Bilimler Bölümü, Anatomi Anabilimdalı, Ankara, Türkiye

handan_soysal@hotmail.com

² Arel Üniversitesi, Tıp Fakültesi, Anatomi Anabilim Dalı, İstanbul, Türkiye acerniyazi@yahoo.com

³ İzmir İl Sağlık Müdürlüğü Sağlık Bilimleri Üniversitesi İzmir Tepecik Eğitim ve Araştırma Hastanesi, İzmir, Türkiye orhanpolat.ors@saglik.gov.tr

* Sorumlu Yazar / Corresponding Author

Geliş Tarihi/Received: **17.04.2023** Kabul Tarihi/Accepted: **27.06.2024** Çevrimiçi Yayınlanma Tarihi/Available Online Date: **30.06.2024** **Amaç:** Bu çalışmada manyetik rezonans (MR) görüntülerde beyinde bulunan yapıların üç boyutlu görsellerinde parselasyon yaparak beyin atlası oluşturma amaçlanmıştır. Bu amaçla oluşturulan Anatomi atlasının, hem Anatomi eğitimine hem de klinik çalışmalara katkı sunacağı hedeflenmiştir.

Materyal ve Metod: Bu çalışmada beyin MR görüntüleri üzerinde tam otomatik parselasyon yazılımı olan MriStudio kullanılmıştır. MriStudio beyin görüntülerinde tam otomatik segmentasyon olanağı sağlar. MriStudio, DTIStudio, DiffeoMap ve ROIEditor olmak üzere üç yazılımdan oluşmaktadır. MriStudio yazılımları kullanılarak istenilen beyin yapısı MASK (görüntüyü arka plandan ayrıştırarak etiketlerinin atanması) olarak kaydedilir. Beyinde bulunan 189 bölgeye ait ROI'leri elde etmek için, ROI atlas uygulanmıştır. Her bir beyin bölgesi görüntüsü MricroGL yazılımı ile her bir kesit seviyesinde ve üç boyutlu olarak kayıt edilmiştir.

Bulgular: Beyin Manyetik rezonans görüntüleri üzerinde kullanılan üç yönteme (manuel, MriStudio ve Ibaspm) ait hacim değerleri elde edilmiştir. Manuel ölçümleri altın standart olarak kabul ederek MriStudio ile elde edilen değerlerin manuel ölçümlere daha yakın olduğu görülmüştür. Beyine ait 189 bölgenin hacmi ve kesit görseli elde edilmiştir.

Sonuç: Anatomik olarak normal bireylere ait Manyetik rezonans görüntüleri kullanılarak atlas elde etmek mümkündür. Oluşturulan bu tür bireysel atlaslarla beyin yapılarının hacim değerlerinin elde edilmesi de ikinci bir avantaj oluşturacaktır. Ayrıca beyin içindeki yapıların kesitsel ve 3 boyutlu gösterilerek beyin anatomisinin anlaşılmasında ve klinik problemlerde teşhise katkı sunmada yararlı olacağı kanaatindeyiz.

Anahtar Kelimeler: MriStudio, IBASPM, Beyin Parselasyonu, Beyin 3D Atlas, MRG

Cite this article/Atıf: Soysal H., Acer N., Polat Örs O. Beyin Manyetik Rezonans Görüntüsünde Anatomik Atlas Oluşturma Yöntemi ve Anatomi Eğitimine Katkısı. Sakarya Med J 2024; 14(2): 214-238 DOI: 10.31832/smj.1469788

Objective: In this study, it is aimed to create a brain atlas by parcellating the threedimensional images of the structures in the brain in magnetic resonance (MR) images. It is aimed that the anatomy atlas created for this purpose will contribute to both anatomy education and clinical studies.

Materials and methods: In our study, MriStudio, a fully automatic parcellation software, was used on brain MR images. MriStudio consists of three software programs: DTIStudio, DiffeoMap and ROIEditor. Using MriStudio software, the desired brain structure is saved as MASK (separating the image from the background and assigning labels). ROI atlas was applied to obtain ROIs for 189 brain regions. Each brain region image was registered at each slice level and in three dimensions with MricroGL software.

Results: The volume values of three methods (manual, MriStudio and Ibaspm) were obtained on brain magnetic resonance images. By accepting manual measurements as the gold standard, it was observed that the values obtained with MriStudio were closer to manual measurements. The volume and cross-sectional image of 189 regions of the brain were obtained.

Conclusion: It is possible to obtain atlases of anatomically normal individuals using magnetic resonance images. Obtaining the volume values of brain structures with such individual atlases will be a second advantage. In addition, we believe that it will be useful in understanding the brain anatomy and contributing to the diagnosis of clinical problems by showing the structures in the brain cross-sectionally and in 3D.

Keywords: MriStudio, IBASPM, Brain Parcellation, Brain 3D Atlas, MRI

EXTENDED ABSTRACT Background

Magnetic Resonance Imaging (MRI) is a routine radiologic imaging method that provides detailed and multi-planar imaging of anatomical structures in a desired cross-section of the body. The working principle of MRI provides noninvasive and in vivo imaging in a strong magnetic field thanks to electromagnetic waves sent to the body and returning signals.

T1 and T2 weighted images obtained while creating the image of the region examined by MRI show soft tissue pathologies very well and allow three-dimensional evaluation of the brain. Therefore, it is frequently preferred in macroscopic neuroanatomy studies.

There are many brain atlases created using various methods. Some of these atlases are web-based, while others are in the form of books and have low availability, usability and reliability.

Software such as SPM, FSL and FreeSurfer are

commonly used to prepare individual brain MRI parcellation maps using different software with atlas-based methods. With one of these software, MriStudio, the brain can be divided into regions and the volume of each region can be calculated automatically. Another software is IBASPM (Individual Brain Atlas using Statistical Parametric Mapping), a Matlab-based software. IBASPM, as in MriStudio, individual brain parcellations can be made and volume values can be obtained. In our study, it was aimed to create 3D visualizations of structures on Magnetic Resonance images of human brain tissue and to create a brain atlas by parcellation. It is aimed that the anatomy atlas created for this purpose will contribute to both anatomy education and clinical studies.

Material and method

In our study, cross-sectional and three-dimensional visualization of intracranial structures and brain parcellation were performed using manual (mouse assisted), MriStudio and IBASPM methods. MR images of a healthy adult male individual were used.

Results

When the volume values obtained on brain MR T1 images are analyzed, it is seen that the values obtained with MriStudio are close to manual measurements (Graph 1).With MriStudio cerebellum, nucleus caudatus and hippocampus were visualized (Figure 8). IBASPM visualized the right and left nucleus caudatus and corpus callosum within the brain (Figure 10).

