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In this work, we construct new sequence spaces by combining the integrated and 

differentiated sequence spaces with the binomial matrix. Firstly, we provide 

information about basic matters such as sequence spaces and matrix domain. 

Subsequently we briefly summarize some sequence spaces generated by the binomial 

matrix. Thereafter, we define the integrated and differentiated sequence spaces and 

establish the new sequence spaces. Afterwards, we examine some properties and the 

inclusion relations of these new sequence spaces. We also determine the 𝛼, 𝛽 and 

𝛾 −duals of the integrated and differentiated sequence spaces. Finally, we 

characterize some matrix classes associated with the new sequence spaces. 

 

 
1. Introduction 

 

Let 𝑤 = {𝑥 = (𝑥𝑘) ∶ 𝑥 ∈ ℝ (𝑜𝑟 ℂ), ∀𝑘 ∈ ℕ} be 

a set. Under the pointwise addition and scalar 

multiplication 𝑤 is a vector space. Each subspace 

of 𝑤 is called a sequence space. The sequence 

space ℓ𝑝, which is absolutely 𝑝-summable 

sequences, is a frequently used sequence space. 

 

A Banach sequence space is classified as a BK- 

space if the maps 𝑝𝑛: 𝑋 → ℂ, defined as 𝑝𝑛(𝑥) =
𝑥𝑛 are continuous for all 𝑛 ∈ ℕ [1]. Therefore, 

we can say that the sequence space ℓ𝑝, with their-

norm defined as 

 

‖𝑥‖𝑝 = (∑|𝑥𝑘|
𝑝

∞

𝑘=1

)

1
𝑝

                                          (1) 

 

is a 𝐵𝐾-space, for 1 ≤ 𝑝 < ∞. 

 

Let, 𝐴 = (𝑎𝑛𝑘) be an infinite matrix of real (or 

complex) entries. The 𝐴-transform of the 

sequence 𝑥 is denoted as 

 

(𝐴𝑥)𝑛 =∑𝑎𝑛𝑘𝑥𝑘

∞

𝑘=0

,                                            (2) 

 

where the series (𝐴𝑥)𝑛 is required to be 

convergent for every 𝑛 ∈ ℕ.  

 

Moreover, let 𝑋 and 𝑌 be two sequence spaces 

and consider the set defined as 𝑋𝐴 = {𝑥 =
(𝑥𝑘) ∈ 𝑤: 𝐴𝑥 ∈ 𝑋} for a given infinite matrix 𝐴. 

This set is referred to as the matrix domain of 𝐴 

on the sequence space 𝑋. Additionally, the class 

of all matrix transformations from 𝑋 into 𝑌 is 

denoted by (𝑋: 𝑌) and it is given by [2], 

 
(𝑋: 𝑌) = {𝐴 = (𝑎𝑛𝑘): 𝐴𝑥 ∈ 𝑌 for all 𝑥 ∈ 𝑋}. (3) 
 

Let us consider the summation matrix 𝑆 = (𝑠𝑛𝑘) 
defined as 

 

𝑠𝑛𝑘 = {
1 ,   0 ≤ 𝑘 ≤ 𝑛,
0 ,      𝑘 > 𝑛,    

                                       (4) 

 

where ∀𝑛, 𝑘 ∈ ℕ. 

 

The matrix domain of 𝑆 is used to define the sets 

𝑏𝑠 = (ℓ∞)𝑠 and 𝑐𝑠 = 𝑐𝑠, which denote the sets 
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of all bounded and convergent series, 

respectively. 

 

If the entries of an infinite matrix 𝐴 = (𝑎𝑛𝑘) 
satisfies the conditions 𝑎𝑛𝑛 ≠ 0 for all 𝑛, 𝑘 ∈ ℕ 

and 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛, then this matrix is called 

a triangular matrix. A triangular matrix has an 

inverse which is also a triangular matrix.  

 

The integrated and differentiated sequence 

spaces were initially introduced by Goes and 

Goes [3]. Recently, Kirişçi has extensively 

studied these sequence spaces from various 

perspectives [4-6]. 

 

Additionally, Binomial sequence spaces were 

defined by Bişgin using the matrix domain of the 

Binomial matrix [7, 8]. Subsequently, various 

sequence spaces were constructed by several 

authors using the matrix domain of the Binomial 

matrix [9, 10]. 

 

2. New Sequence Spaces 

 

In this section, we first provide a brief overview 

of some previous studies. Next, we introduce 

new sequence spaces obtained by combining the 

integrated and differentiated sequence spaces 

with the binomial matrix. Then, we explore their 

respective properties. 

 

The Binomial matrix 𝐵𝑟𝑠 = (𝑏𝑛𝑘
𝑟𝑠 ) is defined as 

follows; 

 

𝑏𝑛𝑘
𝑟𝑠 = {

1

(𝑠 + 𝑟)𝑛
(
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘 ,   0 ≤ 𝑘 ≤ 𝑛

             0                  ,       𝑘 > 𝑛

    (5) 

 

for all 𝑛, 𝑘 ∈ ℕ, 𝑟, 𝑠 ∈ ℝ and 𝑠 ∙ 𝑟 > 0. 

(Throughout the article, we assume 𝑠 ∙ 𝑟 > 0 

unless otherwise stated.) 

 

The binomial sequence spaces were first defined 

by Bişgin in [7, 8] as follows; 

 

𝑏0
𝑟,𝑠 = {

𝑥 = (𝑥𝑘) ∈ 𝑤:

lim
𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘𝑥𝑘 = 0
} , (6) 

 

𝑏𝑐
𝑟,𝑠

= {

𝑥 = (𝑥𝑘) ∈ 𝑤:

lim
𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘𝑥𝑘 exists
},       (7) 

 

𝑏∞
𝑟,𝑠 =

{
 
 

 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

sup
𝑛∈ℕ |

|

1

(𝑠 + 𝑟)𝑛

∙ ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘𝑥𝑘
|
|
< ∞

}
 
 

 
 

              (8) 

 

and 

 

𝑏𝑝
𝑟,𝑠 =

{
 
 

 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑
|
|

1

(𝑠 + 𝑟)𝑛

∙ ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘𝑥𝑘
|
|

𝑝

< ∞

𝑛

}
 
 

 
 

,           (9) 

 

where 1 ≤ 𝑝 < ∞. Throughout the article, unless 

otherwise specified, we assume 1 ≤ 𝑝 < ∞. 