Conclusion

The segmentation methods used in our study have advantages and disadvantages compared to each other. Brain segmentation with MriStudio and brain segmentation with IBASPM, which we used in our study, offer the advantages of being obtained from normal images, 3D visualization, creation of individual atlases and volume calculation for each brain region.

We believe that the obtained cross-sectional and three-dimensional images will contribute to the learning of brain anatomy. The atlas created at the end of our study may be clinically helpful in visualizing the structures in the brain by preparcellation for surgical planning, obtaining volume values by cross-sectional and threedimensional visualization of the structures in the brain and interpreting the differences.

1. GİRİŞ

Manyetik Rezonans Görüntüleme (MRG) çalışma prensibi, vücuda gönderilen elektromanyetik dalgalar ve geri dönen sinyaller sayesinde güçlü manyetik alanda noninvaziv ve in vivo bir şekilde beyin bölgelerini görüntüleyen bir yöntemdir. MRG insan üzerinde uygulanabilecek bir yöntem olarak ilk kez 1973 yılında Paul Lauterbur tarafından kullanılmıştır¹.

MRG cihazı güçlü mıknatıslardan oluşmaktadır. İnsan hücrelerindeki atom çekirdekleri bu mıknatıslar sayesinde titreşim yaratır. Titreşen bu atomlar Manyetik Rezonans (MR) cihazı tarafından gönderilen radyo dalgaları ile salınım yapmaya başlar. Atomların yaptığı radyo dalgaları yayılımı bilgisayar ekranında 3 boyutlu görüntüler olarak görünür. MR radio dalgalarının doğal kaynağı insan vücudunda miktarı en çok atom olan hidrojendir^{2, 3}.

MRG, karmaşık anatomik yapıları ayrıntılı olarak görüntülenmesinde rutin radyolojik görüntüleme yöntemlerinin arasında en çok kullanılandır^{4, ⁵. MRG, vücudun istenilen bir kesitindeki hareketleri (MR spektroskopi, difüzyon-perfüzyon görüntüleme, kortikal aktivasyon gibi) çok düzlemden görüntüler olarak gösterebilir.}

MRG ile incelenen bölgenin görüntüsü oluşturulurken üç ayrı görüntü elde edilir. Bunlar T1 ağırlıklı, T2 ağırlıklı ve proton ağırlıklı görüntülerdir. T1 ağırlıklı görüntüler yumuşak dokuyu, T2 ağırlıklı görüntüler ise patolojiyi çok iyi gösterir. Anatomik yapıları çok iyi görüntüleyen proton ağırlıklı görüntülerin, tanıya katkıları azdır. Asıl olan T1 ve T2 ağırlıklı görüntülerdir T1 ağırlıklı 3 boyutlu gradient eko sekansları (T1-3D-GRE, MPRAGE sekansı vb.) beynin üç boyutlu değerlendirilmesine olanak sağlar^{6, 7}.

Klinikte magnetik rezonans görüntüleme genellikle santral sinir sisteminde infarktların, serebral iskeminin ve beyin tümörlerinin saptanması ve değerlendirilmesinde kullanılmaktadır^{8 - 10}. Makroskobik nöroanatomi çalışmaları MRG'de görüntü kontrastının ve kalitesinin oldukça ayrınlıtılı olması nedeniyle sık olarak tercih edilmektedir¹¹. Literatürde MR T1 atlasları farklı görüntü analiz programları kullanılarak elde edilmektedir. Bu farklı teknikler sayesinde beyin içi yapıların anlaşılması, fonksiyonel ilişkilendirilmesi ile ilgili bilgiler gün geçtikçe artmaktadır. Literatürde farklı yöntemler kullanılarak oluşturulan beyin atlaslarının bazıları web tabanlı olup görüntüler simülasyon şeklinde gerçek olmayan görüntülerden oluşmaktadır. Bazı atlaslar ise kitap şeklinde olup, bu atlasların da elde edilmesi oldukça zordur.

MR görüntülerinden elde edilen nöroanatomik yapılarının detaylı atlaslarını oluşturan ve yayınlayan çok sayıda web sitesi bulunmaktadır. Bu web sitelerinin birbirlerine göre avantajları olduğu gibi dezavantajları da vardır.

Son yıllarda Atlas temelli metotlarla farklı yazılımlar kullanılarak beynin üç boyutlu yapısı hakkında önemli görsel bilgiler elde edilmiştir. Bireysel beyin MRG Parselasyon harita hazırlamak için (Atlas temelli analiz) T1 ağırlıklı görüntüler kullanılmaktadır. Yaygın olarak kullanılan yazılımlar SPM, FSL ve FreeSurfer'dır. Ancak bu yazılımların birbirlerinden üstün olduğu kısımlar olduğu gibi dezavantajlarıda bulunmaktadır. MriStudio bu yazılımlardan biridir. MriStudio ile beyin 160 veya 180 bölgeye ayrılarak her bir bölgenin hacmi ayrı ayrı otomatik olarak hesaplanabilmektedir.

MriStudio üç yazılımdan oluşur. Bunlar DTIStudio, ROIEditor ve Diffeomap'tır. DTIStudio; DICOM görüntülerinin açılıp kayıt edilmesi, ROIEditor; görüntülerden maske oluşturulması, DiffeoMap ise lineer ve non-lineer görüntü transformasyonu için kullanılmaktadır¹²⁻¹⁵. Bir diğer yazılım ise IBASPM (Individual Brain Atlas using Statistical Parametric Mapping) (IBASPM; Cuban Neuroscience Center)'dir. IBASPM Matlab tabanlı çalışan SPM (Statistical Parametric Mapping)'in bir arayüzü olarak geliştirilmiş bir yazılımdır. Yine bu yazılım ile bireysel beyin parselasyonları yapılarak hem beyin içi yapılar görüntülenmekte hem de her bir yapının hacim değerleri elde edilebilmektedir. MriStudio ile bireysel atlas oluşturmak için normalize

ettiğimiz yani ayrıştırarark sayısallaştırdığımız görüntü server'a gönderilir. Server bize elde etttiği matriksi email yoluyla bildirir. Aynı işlem IBASPM'de datamızı server'e göndermeden program sayesinde yapılabilmektedir^{13, 15 - 17}.

Çalışmamızda IBASPM ile oluşturulan anatomik insan beyin dokusuna ait Manyetik rezonans görüntüleri üzerinde yapıların 3D görsellerinin oluşturulması ve parselasyon yapılarak beyin atlası oluşturulması amaçlanmıştır. Bu amaçla oluşturulan Anatomi atlasının, hem Anatomi eğitimine hem de klinik çalışmalara katkı sunacağı hedeflenmiştir.

2. MATERYAL VE METOD

Çalışmamızda manuel (fare yardımıyla), MriStudio ve IBASPM ile beyin parselasyonu yaparak beyin içi yapıların üç boyutlu modellemesi yapılarak kesitsel ve üç boyutlu görselleştirme yapılmıştır. Yetişkin ve sağlıklı erkek bir bireyden alınan görüntüler kullanılmıştır. Erciyes üniversitesi klinik araştırmalar etik kurulu onayı alınmıştır (Karar no:2019/94).

MR protokolü

Çalışmada kullanılan MR protokolü aşağıdaki gibidir: Anatomik yapıyı göstermek için yüksek çözünürlüklü T1 ağırlıklı MPRAGE sekansı: sagittial, Tekrar zamanı=1900 ms, Eko zamanı=2.67ms, FOV=250 mm, Matriks:256x256, Kesit kalınlığı=1mm.

A. Manuel ölçüm yapma

MR T1 görüntüleri ImageJ (https://imagej.nih. gov/ij/) ile açılmış ve talamus, putamen, nucleus caudatus, hippokampus ve amigdala etrafı fare yardımıyla çizilmiştir. Bu yapılar etrafındaki yapılar ile kolayca ayrıldıkları için tercih edilmiştir. Sadece bir adet beyin MR görüntüsü üzerinde çizimler yapılmıştır. Çizimler için her bir yapının etrafı fare yardımıyla elle çizilmiş ve her bir kesitin yüzey alanı cm2 cinsinden elde edilmiştir. Daha sonra elde edilen tüm alanlar toplanarak kesit kalınlığı ile çarpılıp hacim değerleri elde edilmiştir.

B. MriStudio ile beyin parselasyonu ile atlas olușturma

Çalışmamızda yetişkin bireye ait MR T1 görüntüleri kullanılmıştır. Bir görüntü işleme programı olan ve MRIStudio kullanılmıştır.

DTIStudio DICOM görüntülerinin açılması ve kayıt edilmesi, ROIEditor görüntülerden maske olusturulması ve DiffeoMap ise lineer ve non-lineer görüntü transformasyonu için kullanılmaktadır (14). MRIStudio çalıştırma uygulama basamakları şu şekildedir. İlk önce siteye (http://www.MriStudio.org) girilerek kendi adınız ve şifreniz ile kayıt (registration) yapılmalıdır. Daha sonra aldığınız kullanıcı adı ve parolanızı kullanarak DtiStudio, ROIeditor ve Diffeomap isimli üç yazılım bilgisayara indirilir. İndirilen bu dosyalar C ana dizini içine aralık bırakmadan isim verilerek kayıt edilir. Son iki yazılım (ROIeditor ve Diffeomap) zip dosyası şeklinde bilgisayarınıza iner. Diffeomap için bilgisayarınızın ID numarasını register software kısmına girmeniz gerekir. Burada bir sifre üretilir ve bu şifreyi Diffeomap ilk defa açılırken yerine girilerek Diffeomap yazılımıda aktif hale getirilir.

T1 görüntüleri için parselasyon harita hazırlama (Atlas temelli analiz) (Şekil 1).

- Otomatik görüntü kayıt edilmesi (registrasyonu): DTIstudio çalıştırılır. Raw data ilgili makine seçilerek açılır. "Whole volume" axial olarak kayıt edilir (hdr formatında). Bu işlem 12 modlu affine transformasyon ile görüntüler üzerindeki hareket ve distorsion bozukluklarını giderecektir.
- 2. Görüntüler ROIeditor yardımıyla *skull stripping* yapılır. Arkasında MASK oluşturularak kayıt edilir (MASK_T1),

- Bu aşamada John's Hopkins Üniversitesi 3. tarafından geliştirilen "JHU-DTI-MNI" isimli *"template"* görüntüleri kullanılır. Diffeomap açılır, *template* (JHU_MNI_SS_T1) yüklenir. Sonra 2. Basamakta elde edilen MASKlarda kayıt ettiğimiz "subject" görüntüleri açılır. Burada air linear model seçilerek matrix oluşturulur. Elde edilen her bir Mask update olarak (UpdateMask_T1) olarak kayıt edilir. Hem atlas hem de subject görüntülerini Byte çevrilir. Subject görüntüleri histogram *matching* yapılır ve diğer görüntüler kaldırılır. Bu iki görüntü arasında *lineer transformasyon* ve sonra non-linear transformasyon aşamaları gerçekleştirilir Son olarak elde ettiğimiz *subject* ve *template* görüntüleri, *single channel* kullanılarak mail adresimiz yazılarak server'a gönderilir^{12, 13,16}.
- 4. Bu aşamada gönderdiğimiz data Server tarafından işlenerek mailimize gönderilir ve biz bu yeni gelen datayı kullanarak kendi Subject görüntülerimiz üzerinde parselasyon haritası oluşturabiliriz. Bu aşama son aşamadır ve 2 adımlıdır.
 - Templateyüklenir (dahaöncekayıtettiğimiz UpdateMaskT1), Subject yüklenir (Atlas sample images---JHU-MNI-WMPMTypeII seçilir). Dahaönce maille aldığımız ve kayıt ettiğimiz Hmap olan dosya seçilerek bu işlem yapılır. Bu işlemden sonra elde edilen görüntü parcellation_Post_Hmap isminde kayıt edilir. Template olarakönceden kayıt edilmiş Mask görüntüsü açılır.
 - Subject olarakta birinci basamakta kayıt edilmiş parcellation_Post_Hmap açılır. son olarak Updated_LDMM olarak raw olarak kayıt edilir.

Son olarak ROI çalıştırılır. MaskT1 açılır. Sonra Updated_LDMM maskT1 üzerine *overlay* edilir.

İlgilendiğimiz beyin bölgesi hacimleri elde edilir ya da ilgilendiğimiz beyin bölgesi çıkartılarak mask olarak kayıt edilir. Önce *forward* görüntü transformasyonunu: subje görüntüleri önce *lineer* sonrada *non-lineer normalize* edilmektedir (LDDMM). Sonra *backward* transformasyon: beyin parselasyon haritaları orijinal görüntü üzerine superpose edilmektedir.

Açılan MRT1 atlasının üzerine parselasyon atılır (Şekil 2).

- 1. Hipokampus, Talamus ve nucleus caudatus hariç diğer yapılar kaldırılır (Şekil 3).
- Nucleus caudatus'un mask yapılması ve kayıt edilmesi (Şekil 4). Bu işlem hipokampus ve talamus içinde yapılır ve her biri ayrı ayrı kayıt edilir (Şekil 5).
- MricroGl (http://www.cabiatl.com/mricrogl/) ile MR T1 görüntüsü açılır ve üzerine sol ve sağ nucleus caudatus atılır (Şekil 6).