 

Subsequently, the sequence space 𝑏𝑝
𝑟,𝑠(G), 

obtained from the composition of the binomial 

matrix with the double band matrix defined by 

Bişgin in [9] as follows; 

 
𝑏𝑝
𝑟,𝑠(𝐺)

=

{
 
 
 

 
 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑
|

|

1

(𝑠 + 𝑟)𝑛

∑(
𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘(𝑢𝑥𝑘

+𝑣𝑥𝑘−1)

|

|

𝑝

𝑛

< ∞

}
 
 
 

 
 
 

,               (10) 

 

where double band matrix 𝐺 = (𝑔𝑛𝑘) is defined 

by 

 

𝑔𝑛𝑘 = {
𝑢, 𝑘 = 𝑛

       𝑣, 𝑘 = 𝑛 − 1
        0, otherwise

                        (11) 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑢, 𝑣 ∈ ℝ ∖ {0}. 
 

Then, the sequence space 𝑏𝑝
𝑟,𝑠(D), obtained from 

the combination of the binomial and triple band 

matrix, defined by Sönmez in [10] as follows;  
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𝑏𝑝
𝑟,𝑠(𝐷)

=

{
 
 
 

 
 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑
|

|

1

(𝑠 + 𝑟)𝑛

∑(
𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘(𝑡𝑥𝑘

   +𝑢𝑥𝑘−1 + 𝑣𝑥𝑘−2)

|

|

𝑝

𝑛

< ∞

}
 
 
 

 
 
 

,        (12) 

 

where triple band matrix 𝐷 = (𝑑𝑛𝑘) is defined by 

 

𝑑𝑛𝑘 = {

𝑡, 𝑘 = 𝑛
        𝑢, 𝑘 = 𝑛 − 1
        𝑣, 𝑘 = 𝑛 − 2
         0,         otherwise

                      (13) 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑡, 𝑢, 𝑣 ∈ ℝ ∖ {0}.  
 

Lastly, the sequence space 𝑏𝑝
𝑟,𝑠(Q) defined by 

Topal combining the binomial matrix and 

quadruple band matrix as follows; 

 
𝑏𝑝
𝑟,𝑠(𝑄)

=

{
 
 

 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑|

1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘(𝑜𝑥𝑘

+𝑡𝑥𝑘−1 + 𝑢𝑥𝑘−2 + 𝑣𝑥𝑘−3)

|

𝑝

𝑛

< ∞

}
 
 

 
 

, (14) 

 

where quadruple band matrix 𝑄 =
(𝑞𝑛𝑘(𝑜, 𝑡, 𝑢, 𝑣)) is defined as follows; 

 

𝑞𝑛𝑘(𝑜, 𝑡, 𝑢, 𝑣) =

{
 
 

 
 

𝑜, 𝑘 = 𝑛
        𝑡, 𝑘 = 𝑛 − 1
        𝑢, 𝑘 = 𝑛 − 2
        𝑣, 𝑘 = 𝑛 − 3
         0, otherwise

   (15) 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑜, 𝑡, 𝑢, 𝑣 ∈ ℝ ∖ {0}.  
 

Now, let us define the matrix ((𝑘 + 1)Ι) such 

that; 

(𝑘 + 1)Ι =

[
 
 
 
 
1 0
0 2

0 0
0 0

⋯
⋯

0 0
0 0

3 0
0 4

⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋱ ]
 
 
 
 

                     (16) 

 

where 𝑘 ∈ ℕ0 = {0,1,2, … }. Let, 𝑋 be a 

sequence space. Accordingly, the integrated and 

differentiated sequence spaces are defined by 

Goes and Goes [3] as follows; 

∫𝑋 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ((𝑘 + 1)𝑥𝑘) ∈ 𝑋} 

         = 𝑋(𝑘+1)I                                                     (17) 

 

and 

 

𝑑𝑋 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ((
1

𝑘 + 1
) 𝑥𝑘) ∈ 𝑋} 

       = 𝑋
(
1
𝑘+1

)Ι
 .                                                    (18) 

 

Here, if we take 𝑘 = 0 we obtain ∫𝑋 = 𝑋 and 

𝑑𝑋 = 𝑋. 

 

Now, we establish the new sequence spaces by 

combining the binomial matrix and the integrated 

and differentiated sequence spaces as follows; 

 

∫𝑏𝑝
𝑟,𝑠 = (𝑏𝑝

𝑟,𝑠)
(𝑘+1)Ι

=

{
 
 

 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑|

1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘

                        ∙ (𝑘 + 1)𝑥𝑘

|

𝑝

< ∞

𝑛 }
 
 

 
 

= [(ℓ𝑝)𝐵𝑟,𝑠](𝑘+1)Ι
                                              (19) 

 

and 

 

𝑑𝑏𝑝
𝑟,𝑠 = (𝑏𝑝

𝑟,𝑠)
(
1
𝑘+1)Ι

=

{
 
 

 
 

𝑥 = (𝑥𝑘) ∈ 𝑤:

∑|
|

1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)

𝑛

𝑘=0

𝑠𝑛−𝑘𝑟𝑘

(
1

𝑘 + 1
)𝑥𝑘

|
|

𝑝

< ∞

𝑛

}
 
 

 
 

= [(ℓ𝑝)𝐵𝑟,𝑠]( 1
𝑘+1

)Ι
 .                                            (20) 

Furthermore, by constructing the matrix 𝑇𝑟,𝑠 =

(𝑡𝑛𝑘
𝑟,𝑠) = 𝐵𝑟,𝑠(𝑘 + 1)Ι so that; 

 

𝑡𝑛𝑘
𝑟,𝑠 = {

1

(𝑠 + 𝑟)𝑛
(
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘(𝑘 + 1); 0 ≤ 𝑘 ≤ 𝑛

                    0                          ;     𝑘 > 𝑛

 

 

for all 𝑛, 𝑘 ∈ ℕ. New integrated sequence spaces 

can be redefined by matrix 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) =

𝐵𝑟,𝑠(𝑘 + 1)Ι as follows; 
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∫𝑏𝑝
𝑟,𝑠 = (ℓ𝑝)𝑇𝑟,𝑠  .                                             

(21) 

 

So, for given 𝑥 = (𝑥𝑘) ∈ 𝑤 , the 𝑇𝑟,𝑠-transform 

of 𝑥 is defined as follows, 

 

𝑦𝑘 = (𝑇
𝑟,𝑠𝑥)𝑘 

      =
1

(𝑠 + 𝑟)𝑘
∑(

𝑘

𝑖
)

𝑘

𝑖=0

𝑠𝑘−𝑖𝑟𝑖(𝑖 + 1)𝑥𝑖        (22) 

 

for all 𝑘 ∈ ℕ. 

 

Similarly, by constructing a matrix 𝑈𝑟,𝑠 =

(𝑢𝑛𝑘
𝑟,𝑠) = 𝐵𝑟,𝑠 (

1

𝑘+1
) Ι so that; 

 

𝑢𝑛𝑘
𝑟,𝑠 = {

1

(𝑠 + 𝑟)𝑛
(
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘 (

1

𝑘 + 1
) ; 0 ≤ 𝑘 ≤ 𝑛

                      0                           ;      𝑘 > 𝑛

 

 

for all 𝑘 ∈ ℕ. The new differentiated sequence 

spaces can be redefined by the matrix 𝑈𝑟,𝑠 =

(𝑢𝑛𝑘
𝑟,𝑠) as follows; 

 

𝑑𝑏𝑝
𝑟,𝑠 = (ℓ𝑝)𝑈𝑟,𝑠  .                                               

(23) 

 

Thus, for given 𝑥 = (𝑥𝑘) ∈ 𝑤 , the 𝑈𝑟,𝑠-
transform of 𝑥 is defined as follows; 

 

𝑦𝑘 = (𝑈
𝑟,𝑠𝑥)𝑘 

      =
1

(𝑠 + 𝑟)𝑘
∑(

𝑘

𝑖
)

𝑘

𝑖=0

𝑠𝑘−𝑖𝑟𝑖 (
1

𝑖 + 1
) 𝑥𝑖      (24) 

 

for all 𝑘 ∈ ℕ. 

 

Theorem 2.1. The sequence space ∫𝑏𝑝
𝑟,𝑠

  with its 

norm defined as follows; 

 
‖𝑥‖∫𝑏𝑝

𝑟,𝑠 = ‖𝑇𝑟,𝑠𝑥‖𝑝 

                 = (∑|(𝑇𝑟,𝑠𝑥)𝑘|
𝑝

∞

𝑘=0

)

1
𝑝

                      (25) 

 

is a 𝐵𝐾- space. 

 

Proof: 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) is a triangular matrix and 

the equation (21) holds. Additionally, since the 

space ℓ𝑝 with 𝑝-norm is a 𝐵𝐾-space, according 

to Theorem 4.3.12 of Wilansky [2], we conclude 

that the sequence space ∫𝑏𝑝
𝑟,𝑠

 is also a 𝐵𝐾-space. 

Thus, the proof is complete. 

 

Theorem 2.2. The sequence space 𝑑𝑏𝑝
𝑟,𝑠

 with its 

norm defined as follows; 

 
‖𝑥‖𝑑𝑏𝑝

𝑟,𝑠 = ‖𝑈𝑟,𝑠𝑥‖𝑝 

                = (∑|(𝑈𝑟,𝑠𝑥)𝑘|
𝑝

∞

𝑘=0

)

1
𝑝

                       (26) 

 

is a BK- space. 

 

Proof: 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) is a triangular matrix and 

the equation (23) holds. Therefore, the proof can 

be demonstrated in a similar way as shown in 

Theorem 2.1. 

 

Theorem 2.3. The sequence space ∫𝑏𝑝
𝑟,𝑠

 is 

linearly isomorphic to the sequence space ℓ𝑝. 

 

Proof: Let 𝐹 be a transformation defined as 

𝐹: ∫ 𝑏𝑝
𝑟,𝑠 → ℓ𝑝, 𝐹(𝑥) = 𝑇𝑟,𝑠𝑥. It is obvious that 

𝐹 is linear. Also, it is clear that 𝑥 = 𝜃 whenever 

𝑇𝑟,𝑠𝑥 = 𝜃. Consequently, 𝐹 is injective.  

Now, let us consider a sequence 𝑦 = (𝑦𝑛) ∈ ℓ𝑝. 

We define a sequence 𝑥 = (𝑥𝑛) for the given 

sequence 𝑦 = (𝑦𝑛) such that, 

 

𝑥𝑛 = 𝑟−𝑛
1

𝑛 + 1
∑(

𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘𝑦𝑘

𝑛

𝑘=0

 

                                                                                (27) 
 

for all 𝑛 ∈ ℕ. 

 

(((𝑘 + 1)Ι)𝑥)
𝑘
= (𝑘 + 1)𝑥𝑘  

= 𝑟−𝑘∑(
𝑘

𝑙
) (−𝑠)𝑘−𝑙(𝑟 + 𝑠)𝑙𝑦𝑙

𝑘

𝑙=0

.                (28) 

 

Then, we have 

 
‖𝑥‖∫𝑏𝑝

𝑟,𝑠 = ‖𝑇𝑟,𝑠𝑥‖ℓ𝑝  

                 = (∑|(𝑇𝑟,𝑠𝑥)𝑛|
𝑝

∞

𝑛=0

)

1
𝑝
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= (∑ |
1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)𝑠𝑛−𝑘𝑟𝑘(𝑘 + 1)𝑥𝑘

𝑛

𝑘=0

|

𝑝∞

𝑛=0

)

1
𝑝

 

= (∑ |
1

(𝑠 + 𝑟)𝑛
∑(

𝑛

𝑘
)𝑠𝑛−𝑘∑(

𝑘

𝑙
) (−𝑠)𝑘−𝑙(𝑟

𝑘

𝑙=0

𝑛

𝑘=0

∞

𝑛=0

+ 𝑠)𝑙𝑦𝑙|

𝑝

)

1
𝑝

 

= (∑|𝑦𝑛|
𝑝

∞

𝑛=0

)

1
𝑝

 

= ‖𝑦‖ℓ𝑝  

= ‖𝐹(𝑥)‖ℓ𝑝 

< ∞.                                                                      (29) 
 

Hence, 𝐹 is norm preserving from (25) and 

surjective. As a result, 𝐹 is an isomorphism and 

the proof is complete. 

 

Theorem 2.4. The sequence space 𝑑𝑏𝑝
𝑟,𝑠

 is 

linearly isomorphic to the sequence space ℓ𝑝. 

 

Proof: Let 𝐹 be a transformation defined as 

𝐹: 𝑑𝑏𝑝
𝑟,𝑠 → ℓ𝑝, 𝐹(𝑥) = 𝑈𝑟,𝑠𝑥. Now, let us 

consider the sequence 𝑥 = (𝑥𝑛) as follows; 

 

𝑥𝑛 = 𝑟−𝑛(𝑛 + 1)∑(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘𝑦𝑘

𝑛

𝑘=0

 

                                                                                (30) 
for all 𝑛 ∈ ℕ. 

 

Thus, the proof is completed using the method 

employed in Theorem 2.3. 