Sonuçta tablo 1'de ayrıntılatı ile gösterilen insan beyin dokusuna ait 189 bölgeye ait hacim ve kesit alanı elde edilmiş olmaktadır (Tablo 1). Böylece Raw görüntüler alınarak bu yazılımlar sayesinde beyin parselasyon haritaları hazırlama kolay, hızlı, kabul edilebilir ve güvenilir bir şekilde yapılabileceği görülmektedir. Sonuç olarak bu işlemler neticesinde beyin görüntüleri elde edebiliriz ve her bir bölgenin hacmini otomatik olarak hesaplamış oluruz. Buyazılımlar kullanılarak beyindeki tüm yapıların hacmi otomatik olarak, hızlı ve doğru bir şekilde hesaplanabileceği gibi üç boyutlu görselleştirilmesi de yapılır^{12, 13,16, 17}.

C. IBASPM ile parselasyon oluşturarak atlas yapma

Elde edilen görüntüler Statistical Parametric Mapping (http:// www.fil.ion.ucl.ac.uk/spm/) versiyon 8 ile DICOM (The Digital Imaging and Communications in Medicine) formatından NIFTI (Neuroimaging Informatics Technology Initiative) formatına çevrilmiştir. Bu adımdan sonra bütün görüntüler MRG'den kaynaklanabilecek çekim hataları ve anatomik anormallikler açısından taranmış ve her görüntü için x,y,z koordinatları beynin ön bileşkesinde sıfırlanmıştır.

Görüntüler SPM 8, bölütleme (segmentation) işlevi ile beyin gri cevher, beyaz cevher ve beyin omurilik sıvısı (BOS) olarak ayrıştırıldıktan sonra, SPM8 ile normalizasyon yapılarak yeni taslaklar üretilmiştir. Bu taslaklar ile eldeki görüntüler yeniden çakıştırılarak bireysel atlaslar elde edilmiştir. IBASPM ile yapılan parselasyon işlemi şematik olarak gösterilmektedir^{18, 19} (Şekil 7).

3. BULGULAR

Bir kişiye ait beyin MR T1 görüntüleri üzerinde elde edilen hacim değerleri üç yönteme göre cm3 olarak grafikte gösterilmiştir (Grafik 1). Grafik incelendiğinde manuel ölçümleri altın standart olarak kabul edersek MriStudio ile elde edilen değerlerin manuel ölçümlere daha yakın olduğu görülmektedir.

MriStudio ile elde edilen atlas görüntüleri

MriStudio ile cerebellum, nucleus caudatus ve hippokampus görüntülenmesi yapılmıştır (Şekil 8). Görüntüler hem kesitsel hem de üç boyutlu beyin modeli oluşturularak gösterilmiştir.

MriStudio ile incelenebilecek beyin içi yapıların listesi Tablo 1'de verilmiştir.

Nucleus caudatus'un üç boyutlu gösterilmesi ve kesitlerinin oluşturulması: MricroGl (http:// www.cabiatl.com/mricrogl/) ile MR T1 görüntüsü açılır ve üzerine sol ve sağ nucleus caudatus atılır (Şekil 9).

IBASPM ile parselasyon görüntüleri

IBASPM ile parselasyon yapılmış, sağ ve sol nucleus caudatus ve corpus callosum beyin içinde görüntülenmiştir (Şekil 10).

Grafik 1.

Beyin içi seçilen bazı yapıların her üç yöntem ile elde edilip karşılaştırılması.

Şekil 1.

Bireysel atlas oluşturmada Parselasyon işlem basamakları

Template JHU_MINI_SS_T1_ss

Subject maskobjectT1.img-0

Updated_maskObject

LDDMM_Post_Hmap

JHU BPM Type II

Original T1 (Mask)

Updated_LDDMM

Superimposed LDDMM

Şekil 2.

Açılan MRT1 atlasının üzerine parselasyon atılması

Şekil 3.

Hipokampus, talamus ve nucleus caudatus'un koronal, sagittal ve aksiyal olarak gösterilmesi.

Şekil 4.

Nucleus caudatus'un mask yapılması ve kayıt edilmesi.

Şekil 5.

Sol nucleus caudatus'un mask yapıldıktan sonra kayıt edilmesi.

Şekil 6.

MriCro GL ile beyinin üç boyutlu gösterilerek içerisine nucleus caudatus'un yerleştirilmesi ve kesit gösterimi.

Şekil 7.

IBASPM çalışma sistemi. <u>http://www.thomaskoenig.ch/Lester/Files/flowchart.jpg</u> sitesinden alınıp Türkçeye çevrilmiştir.

Şekil 8.

MriStudio ile elde edilen görüntülemeler

A. MriStudio ile elde edilen cerebellum görüntülemesi.

B. MriStudio ile elde edilen hippokampus görüntülemesi

Şekil 9.

MriStudio ile açılan MR T1 görüntüsü üzerine sol ve sağ nucleus caudatus atılması

Şekil 10.

IBASPM ile parselasyonla ile elde edilen görüntülemeler

A. IBASPM ile elde edilen sağ ve sol nucleus caudatus görüntüleri

B. IBASPM ile parselasyonda corpus collum'un görünümü http://headneckbrainspine.com/

body corpus callosum

Tablo 1.

Beyin içinde bulunan yapıların listesi ve kısaltması

Numara	Bölge (kısaltma)	Bölge (uzun)
1	SFG_L	SUPERIOR FRONTAL GYRUS (posterior segment) left
2	SFG_R	SUPERIOR FRONTAL GYRUS (posterior segment) right
3	SFG_PFC_L	Superior frontal gyrus (prefrontal cortex) left
4	SFG_PFC_R	Superior frontal gyrus (prefrontal cortex) right
5	SFG_pole_L	superior frontal gyrus (frontal pole) left
6	SFG_pole_R	superior frontal gyrus (frontal pole) right
7	MFG_L	MIDDLE FRONTAL GYRUS (posterior segment) left
8	MFG_R	MIDDLE FRONTAL GYRUS (posterior segment) right
9	MFG_DPFC_L	Middle frontal gyrus (dorsal prefrontal cortex) left
10	MFG_DPFC_R	Middle frontal gyrus (dorsal prefrontal cortex) right
11	IFG_opercularis_L	inferior frontal gyrus pars opercularis left
12	IFG_opercularis_R	inferior frontal gyrus pars opercularis right
13	IFG_orbitalis_L	inferior frontal gyrus pars orbitralis left
14	IFG_orbitalis_R	inferior frontal gyrus pars orbitralis right
15	IFG_triangularis_L	inferior frontal gyrus pars triangularis left
16	IFG_triangularis_R	inferior frontal gyrus pars triangularis right
17	LFOG_L	LATERAL FRONTO-ORBITAL GYRUS left
18	LFOG_R	LATERAL FRONTO-ORBITAL GYRUS right
19	MFOG_L	MIDDLE FRONTO-ORBITAL GYRUS left
20	MFOG_R	MIDDLE FRONTO-ORBITAL GYRUS right
21	RG_L	GYRUS RECTUS left
22	RG_R	GYRUS RECTUS right