 

Theorem 2.5. The sequence space ∫𝑏𝑝
𝑟,𝑠

 is not a 

Hilbert space under the condition 𝑝 ≠ 2. 

 

Proof: Let us assume that 𝑝 = 2. We know from 

Theorem 2.1. that the sequence space ∫𝑏2
𝑟,𝑠

 is a 

BK-space with respect to the norm defined by 

 
‖𝑥‖∫𝑏2

𝑟,𝑠 = ‖𝑇𝑟,𝑠𝑥‖2 

                 = (∑|(𝑇𝑟,𝑠𝑥)𝑘|
2

∞

𝑘=0

)

1
2

.                     (31) 

 

Therefore, this norm can be constituted in terms 

of the inner product as follows; 

 

‖𝑥‖∫𝑏2
𝑟,𝑠 = 〈𝑇𝑟,𝑠𝑥, 𝑇𝑟,𝑠𝑥〉

1
2.                              (32) 

 

So, ∫𝑏2
𝑟,𝑠

 is a Hilbert space. 

 

Conversely, let us take 𝑝 ∈ [1,∞) ∖ {2}. We 

define two sequences 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as 

follows; 

 

𝑦𝑘 = (
1

𝑘 + 1
)(−

𝑠

𝑟
)
𝑘

(
𝑠 − 𝑘(𝑟 + 𝑠)

𝑠
)         (33) 

 

and 

 

𝑧𝑘 = (
1

𝑘 + 1
)(−

𝑠

𝑟
)
𝑘

(
𝑠 + 𝑘(𝑟 + 𝑠)

𝑠
)         (34) 

 

for all 𝑘 ∈ ℕ. Then we obtain, 

 

‖𝑦 + 𝑧‖
∫𝑏𝑝

𝑟,𝑠
2 + ‖𝑦 − 𝑧‖

∫𝑏𝑝
𝑟,𝑠

2 = 8 ≠ 2
2
𝑝
+2

= 2 (‖𝑦‖
∫𝑏𝑝

𝑟,𝑠
2 + ‖𝑧‖

∫𝑏𝑝
𝑟,𝑠

2 ).  (35) 

 

So, the parallelogram equality is not satisfied by 

the norm defined in (25). As a result, if  𝑝 ≠ 2 

then this norm cannot be generated by an inner 

product. Therefore the sequence space ∫ 𝑏𝑝
𝑟,𝑠

 

cannot be a Hilbert space. Thus, the proof is 

complete. 

 

Theorem 2.6. The sequence space 𝑑𝑏𝑝
𝑟,𝑠

 is not a 

Hilbert space under the condition 𝑝 ≠ 2. 

 

Proof: Let us assume that 𝑝 = 2. In this part of 

the proof, we utilize the norm defined Theorem 

2.2. Thus, as in the previous theorem, it is shown 

that the sequence 𝑑𝑏2
𝑟,𝑠

 is a Hilbert space. 

 

Conversely, let us take 𝑝 ∈ [1,∞) ∖ {2}. We 

define two sequence spaces 𝑢 = (𝑢𝑘) and 𝑣 =
(𝑣𝑘) as follows; 

 

𝑢𝑘 = (𝑘 + 1) (−
𝑠

𝑟
)
𝑘

(
𝑠 − 𝑘(𝑟 + 𝑠)

𝑠
)          (36) 

 

and 
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𝑣𝑘 = (𝑘 + 1) (−
𝑠

𝑟
)
𝑘

(
𝑠 + 𝑘(𝑟 + 𝑠)

𝑠
)          (37) 

 

for all 𝑘 ∈ ℕ. Thus, by obtaining the same results 

as in Theorem 2.5. Thus, the proof is complete. 

 

Theorem 2.7. The inclusion ∫ℓ𝑝 ⊂ ∫𝑏𝑝
𝑟,𝑠

  

strictly holds. 

 

Proof: Let us consider an arbitrary sequence 𝑥 =
(𝑥𝑘) ∈ ∫ ℓ𝑝, for 1 < 𝑝 < ∞. From the definition 

of the sequence space ∫ℓ𝑝, we obtain ∑ |(𝑘 +𝑘

1)𝑥𝑘|
𝑝 < ∞. Therefore, by applying Hölder’s 

inequality we can write; 

 

|(𝑇𝑟,𝑠𝑥)𝑘|
𝑝 = |

1

(𝑠 + 𝑟)𝑘
∑(

𝑘

𝑗
) 𝑠𝑘−𝑗𝑟𝑗(𝑗 + 1)𝑥𝑗

𝑘

𝑗=0

|

𝑝

 

≤ (
1

|𝑠 + 𝑟|𝑘
)
𝑝

[
 
 
 
 
 
 

(∑(
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

)

𝑝−1

⋅ (∑(
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗|(𝑗 + 1)𝑥𝑗|

𝑝
𝑘

𝑗=0

)

]
 
 
 
 
 
 

 

= (
1

|𝑠 + 𝑟|𝑘
)
𝑝

((|𝑠| + |𝑟|)𝑘)
𝑝−1

 

∙∑(
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗|(𝑗 + 1)𝑥𝑗|

𝑝
𝑘

𝑗=0

 

=∑(
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|
𝑘

|
𝑟

𝑠
|
𝑗

|(𝑗 + 1)𝑥𝑗|
𝑝

𝑘

𝑗=0

. 

 

Then we obtain; 

 

∑|(𝑇𝑟,𝑠𝑥)𝑘|
𝑝

𝑘

≤∑∑(
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|
𝑘

|
𝑟

𝑠
|
𝑗

|(𝑗

𝑘

𝑗=0𝑘

+ 1)𝑥𝑗|
𝑝

 

=∑|(𝑗 + 1)𝑥𝑗|
𝑝

𝑗

∑(
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|
𝑘

|
𝑟

𝑠
|
𝑗

∞

𝑘=𝑗

 

= |
𝑠

𝑠 + 𝑟
|∑|(𝑗 + 1)𝑥𝑗|

𝑝

𝑗

.                               (38) 

 

If we consider the comparison test together with 

the result we have obtained, we conclude that; 

𝑇𝑟,𝑠𝑥 ∈ ℓ𝑝. So, 𝑥 = (𝑥𝑘) ∈ ∫ 𝑏𝑝
𝑟,𝑠

. Hence, 

∫ ℓ𝑝 ⊂ ∫𝑏𝑝
𝑟,𝑠

.  

 

Now, we define a sequence 𝑦 = (𝑦𝑘) as follows, 

 

𝑦𝑘 = (−
1

𝑘 + 1
)
𝑘

 

 

for all 𝑘 ∈ ℕ. From here, it is observed that 

(𝑘 + 1)𝑦 = ((−1)𝑘) ∉ ℓ𝑝 and 𝑇𝑟,𝑠𝑦 =

((
𝑠−𝑟

𝑠+𝑟
)
𝑘
) ∈ ℓ𝑝. So, 𝑦 = (𝑦𝑘) ∉ ∫ ℓ𝑝 and 𝑦 =

(𝑦𝑘) ∈ ∫ 𝑏𝑝
𝑟,𝑠

. Hence, ∫ℓ𝑝 ⊂ ∫𝑏𝑝
𝑟,𝑠

 is strict. 

Similarly, the case of 𝑝 = 1 can be proven in a 

similar way. Thus, the proof is complete. 

 

Theorem 2.8. The inclusion 𝑑ℓ𝑝 ⊂ 𝑑𝑏𝑝
𝑟,𝑠

  

strictly holds. 

 

Proof: The proof of this theorem follows a 

similar method to the one used in the previous 

theorem. Where, using 𝑈𝑟,𝑠 instead of 𝑇𝑟,𝑠. 
 

3. 𝜶, 𝜷 and 𝜸 − Duals of the Spaces ∫𝒃𝒑
𝒓,𝒔

 and 

𝒅𝒃𝒑
𝒓,𝒔

 

 

In this part, we determine 𝛼, 𝛽 and 𝛾 − duals of 

the differentiated and integrated sequence spaces 

∫𝑏𝑝
𝑟,𝑠

 and 𝑑𝑏𝑝
𝑟,𝑠

. Given two sequence spaces 𝑋 

and 𝑌, the multiplier space 𝑀(𝑋, 𝑌) is defined as 

follows; 

 

𝑋𝛼 = 𝑀(𝑋, ℓ1), 
 

𝑋𝛽 = 𝑀(𝑋, 𝑐𝑠) 
 

and 
 

𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠). 
  

Lemma 3.1. [11] Let 𝐴 = (𝑎𝑛𝑘) be an infinite 

matrix; the following conditions hold. 

 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: ℓ1) if and only if 

sup
𝑘∈ℕ

∑ |𝑎𝑛𝑘| < ∞𝑛 ,                                             (39) 

ii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: ℓ∞) if and only if 

sup
𝑛,𝑘∈ℕ

|𝑎𝑛𝑘| < ∞,                                                  (40) 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: 𝑐) if and only if (40) holds 

and lim
𝑛→∞

𝑎𝑛𝑘 = 𝑎𝑘 for all 𝑘 ∈ ℕ.                 (41) 

 

Lemma 3.2. [11] Let 𝐴 = (𝑎𝑛𝑘) be an infinite 

matrix; the following conditions hold. 
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i) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: ℓ1) if and only if 

sup
𝐾∈ℱ

∑ |∑ 𝑎𝑛𝑘𝑛∈𝐾 |𝑞 < ∞𝑘 ,                               (42) 

ii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: ℓ∞) if and only if 

sup
𝑛∈ℕ

∑ |𝑎𝑛𝑘|
𝑝 < ∞𝑘 ,                                           (43) 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: 𝑐) if and only if (41) and 

(43) hold. 

 

Where 1 < 𝑝 < ∞, 
1

𝑝
+

1

𝑞
= 1 and ℱ is the 

collection of all finite subsets of ℕ. 

 

Theorem 3.3. i) The 𝛼-dual of the integrated 

sequence space ∫𝑏𝑝
𝑟,𝑠

 is the set, 

 

𝜉1
𝑟,𝑠 =

{
  
 

  
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
Κ∈ℱ

∑
|
|

(
1

𝑛 + 1
)

∑

1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘

∙ (𝑟 + 𝑠)𝑘𝑎𝑛𝑛∈Κ

|
|

𝑞

< ∞

𝑘

}
  
 

  
 

(44) 

 

and the 𝛼-dual of the integrated sequence space 

∫𝑏1
𝑟,𝑠

 is the set, 

 

𝜉2
𝑟,𝑠 =

{
 

 
𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
k∈ℕ

∑|
(

1

𝑛 + 1
)
1

𝑟𝑛
(
𝑛

𝑘
)

(−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘𝑎𝑛

| < ∞

𝑛 }
 

 

. (45) 

 

ii) The 𝛼-dual of the differentiated sequence 

space 𝑑𝑏𝑝
𝑟,𝑠

 is the set, 

 

𝜉3
𝑟,𝑠 =

{
 
 

 
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
Κ∈ℱ

∑||

(𝑛 + 1)

∑

1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘

(𝑟 + 𝑠)𝑘𝑎𝑛𝑛∈Κ

||

𝑞

< ∞

𝑘
}
 
 

 
 

 (46) 

 

and the 𝛼-dual of the differentiated sequence 

space 𝑑𝑏1
𝑟,𝑠

 is the set, 

 

𝜉4
𝑟,𝑠 =

{
 

 
𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
k∈ℕ

∑|
(𝑛 + 1)

1

𝑟𝑛
(
𝑛

𝑘
)

(−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘𝑎𝑛

| < ∞

𝑛 }
 

 

.  (47) 

 

Proof: i) Consider a sequence 𝑥 = (𝑥𝑛) defined 

as, 

 

𝑥𝑛 =∑[
1

𝑛 + 1

1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘] 𝑦𝑘

𝑛

𝑘=0

 

                                                                               (48) 
 

for all 𝑛 ∈ ℕ. From this, we conclude that for a 

sequence 𝑎 = (𝑎𝑛), we write; 

 

𝑎𝑛𝑥𝑛 =∑[
1

𝑛 + 1

1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟

𝑛

𝑘=0

+ 𝑠)𝑘𝑎𝑛] 𝑦𝑘 

           = ∑𝑧𝑛𝑘
𝑟,𝑠

𝑛

𝑘=0

𝑦𝑘 

           = (𝑍𝑟,𝑠𝑦)𝑛 

 

for all 𝑛 ∈ ℕ. 