23	PoCG_L	POSTCENTRAL GYRUS left
24	PoCG_R	POSTCENTRAL GYRUS right
25	PrCG_L	PRECENTRAL GYRUS left
26	PrCG_R	PRECENTRAL GYRUS right
27	SPG_L	SUPERIOR PARIETAL GYRUS left
28	SPG_R	SUPERIOR PARIETAL GYRUS right
29	SMG_L	SUPRAMARGINAL GYRUS left
30	SMG_R	SUPRAMARGINAL GYRUS right
31	AG_L	ANGULAR GYRUS left
32	AG_R	ANGULAR GYRUS right
33	PrCu_L	PRE-CUNEUS left
34	PrCu_R	PRE-CUNEUS right
35	STG_L	SUPERIOR TEMPORAL GYRUS left
36	STG_R	SUPERIOR TEMPORAL GYRUS right
37	STG_L_pole	Pole of SUPERIOR TEMPORAL GYRUS left
38	STG_R_pole	Pole of SUPERIOR TEMPORAL GYRUS right
39	MTG_L	MIDDLE TEMPORAL GYRUS left
40	MTG_R	MIDDLE TEMPORAL GYRUS right
41	MTG_L_pole	Pole of MIDDLE TEMPORAL GYRUS left
42	MTG_R_pole	Pole of MIDDLE TEMPORAL GYRUS right
43	ITG_L	INFERIOR TEMPORAL GYRUS left
44	ITG_R	INFERIOR TEMPORAL GYRUS right
45	PHG_L	PARAHIPPOCAMPAL GYRUS left
46	PHG_R	PARAHIPPOCAMPAL GYRUS right

47	ENT_L	ENTORHINAL AREA left
48	ENT_R	ENTORHINAL AREA right
49	FuG_L	FUSIFORM GYRUS left
50	FuG_R	FUSIFORM GYRUS right
51	SOG_L	SUPERIOR OCCIPITAL GYRUS left
52	SOG_R	SUPERIOR OCCIPITAL GYRUS right
53	MOG_L	MIDDLE OCCIPITAL GYRUS left
54	MOG_R	MIDDLE OCCIPITAL GYRUS right
55	IOG_L	INFERIOR OCCIPITAL GYRUS left
56	IOG_R	INFERIOR OCCIPITAL GYRUS right
57	Cu_L	CUNEUS left
58	Cu_R	CUNEUS right
59	LG_L	LINGUAL GYRUS left
60	LG_R	LINGUAL GYRUS right
61	rostral_ACC_L	rostral anterior cingulate gyrus left
62	rostral_ACC_R	rostral anterior cingulate gyrus right
63	subcallosal_ACC_L	subcallosal anterior cingulate gyrus left
64	subcallosal_ACC_R	subcallosal anterior cingulate gyrus right
65	subgenual_ACC_L	subgenual anterior cingulate gyrus left
66	subgenual_ACC_R	subgenual anterior cingulate gyrus right
67	dorsal_ACC_L	dorsal anterior cingulate gyrus left
68	dorsal_ACC_R	dorsal anterior cingulate gyrus right
69	PCC_L	posterior cingulate gyrus left
70	PCC_R	posterior cingulate gyrus right

	~	-
71	Ins_L	INSULAR left
72	Ins_R	INSULAR right
73	Amyg_L	AMYGDALA left
74	Amyg_R	AMYGDALA right
75	Hippo_L	HIPPOCAMPUS left
76	Hippo_R	HIPPOCAMPUS right
77	Caud_L	CAUDATE NUCLEUS left
78	Caud_R	CAUDATE NUCLEUS right
79	Put_L	PUTAMEN left
80	Put_R	PUTAMEN right
81	GP_L	GLOBUS PALLIDUS left
82	GP_R	GLOBUS PALLIDUS right
83	Thal_L	THALAMUS left
84	Thal_R	THALAMUS right
85	Hypothalamus_L	Hypothalamus left
86	Hypothalamus_R	Hypothalamus right
87	Mynert_L	Nucleus innominata of Mynert left
88	Mynert_R	Nucleus innominata of Mynert right
89	NucAccumbens_L	Nucleus accumbens left
90	NucAccumbens_R	Nucleus accumbens right
91	RedNc_L	Red Nucleus left
92	RedNc_R	Red Nucleus right
93	Snigra_L	Substancia Nigra left
94	Snigra_R	Substancia Nigra right

95	cerebellum_R	CEREBELLUM right
96	cerebellum_L	CEREBELLUM left
97	CP_L	Cerebral peduncle left
98	CP_R	Cerebral peduncle right
99	Midbrain_L	MIDBRAIN left
100	Midbrain_R	MIDBRAIN right
101	CST_L	Corticospinal tract left
102	CST_R	Corticospinal tract right
103	SCP_L	Superior cerebellar peduncle left
104	SCP_R	Superior cerebellar peduncle right
105	MCP_L	Middle cerebellar peduncle left
106	MCP_R	Middle cerebellar peduncle right
107	PCT_L	Pontine crossing tract (a part of MCP) left
108	PCT_R	Pontine crossing tract (a part of MCP) right
109	ICP_L	Inferior cerebellar peduncle left
110	ICP_R	Inferior cerebellar peduncle right
111	ML_L	Medial lemniscus left
112	ML_R	Medial lemniscus right
113	Pons_L	PONS left
114	Pons_R	PONS right
115	Medulla_L	MEDULLA left
116	Medulla_R	MEDULLA right
117	ACR_L	Anterior corona radiata left
118	ACR_R	Anterior corona radiata right