 

By taking into account the equality above, we 

observe that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1 whenever 𝑥 =
(𝑥𝑘) ∈ ∫ 𝑏1

𝑟,𝑠
 or 𝑥 = (𝑥𝑘) ∈ ∫ 𝑏𝑝

𝑟,𝑠
 if and only if 

𝑍𝑟,𝑠𝑦 ∈ ℓ1 whenever 𝑦 = (𝑦𝑘) ∈ ℓ1 or 𝑦 =
(𝑦𝑘) ∈ ℓ𝑝, respectively. Where 1 < 𝑝 < ∞. So, 

we that 𝑎 = (𝑎𝑛) ∈ {∫ 𝑏1
𝑟,𝑠}𝛼 or 𝑎 = (𝑎𝑛) ∈

{∫ 𝑏𝑝
𝑟,𝑠}

𝛼
 if and only if 𝑍𝑟,𝑠 ∈ (ℓ1: ℓ1) or 𝑍𝑟,𝑠 ∈

(ℓ𝑝: ℓ1) respectively, where 1 < 𝑝 < ∞. By 

connecting these results, Lemma 3.1 (i) and 

Lemma 3.2 (i), we deduce that; 

 

𝑎 = (𝑎𝑛) ∈ {∫𝑏1
𝑟,𝑠}

𝛼

⇔ 

𝑠𝑢𝑝
𝑘∈ℕ

∑|
1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘

1

𝑛 + 1
𝑎𝑛|

𝑛

 

< ∞                                                                       (49) 
 

and  

 

𝑎 = (𝑎𝑛) ∈ {∫𝑏𝑝
𝑟,𝑠}

𝛼

⇔ 

𝑠𝑢𝑝
𝛫∈ℱ

∑|∑
1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟

𝑛∈𝛫𝑘

+ 𝑠)𝑘
1

𝑛 + 1
𝑎𝑛|

𝑞

 

< ∞,                                                                      (50) 
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where 1 < 𝑝 < ∞. These yield us that 

{∫ 𝑏1
𝑟,𝑠}𝛼 = 𝜉2

𝑟,𝑠
 and {∫ 𝑏𝑝

𝑟,𝑠}
𝛼
= 𝜉1

𝑟,𝑠
 Where 1 <

𝑝 < ∞. Thus, the proof is complete. 

 

ii) The sequence 𝑥 = (𝑥𝑛) is defined as; 

 

𝑥𝑛 =∑[(𝑛 + 1)
1

𝑟𝑛
(
𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑟 + 𝑠)𝑘] 𝑦𝑘

𝑛

𝑘=0

 

                                                                               (51) 
 

for all 𝑛 ∈ ℕ. The proof is carried out in a similar 

method in part (i). 

 

Theorem 3.4. i) Consider the sets 𝜉5
𝑟,𝑠

, 𝜉6
𝑟,𝑠

 and 

𝜉7
𝑟,𝑠

 defined by 

 

𝜉5
𝑟,𝑠 =

{
 
 

 
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

∑
1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘 (

1

𝑗 + 1
)𝑎𝑗

∞

𝑗=𝑘

 exists ∀𝑘 ∈ ℕ }
 
 

 
 

, 

                                                                                (52) 
 

𝜉6
𝑟,𝑠 =

{
 
 

 
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
𝑘,𝑛∈ℕ

||∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘 (
1

𝑗 + 1
) 𝑎𝑗

𝑛

𝑗=𝑘

|| < ∞

}
 
 

 
 

  (53) 

 

and 

 

𝜉7
𝑟,𝑠 =

{
 
 

 
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
𝑛∈ℕ

∑||∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘 (
1

𝑗 + 1
)𝑎𝑗

𝑛

𝑗=𝑘

||

𝑛

𝑘=0

𝑞

< ∞

}
 
 

 
 

, 

                                                                               (54) 
 

where 1 < 𝑞 < ∞. Then the following 

statements hold; 

 

I. {∫ 𝑏1
𝑟,𝑠}𝛽 = 𝜉5

𝑟,𝑠 ∩ 𝜉6
𝑟,𝑠

, 

II. {∫ 𝑏𝑝
𝑟,𝑠}

𝛽
= 𝜉5

𝑟,𝑠 ∩ 𝜉7
𝑟,𝑠,     (1 < 𝑝 < ∞) 

III. {∫ 𝑏1
𝑟,𝑠}𝛾 = 𝜉6

𝑟,𝑠, 

IV. {∫ 𝑏𝑝
𝑟,𝑠}

𝛾
= 𝜉7

𝑟,𝑠.                 (1 < 𝑝 < ∞) 

 

ii) Consider the sets 𝜉8
𝑟,𝑠

, 𝜉9
𝑟,𝑠

 and 𝜉10
𝑟,𝑠

 defined by; 

 

𝜉8
𝑟,𝑠 =

{
 
 

 
 

𝑎 = (𝑎𝑘) ∈ 𝑤:

∑
1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘(𝑗 + 1)𝑎𝑗

∞

𝑗=𝑘

 exists ∀𝑘 ∈ ℕ }
 
 

 
 

, 

                                                                                (55) 
 

𝜉9
𝑟,𝑠 =

{
 

 
𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
𝑘,𝑛∈ℕ

|∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘(𝑗 + 1)𝑎𝑗

𝑛

𝑗=𝑘

| < ∞

}
 

 

    (56) 

 

and 

 

𝜉10
𝑟,𝑠 =

{
 
 

 
 𝑎 = (𝑎𝑘) ∈ 𝑤:

sup
𝑛∈ℕ

∑|∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘(𝑗 + 1)𝑎𝑗

𝑛

𝑗=𝑘

|

𝑛

𝑘=0

𝑞

< ∞

}
 
 

 
 

, 

                                                                                (57) 
 

where 1 < 𝑞 < ∞. Then thefollowing statements 

hold; 

 

I. {𝑑𝑏1
𝑟,𝑠}𝛽 = 𝜉8

𝑟,𝑠 ∩ 𝜉9
𝑟,𝑠, 

II. {𝑑𝑏𝑝
𝑟,𝑠}

𝛽
= 𝜉8

𝑟,𝑠 ∩ 𝜉10
𝑟,𝑠,      (1 < 𝑝 < ∞) 

III. {𝑑𝑏1
𝑟,𝑠}𝛾 = 𝜉9

𝑟,𝑠, 

IV. {𝑑𝑏𝑝
𝑟,𝑠}

𝛾
= 𝜉10

𝑟,𝑠.                  (1 < 𝑝 < ∞) 

 

Proof: Since the other parts of the proof can be 

done similarly, we provide the proof only for 

case (I) of part (i). Let us consider the sequence 

𝑥 = (𝑥𝑛) defined in (48) for an arbitrary 𝑎 =
(𝑎𝑛) ∈ 𝑤. Then, 

 

∑𝑎𝑘𝑥𝑘 =

𝑛

𝑘=0

∑[∑
1

𝑟𝑘
(
𝑘

𝑗
) (−𝑠)𝑘−𝑗(𝑟

𝑘

𝑗=0

𝑛

𝑘=0

+ 𝑠)𝑗 (
1

𝑘 + 1
) 𝑦𝑗] 𝑎𝑘 

=∑

[
 
 
 

∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘 (
1

𝑗 + 1
) 𝑎𝑗

𝑛

𝑗=𝑘
]
 
 
 

𝑦𝑘

𝑛

𝑘=0

 

= (𝐹𝑟,𝑠𝑦)𝑛                                                           (58) 
 

for all 𝑛 ∈ ℕ. Where the matrix 𝐹𝑟,𝑠 = (𝑓𝑛𝑘
𝑟,𝑠) is 

defined by, 
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𝑓𝑛𝑘
𝑟,𝑠 =

{
 
 

 
 
∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘

(𝑟 + 𝑠)𝑘 (
1

𝑗 + 1
)𝑎𝑗

𝑛

𝑗=𝑘

, 0 ≤ 𝑘 ≤ 𝑛

            0                     , 𝑘 > 𝑛

      (59) 

 

for all 𝑛, 𝑘 ∈ ℕ. So, 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 whenever 

𝑥 = (𝑥𝑘) ∈ ∫ 𝑏1
𝑟,𝑠

 if and only if 𝐹𝑟,𝑠𝑦 ∈ 𝑐 

whenever 𝑦 = (𝑦𝑘) ∈ ℓ1. This outcome makes 

clear that 𝑎 = (𝑎𝑛) ∈ {∫ 𝑏1
𝑟,𝑠}𝛽 if and only if 

𝐹𝑟,𝑠 ∈ (ℓ1: 𝑐). By combining this result and 

Lemma 3.1. (iii), we obtain that 𝑎 = (𝑎𝑛) ∈
{∫ 𝑏1

𝑟,𝑠}𝛽 if and only if 

 

sup
𝑘,𝑛∈ℕ

|∑
1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘 (

1

𝑗 + 1
)𝑎𝑗

𝑛

𝑗=𝑘

| < ∞ 

 

and 

 

∑
1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘 (

1

𝑗 + 1
) 𝑎𝑗

∞

𝑗=𝑘

  

exists for all 𝑘 ∈ ℕ. 
 

This result shows us that {∫ 𝑏1
𝑟,𝑠}𝛽 = 𝜉5

𝑟,𝑠 ∩ 𝜉6
𝑟,𝑠

. 

Thus, the proof is complete. 

 

4. Some Matrix Classes 

 

In this part, we identify certain matrix classes 

associated with the new sequence spaces. 

 

Now let us prefer the following sequences that 

we use throughout this section. 

 

𝜌𝑛𝑘
𝑟,𝑠 =∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘 (

1

𝑗 + 1
) 𝑎𝑛𝑗

∞

𝑗=𝑘

(60) 

 

and 

 

𝜂𝑛𝑘
𝑟,𝑠 =∑

1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘(𝑗 + 1)𝑎𝑛𝑗

∞

𝑗=𝑘

  (61) 

 

for all 𝑛, 𝑘 ∈ ℕ. 

 

Theorem 4.1. Given an infinite matrix 𝐴 =
(𝑎𝑛𝑘), the following statements hold. 

i) 𝐴 = (𝑎𝑛𝑘) ∈ (∫ 𝑏1
𝑟,𝑠 : ℓ∞)  

if and only if sup
𝑘,𝑛
|𝜌𝑛𝑘
𝑟,𝑠| < ∞,                  (62) 

ii) 𝐴 = (𝑎𝑛𝑘) ∈ (∫ 𝑏𝑝
𝑟,𝑠 : ℓ∞) 

if and only if sup
𝑛∈ℕ

∑|𝜌𝑛𝑘
𝑟,𝑠|

𝑞
< ∞,

𝑘

         (63) 

             {𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝜉7
𝑟,𝑠   (1 < 𝑝 < ∞), (64) 

 

iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑑𝑏1
𝑟,𝑠: ℓ∞) 

if and only if sup
𝑘,𝑛
|𝜂𝑛𝑘
𝑟,𝑠| < ∞,                  (65) 

 

iv) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑑𝑏𝑝
𝑟,𝑠: ℓ∞) 

if and only if sup
𝑛∈ℕ

∑|𝜂𝑛𝑘
𝑟,𝑠|

𝑞
< ∞,

𝑘

            (66) 

              {𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝜉10
𝑟,𝑠    (1 < 𝑝 < ∞). (67) 

 

Proof: Since the others can be done in a similar 

method, we only provide the proof for (iv). 

Let 1 < 𝑝 < ∞. Let us consider an arbitrary 

sequence 𝑥 = (𝑥𝑘) ∈ 𝑑𝑏𝑝
𝑟,𝑠

 that satisfies the 

conditions (66) and (67). Thus, it is obtained that 

{𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑑𝑏𝑝
𝑟,𝑠}

𝛽
. This result indicates the 

existence of the 𝐴-transform of 𝑥. From the 

relation (48), we have 

 

∑𝑎𝑛𝑘𝑥𝑘

𝑚

𝑘=0

=∑[∑
1

𝑟𝑘
(
𝑘

𝑗
) (−𝑠)𝑘−𝑗(𝑟

𝑘

𝑗=0

𝑚

𝑘=0

+ 𝑠)𝑗(𝑘 + 1)𝑦𝑗] 𝑎𝑛𝑘 

                   = ∑[∑
1

𝑟𝑗
(
𝑗

𝑘
) (−𝑠)𝑗−𝑘(𝑟 + 𝑠)𝑘(𝑗

𝑚

𝑗=𝑘

𝑚

𝑘=0

+ 1)] 𝑎𝑛𝑗𝑦𝑘 .                            (68) 

 

By taking limit (68) side by side as 𝑚 → ∞, we 

obtain that 

 

∑𝑎𝑛𝑘𝑥𝑘 =∑𝜂𝑛𝑘
𝑟,𝑠𝑦𝑘

𝑘𝑘

, 𝑛 ∈ ℕ.                      (69) 

 

Then, we derive by taking ℓ∞-norm (69) side by 

side and any by applying Hölder’s inequality 

that, 

 

‖𝐴𝑥‖∞ = sup
𝑛∈ℕ

|∑𝜂𝑛𝑘
𝑟,𝑠𝑦𝑘

𝑘

| 
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≤ sup
𝑛∈ℕ

(∑|𝜂𝑛𝑘
𝑟,𝑠|

𝑞

𝑘

)

1
𝑞

(∑|𝑦𝑘|
𝑝

𝑘

)

1
𝑝

< ∞.      (70) 

 

Consequently, we conclude that 𝐴𝑥 ∈ ℓ∞. So, 

𝐴 = (𝑎𝑛𝑘) ∈ (𝑑𝑏𝑝
𝑟,𝑠: ℓ∞). 