119	SCR_L	Superior corona radiata left
120	SCR_R	Superior corona radiata right
121	PCR_L	Posterior corona radiata left
122	PCR_R	Posterior corona radiata right
123	GCC_L	Genu of corpus callosum left
124	GCC_R	Genu of corpus callosum right
125	BCC_L	Body of corpus callosum left
126	BCC_R	Body of corpus callosum right
127	SCC_L	Splenium of corpus callosum left
128	SCC_R	Splenium of corpus callosum right
129	TAP_L	Tapatum left
130	TAP_R	Tapatum right
131	ALIC_L	Anterior limb of internal capsule left
132	ALIC_R	Anterior limb of internal capsule right
133	PLIC_L	Posterior limb of internal capsule left
134	PLIC_R	Posterior limb of internal capsule right
135	RLIC_L	Retrolenticular part of internal capsule left
136	RLIC_R	Retrolenticular part of internal capsule right
137	EC_L	External capsule left
138	EC_R	External capsule right
139	CGC_L	Cingulum (cingulate gyrus) left
140	CGC_R	Cingulum (cingulate gyrus) right
141	CGH_L	Cingulum (hippocampus) left
142	CGH_R	Cingulum (hippocampus) right
143	Fx/ST_L	Fornix (cres) / Stria terminalis (can not be resolved with current resolution) left
144	Fx/ST_R	Fornix (cres) / Stria terminalis (can not be resolved with current resolution) right

145	Fx_L	Fornix (column and body of fornix) left
146	Fx_R	Fornix (column and body of fornix) right
147	IFO_L	Inferior fronto-occipital fasciculus left
148	IFO_R	Inferior fronto-occipital fasciculus right
149	PTR_L	Posterior thalamic radiation (include optic radiation) left
150	PTR_R	Posterior thalamic radiation (include optic radiation) right
151	SS_L	Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus) left
152	SS_R	Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-occipital fasciculus) right
153	SFO_L	Superior fronto-occipital fasciculus (could be a part of anterior internal capsule) left
154	SFO_R	Superior fronto-occipital fasciculus (could be a part of anterior internal capsule) right
155	SLF_L	Superior longitudinal fasciculus left
156	SLF_R	Superior longitudinal fasciculus right
157	UNC_L	Uncinate fasciculus left
158	UNC_R	Uncinate fasciculus right
159	AnsaLenticularis_L	Ansa lenticularis left
160	AnsaLenticularis_R	Ansa lenticularis right
161	AnteriorCom_L	Anterior commissure left
162	AnteriorCom_R	Anterior commissure right
163	LenticularFasc_L	Lenticular fasciclus left
164	LenticularFasc_R	Lenticular fasciclus right
165	OlfactoryRadiation_L	olfactory radiation left
166	OlfactoryRadiation_R	olfactory radiation right

Mammillary_L	Mammillary body left
Mammillary_R	Mammillary body right
OpticTract_L	Optic tract left
OpticTract_R	Optic tract right
LV_frontal_L	lateral ventricle_frontal left
LV_body_L	lateral ventricle_body left
LV_atrium_L	lateral ventricle_atrium left
LV_occipital_L	lateral ventricle_occipital left
LV_temporal_L	lateral ventricle_temporal left
LV_frontal_R	lateral ventricle_frontal right
LV_body_R	lateral ventricle_body right
LV_atrium_R	lateral ventricle_atrium right
LV_occipital_R	lateral ventricle_occipital right
LV_temporal_R	lateral ventricle_temporal right
III_and_IV_ventricle	III and IV ventricle
PIns_L	posterior insula left
PIns_R	posterior insula right
PSTG_L	posterior superior temporal gyrus left
PSTG_R	posterior superior temporal gyrus right
PSMG_L	posterior middle temporal gyrus left
PSMG_R	posterior middle temporal gyrus right
PSIG_L	posterior inferior temporal gyrus left
PSIG_R	posterior inferior temporal gyrus right
	Mammillary_LMammillary_ROpticTract_LOpticTract_RLV_frontal_LLV_body_LLV_atrium_LLV_temporal_LLV_frontal_RLV_body_RLV_occipital_RLV_occipital_RIV_temporal_RIU_temporal_RPIns_LPIns_LPSTG_LPSMG_LPSIG_LPSIG_RPS

4. TARTIŞMA

İnsan beyni bireyler arasında yaş, cinsiyet ve ırk gibi fenotip açısından oldukça değişkenlik göstermektedir. Dolayısıyla standart beyin atlasları oluşturmak, beyin fonksiyonu ve yapısının bireysel veya grup temelli değerlendirilmesi için normalleştirilmiş anatomik referanslar sağlaması ve nörolojik hastalıkların teşhisi için anatomik varyasyonun azaltılması açısından çok önemlidir. İnsan beyninin anatomik yapısı ve fonksiyonu arasındaki ilişkiyi daha iyi anlamak için siinirbilimciler çeşitli araştırmalar yapmaktadır ²⁰. Son yıllarda beyin atlaslarının geliştirilmesi ile beyinle ilgili mikroskopik ve makroskopik anatomik yapıların ve beyin fonksiyonlarının anlaşılması açısından standart bir platform sağlamıştır.

Tipik olarak, her biri farklı özelliklere sahip iki atlas türü vardır: çoklu birey atlası (MNI) ve bireysel atlas²¹. Her ikisinin de tartışma konusu olan avantaj ve dezavantajları vardır.

60 yaşında Fransız bir kadına ait postmortem beyninin 3 ila 4 mm kesit kalınlığında dilimlenmesiyle oluşturulmuş Talairach ve Tournoux atlası bireysel atlas olarak yaygın olarak kullanılmaktadır. Talairach ve Tournoux atlası keskin yapısal tanımlamalara sahiptir ve genellikle yüksek dereceli doğrusal olmayan görüntü kullanan görüntü eşleme için şablonlar olarak tercih edilen bir atlastır. Talairach ve Tournoux atlasından talariach koordinatları geliştirilmiştir²².

Yüzlerce beyinlerin MRG ile elde edilen standart MNI (Montreal Neurological Institute). atlasları da şablon olarak kullanılmaktadır²³⁻²⁵. Ayrıca, bu MNI beyin atlaslarını standart olarak kullanılabilmek için Uluslararası Konsorsiyum Beyin Haritalama (ICBM) bir dizi beyin şablonu oluşturmuştur²⁰. ICBM grup atlası, 152 normal kişinin doğrusal ortalamasıyla oluşturulmuştur. Bu atlas günümüzde SPM, FSL ve MriStudio gibi çeşitli MR görüntü analizlerinde atlas sistemi olarak yaygın bir şekilde kullanılmaktadır²⁶. Brodman beyin haritaları da beyin kortikal yapılarını 43 alt bölgeye ayırıp inceleyen atlaslar olarak bilinmektedir. ICBM atlasının doğrusal olmayan bir biçimi de yakın zamanda tanıtılarak ve FSL gibi görüntü analiz programlarına kullanılmaya başlanmıştır^{27, 28}.