Conversely, assume that A= (𝑎𝑛𝑘) ∈

(𝑑𝑏𝑝
𝑟,𝑠: ℓ∞). This gives us to {𝑎𝑛𝑘}𝑘∈ℕ ∈

{𝑑𝑏𝑝
𝑟,𝑠}

𝛽
 for all 𝑛 ∈ ℕ. Then, it is evident that the 

condition (67) is necessary and that the 

{𝜂𝑛𝑘
𝑟,𝑠}𝑘,𝑛∈ℕ exists. Because of {𝑎𝑛𝑘}𝑘∈ℕ ∈

{𝑑𝑏𝑝
𝑟,𝑠}

𝛽
, we can see that the condition (69) holds 

and the sequences 𝑎𝑛 = (𝑎𝑛𝑘)𝑘∈ℕ define the 

continuous linear functionals 𝑓𝑛 on 𝑑𝑏𝑝
𝑟,𝑠

 by 

 

𝑓𝑛(𝑥) =∑𝑎𝑛𝑘𝑥𝑘
𝑘

                                            (71) 

 

for all 𝑛 ∈ ℕ. Additionally, we know from the 

Theorem 2.4 that the 𝑑𝑏𝑝
𝑟,𝑠

 is norm isomorphic to 

ℓ𝑝. By connecting this result and the condition 

(69), we have  

 

‖𝑓𝑛‖ = ‖(𝜂𝑛𝑘
𝑟,𝑠)

𝑘∈ℕ
‖
𝑞
,                                     (72) 

 

which yield that the functionals 𝑓𝑛 are pointwise 

bounded. Moreover, we derive from the Banach-

Steinhaus Theorem that the functionals 𝑓𝑛 are 

uniformly bounded. So there exists a constant 

𝑀 > 0 such that; 

 

(∑|𝜂𝑛𝑘
𝑟,𝑠|

𝑞

𝑘

)

1
𝑞

= ‖𝑓𝑛‖ ≤ 𝑀                             (73) 

 

for all 𝑛 ∈ ℕ, which shows us that the condition 

(66) holds. Thus, the proof is completed. 

 

Lemma 4.1. [11] Let 𝐵 = (𝑏𝑛𝑘) be an infinite 

matrix. Then, 𝐵 = (𝑏𝑛𝑘) ∈ (ℓ1: ℓ𝑝) if and only 

if  

 

sup
𝑘∈ℕ

∑|𝑏𝑛𝑘
𝑟,𝑠|

𝑝
< ∞

𝑛

, 

 

where 1 < 𝑝 < ∞. 

 

Theorem 4.2.Let an infinite matrix 𝐵 = (𝑏𝑛𝑘) 
be given. Then, 

 

i) 𝐵 = (𝑏𝑛𝑘) ∈ (∫ 𝑏1
𝑟,𝑠 : ℓ𝑝)if and only if 

sup
𝑘∈ℕ

∑ |𝜌𝑛𝑘
𝑟,𝑠|

𝑝
< ∞𝑛 ,                                  (74) 

ii) 𝐵 = (𝑏𝑛𝑘) ∈ (𝑑𝑏1
𝑟,𝑠: ℓ𝑝)  if and only if  

sup
𝑘∈ℕ

∑ |𝜂𝑛𝑘
𝑟,𝑠|

𝑝
< ∞𝑛 .                                   (75) 

 

Proof: Let a sequence 𝑦 = (𝑦𝑘) ∈ ∫ 𝑏1
𝑟,𝑠

be 

given. Assume that the condition (75) holds. 

Then, it is clear that 𝑧 = (𝑧𝑘) ∈ ℓ1 and 

{𝑏𝑛𝑘}𝑘∈ℕ ∈ {∫ 𝑏1
𝑟,𝑠}𝛽 for all 𝑛 ∈ ℕ. That means 

𝐵-transform of 𝑥 exists. As a result of this, the 

series ∑ 𝜌𝑛𝑘
𝑟,𝑠

𝑘 𝑧𝑘 are absolutely convergent for all 

𝑛 ∈ ℕ and 𝑧 = (𝑧𝑘) ∈ ℓ1. Now let us consider 

the following equality. 

 

∑𝑏𝑛𝑘𝑦𝑘 =∑𝜌𝑛𝑘
𝑟,𝑠

𝑘𝑘

𝑧𝑘, 𝑛 ∈ ℕ.                       (76) 

 

If we apply the Minkowsky inequality to 

equation (76), we obtain  

 

(∑|(𝐵𝑦)𝑛|
𝑝

𝑛

)

1
𝑝

≤∑|𝑧𝑘|

𝑘

(∑|𝜌𝑛𝑘
𝑟,𝑠|

𝑝

𝑛

)

1
𝑝

. (77) 

 

Thus, it follows that 𝐵𝑦 ∈ ℓ𝑝, namely 𝐵 =

(𝑏𝑛𝑘) ∈ (∫ 𝑏1
𝑟,𝑠 : ℓ𝑝).  

 

Conversely, we suppose that 𝐵 = (𝑏𝑛𝑘) ∈
(∫ 𝑏1

𝑟,𝑠 : ℓ𝑝). Namely, 𝐵𝑦 ∈ ℓ𝑝 for all 𝑦 =

(𝑦𝑘) ∈ ∫ 𝑏1
𝑟,𝑠

. So, {𝑏𝑛𝑘}𝑘∈ℕ ∈ {∫ 𝑏1
𝑟,𝑠}𝛽 for all 

𝑛 ∈ ℕ, which shows us that the relation (76) 

holds. These results give us that (𝜌𝑛𝑘
𝑟,𝑠) ∈

(ℓ1: ℓ𝑝). By combining last result and Lemma 

4.1, we obtain that the condition (74) holds. 

The part (ii) can be proved by using a similar 

method. Thus, the proof is complete. 

 

5. Conclusion 
 

𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) represents the composition of the 

binomial matrix and the integrated sequence 

space and 𝑈𝑟,𝑠 = (𝑢𝑛𝑘
𝑟,𝑠) represents the 

composition of the binomial matrix and the 

differentiated sequence space. Since 𝑇𝑟,𝑠 =

(𝑡𝑛𝑘
𝑟,𝑠) and 𝑈𝑟,𝑠 = (𝑢𝑛𝑘

𝑟,𝑠) is more comprehensive 



Kübra Topal 

1069 
 

than integrated and differentiated sequence 

spaces, respectively, our conclusions are more 

general.  
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