Toplam beyin, gri ve beyaz cevher ile BOS segmentasyonun yapılmasında, SPM (versiyon 8, 12) Freesurfer (versiyon 5.3.0) ve FSL (versiyon 5.0.7, versiyon 2.6) gibi yazılımların kullanıldığı çalışmalar bulunmaktadır^{29,30}. Bu çalışmalarda manuel segmentasyonların yazılımlarla elde edilen segmentasyon sonuçlarına çok yakın olduğu bildirilmiştir. Son zamanlarda MriStudio ile yapılan çalışmalarda bu atlasları kullanarak parselasyon yapan çalışmalarda artış görülmektedir. Bu şablonları SPM, ve Afni gibi yazılımlar da yaygın olarak kullanmaktadır³¹. Bu şablonlar kullanılarak bireysel atlas oluşturmak için önce normalizasyon sonra da beyin gri, beyaz cevher ve BOS gibi yapıların segmentasyonu yapılmaktadır.

MR atlaslarının diğer kullanım aracı araştırmalarda beynin hangi bölgesinin etkilendiğini ortaya çıkarmaktır. Bunun için SPM ve FSL gibi yazlımlar voksel temelli analiz metodlarını kullanmaktadır. Voksel temelli analizlerde, iki farklı görüntüye ait aynı koordinatta bulunan vokseller karşılaştırılır. Aynı koordinattaki bir voksel, farklı hastalara ait görüntülerde aynı anatomik bölgeye uymalıdır. Örnekle izah edilecek olursa bir hastada, x, y ve z koordinatları ile tanımlanan bir voksel, talamusta bulunuyorsa, diğer hastalarda da aynı koordinatlardaki voksel, yine talamusa denk gelmelidir. Tam aksine aynı vokselin farklı hastalarda farklı anatomik bölgelere karşılık gelmesi, analizin sonucunun hatalı olmasına neden olur. Bu hatadan kaçınmak için yapılacak uygulama ise analiz sırasında ilk olarak görüntüler arasında hareket ya şekil değişikliği sonucu oluşan farklılıkları en aza indirmektir. Bunun içinde MR görüntülerini bilgisayar ortamında normalize etmek gerekmektedir. Normalizasyon sonucunda, aynı düzeyden geçen tüm görüntüler standart bir model ile aynı anatomik haritaya uyar. Böylece hastalar arasındaki şekil değişikliklerinin karşılaştırmayı etkilemesi önlenmiş olur^{32, 33}.

Bu atlaslar kullanılarak Alzheimer, Dikkat eksikliği ve hiperaktivite bozukluğu, otizm, şizofreni gibi nöropsikiyatrik hastalıklarda beynin hangi bölgelerinin etkilendiği, hacimsel olarak azalma ya da artma olup olmadığı tespit edilebilmektedir. MR T1 görüntülerinin kesit olarak gösterilmesi ve içindeki anatomik yapıların tanımlanması ile ilgili web siteleri de mevcuttur. Bu görüntülerde normal bir beyin görüntüsü üzerine fare yardımıyla gidildiğinde anatomik yapının ismini vermektedir. Bu görüntülerin dezavantajı ise kendi bireysel görüntüler üzerine uygulanamamasıdır. Bunun dışında bu atlasların çoğunda beyin içindeki yapının üç boyutlu gösterilmesi de yapılamaması en büyük dezavantajlarından birini oluşturmaktadır. Ancak anatomik yapıların yer ve komşuluğunun belirlenmesinde oldukça faydalıdır. Çok sık kullanılan anatomik MR atlas örneklerinin web adresleri ve görüntüleri verilmiştir (Şekil 11-13).

Şekil 11.

https://www.imaios.com/en/e-Anatomy/Head-and-Neck/Brain-MRI-in-axial-slices

Şekil 12.

https://braingps.mricloud.org/home

Şekil 13.

https://www.slicer.org/

Son yıllarda dijitalleşme ile birlikte 3 boyutlu hologramlar, sanal diseksiyonlar gibi çok sayıda yazılım ve donanımlar anatomi eğitiminde kullanılmaktadır. 3D Slicer ve Analyze 12.0 (http:// analyzedirect.com/analyze-12-0/) gibi bazı yazılımlar kullanılarak otomatik segmentasyon yapılması ve beyin içi yapıların gösterilmesi mümkündür. Web tabanlı çalışan BrainGPS ile datanızı yükleyip beyin içi yapıların üç boyutlu görüntülemesini yapabilirsiniz. Önceden web adresine kayıt yaptırmanız gerekecektir.

Yukarıda bahsi geçen yöntemlerin birbirlerine gör hem avantajları hem de dezavantajları bulunmaktadır. Bu dezvantajları değerlendirecek olursak web sitesinde görülen atlasların normal sablon olması ve elinizde bir kişiye ait MR T1 datası varsa uygulanamaması, 3D Slicer gibi bazı yazılımların kullanılmasının zor olması ve bazı yazılımların çok pahalı olması gibi durumları sayabiliriz. Avantajları ise web sitelerine erişim kolaylığı ve anatomik yapının üzerinde yazması ya da göstermesi ve yine bazı yazılımların ücretsiz olması gibi avantajlarıda sıralayabiliriz. Ancak kullandığımız 2 metodun da (MriStudio ile beyin parselasyonu ve IBASPM ile beyin parselasyonu) hem normal görüntülerden elde edilmesi hem de bireysel atlasların oluşturulması ve 3 boyutlu görselleştirilmesi gibi avantajları bulunmaktadır. Bunun yanı sıra vakamız için her bir beyin bölgesi için hacim hesaplaması yapması da ekstra avantaj sağlamaktadır. Elde edilen kesit ve üç boyutlu görüntülerin beyin anatomi eğitimine katkı sunacağı kanaatindeyiz.

Çalışmamızın en büyük sınırlılığı tek bireyin MR T1 görüntülerinin alınarak atlas oluşturulması ve metodolojik olarak karşılaştırılmasıdır. Oysa istatistiksel açıdan büyük bir grup ile karşılaştırma yapılarak en uygun atlasın seçimi yapılabilir.

Elde edilen atlas, Anatomi eğitimi alan öğrencilerin

beyin anatomisini öğrenilmesine katkı sunacaktır. Bireysel farklılıkların tespit edilmesinde ve cerrahi planlama için önceden parselasyon yapılarak beyin içindeki yapıların görselleştirilmesi ile cerrahiye katkı sunabilir. Her birey için beyinde bulunan yapıların her üç planda kesit düzeyinde ve üç boyutlu görselleştirilmesi ile hacim değerleri elde edilerek yapının boyutunda oluşan farklılıklar ile ilgili klinik yorumlara yardımcı olabilir.

Çıkar Çatışması: Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır.

Araştırmacıların Katkı Oranı: Yazarlar çalışmanın bütün aşamalarına katkıda bulunmuş, son halini okumuş ve onaylamıştır.

KAYNAKLAR

- Oyar O. Manyetik Rezonans Görüntüleme (MRG)'nin Klinik Uygulamaları ve Endikasyonları. Harran Üniversitesi Tıp Fakültesi Dergisi 2008; 5(2): 31-40.
- 2. Oyar O, Gülsoy UK. Tıbbi Görüntüleme Fiziği. Tisamat Basım, Ankara, 2003: 254-273.
- Grossman CB. Physical Principles of Computed Tomography and Magnetic Resonance Imaging In: Magnetic Resonance Imaging and Computed Tomography of the Head and Spine. 2nd edition. Grossman CB. Williams&Wilkins, 1996: 10-58.
- 4. Konez O. Manyetik Rezonans Görüntüleme: Temel Bilgiler. Nobel Yayınları, İstanbul, 1995: 154.
- 5. Tuncel E. Klinik Radyoloji. 2.Baskı, Nobel Tip Kitabevi, Bursa: 2002: 25–30.
- Edelman RR, Wielopolski PA. Fast MRI. In: Edelman RR, Hessellink JR. eds. Clinical Magnetic Resonance Imaging. 2nd ed, W.B. Saunders Company, Phileadelphia, 1996: 302.
- Müller NL. Computed Tomography and Magnetic Resonance Imaging: past, present and future. Eur Respir J 2002;19 (35): 3-12.
- Oyar O. Radyolojide Temel Fizik Kavramlar. Nobel Tıp Kitabevleri, İstanbul, 1998: 151-210.
- 9. Bushong SC. Radiologic Science for Technologists. Physics, Biology and Protection. Third edition, C.V. Mosby Company, St Luis, 1984: 387-412.
- Looi JC, Lindberg O, Liberg B., Tayham v., Kumar R., Maller J., et al. Volumetrics of the Caudate Nucleus: Reliability and Validity of a New Manual Tracing Protocol. Psychiatry Res 2008; 163: 279-288. doi: 10.1016/j. pscychresns.2007.07.005.

- 11. Keller SS, Roberts N. Measurement of Brain Volume Using MRI: software, techniques, choices and prerequisites. J Anthropol Sci 2009; 87: 127-151.
- 12. Oishi K, Faria A, Jiang H., Li X., Akhter K., Zhang J., et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. Neuroimage 2009; 46(2): 486-499. doi: 10.1016/j.neuroimage.2009.01.002.
- Faria AV, Joel SE, Zhang Y., Oishi K., Van Zjil PCM., et al. Atlasbased analysis of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomyfunction correlation studies. Neuroimage 2012; 61(3): 613-621. Doi: 10.1016/j.neuroimage.2012.03.078
- Faria AV, Landau B, O'Hearn KM., Lii X., Jiang H., Oishi K., et al. Quantitative analysis of gray and white matter in Williams syndrome. Neuroreport 2012; 28; 23: 283-289. doi: 10.1097/WNR.0b013e3283505b62
- Izbudak I, Acer N, Poretti A, Gümüş K, Zararsiz G. Macrocerebellum:Volumetric and Diffusion Tensor Imaging Analysis. Turkish Neurosurgery 2015; 25: 948-953.
- Faria AV, Hoon A, Stashinko E., Lii X., Jiang H., Mashayekh, et al. Quantitative Analysis of Brain Pathology Based on MRI and Brain Atlases-Applications for Cerebral Palsy. Neuroimage 2011; 54(3): 1854–1861. doi: 10.1016/j. neuroimage.2010.09.061
- Yoshida S, Faria AV, Oishi K., Kanda T., Yamori Y., Yoshida N., et al. Anatomical Characterization of Athetotic and Spastic Cerebral Palsy Using An Atlas-Based Analysis. J Magn Reson Imaging 2013; 38(2): 288-298. doi: 10.1002/ jmri.23931
- Fischl B, Van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004; 14(1):11-22. https://doi.org/10.1093/cercor/ bhg087
- Y. Aleman-Gomez, L. Melie-Garcia, P. Valdes-Hernandez, "IBASPM: Toolbox for automatic parcellation of brain structures," Presented at the 12th Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy, Available on CD-Rom in NeuroImage 2006; 27(1): 11-15.
- Mazziotta J, Toga A, Evans A, Fox P, Lancaster J., Zilles K., et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001; 356(1412):1293-322. doi: 10.1098/rstb.2001.0915.
- 21. Talairach, J, Tournoux, P. Co-Planar Stereotactic Atlas of the Human Brain. Thieme, Stuttgart/New York: 1988
- 22. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, et al. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage 2009 47(2):618-27. doi: 10.1016/j.neuroimage.2009.04.057.

- Lancaster JL, Tordesillas GD, Martinez M, Salinas F, Evans A, Zilles K. et al. Bias between MNI and Talairach Coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 2007;28(11):1194-205. doi: 10.1002/ hbm.20345.
- Chau W, McIntosh AR. The Talairach coordinate of a point in the MNI space: how to interpret it. Neuroimage 2005; 25 (2): 408–416.
- 25. Toga AW, Thomason PM, Mori S, Amunts K, Zilles K. Towards multimodal atlases of the human brain. NeuroImaging 2006; 7: 952–966.
- Friston K., Ashburner J, Kiebel S., Nichols T., Penny W. Statistical Parametric Mapping, The Analysis of Functional Brain Images. Academic Press 2007: I-XXXII.
- 27. Evans AC, Janke AL, Collins DL, Baillet S. Brain templates and atlases. NeuroImage 2012; 62(2):911-22. doi: 10.1016/j.neuroimage.2012.01.024.
- Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 2011;1(54):313–327. doi: 10.1016/j.neuroimage.2010.07.033. Epub 2010 Jul 23.
- Sargolzaei S, Sargolzaei A, Cabrerizo M, Chen G, Goryawala M, Pinzon-Ardila A, Gonzalez-Arias SM, Adjouadi M. Estimating Intracranial Volume in Brain Research: An Evaluation of Methods. Neuroinformatics 2015; 13(4):427-41. doi: 10.1007/s12021-015-9266-5
- Malone IB, Leung KK, Clegg S, Barnes J, Whitwell JL, Ashburner J, Fox NC, Ridgway GR. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 2015; 1(104):366-72. doi: 10.1016/j.neuroimage.2014.09.034
- 31. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage 2007; 38: 95–113. doi:10.1016/j. neuroimage.2007.07.007
- Ashburner J., Friston KJ. Voxel-Based Morphometry-The Methods. NeuroImage 2000; 11: 805–821. doi: 10.1006/ nimg.2000.0582.
- 33. Focke NK., Yogarajah M., Bonelli SB., Bartlett PA., Symms MR., Duncan JS. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis NeuroImage 2008; 40: 728–737. doi: 10.1016/j.neuroimage.2007.12.031