# PAPER DETAILS

TITLE: EGE BÖLGESI SAHIL KUSAGINDA BUGDAY VERIMINI ETKILEYEN IKLIM FAKTÖRLERI

VE ÇESITLERIN ADAPTASYONLARI

AUTHORS: Riza Ünsal Hatice GEREN, Hatice GEREN

PAGES: 1-10

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/19935

ANADOLU, J. of AARI 18 (2) 2008, 1 - 10 MARA

#### CLIMATIC FACTORS AFFECTING WHEAT YIELDS IN AEGEAN COASTAL REGION AND ADAPTATION OF VARIETIES

Rıza ÜNSAL

Hatice GEREN

#### Aegean Agricultural Research Institute P. O. Box 9 35661 Menemen-İzmir/TURKEY

**ABSTRACT:** Wheat yield can reach up to 10000 kg/ha under favorable years and good management in Aegean coastal region in which rainfall ranges between 550-1100 mm. But, unusual weather conditions prevailing in the region like other parts of the globe during recent years have become major factor limiting wheat production. Climatic conditions badly affecting wheat yield in Aegean Region are erratic rainfall, high air temperature in May, drought stress, and late frost damage following mild autumn. The fact that wheat yields are very much dependant on environment and climatic conditions changing year to year makes it important to determine stabile and high yielding varieties and to introduce them to producers. The outcome of yield trials carried out at nine locations between the years of 2001-2004 by Aegean Agricultural Research Institute showed that Ziyabey 98, Basribey 95, Karacabey 97 and Golia were found to be stabile varieties. Varieties to be advised were Seyhan 95, Izmir 85, Bandırma 97 and Kasifbey 95 for low and average yielding parts and Adana 99, Ceyhan 99 and Doğankent for high yielding parts of the region.

Keywords: Wheat, Triticum aestivum L., stability, adaptation, climatic factors.

### EGE BÖLGESİ SAHİL KUŞAĞINDA BUĞDAY VERİMİNİ ETKİLEYEN İKLİM FAKTÖRLERİ VE ÇEŞİTLERİN ADAPTASYONLARI

**ÖZ**: Yağışın 550–1100 mm arasında değiştiği Ege sahil kuşağında, uygun yıllarda iyi bakım koşullarında hektara buğday verimi 10000 kg'a kadar çıkabilmektedir. Ancak son yıllarda tüm dünyada olduğu gibi bölgede de hüküm süren alışılmadık iklim koşulları, üretimi sınırlayan faktörlerir başında gelmektedir. Ege bölgesinde buğday verimini olumsuz etkileyen en önemli iklim faktörleri; yağışların düzensizliği, Mayıs ayında oluşan yüksek sıcaklık ve yetersiz yağışla oluşan kurak stresi, ılık geçen sonbaharın ardından erken ilkbaharda oluşan soğuk zararıdır. Buğday verimlerinin çevre ve yıllara göre değişen iklim şartlarına çok bağımlı olması; kararlı ve yüksek bir verim için çevre faktörlerinin etkisini azaltıcı, çeşitlerin saptanarak üreticilere aktarılması önem arz etmektedir. Ege Tarımsal Araştırma Enstitüsü tarafından 2001-2004 yılları arasında 4 yıl ve 9 lokasyonda yürütülen bir çalışmada verim değerlendirmeleri sonucunda tavsiye edilebilecek stabil çeşitler olarak; Ziyabey 98, Basribey 95, İzmir 85, Bandırma 97 ve Kaşifbey 95 çeşitleri, iyi verimli koşularına verim potansiyeli yüksek olan Adana 99, Ceyhan 99, Doğankent çeşitleri önerilebilir.

Anahtar Sözcükler: Buğday, Triticum aestivum L., stabilite, adaptasyon, iklim faktörleri.

## **INTRODUCTION**

Wheat plays a major role in human nutrition, being main ingredient of bread. Wheat is also used as feed at animal nutrition and energy source for bioetanol production.

Although wheat has large adaptation ability, it does not like high temperature and humidity. At early stages of growth, it is enough that temperature is 8-10 °C and humidity is 60 % percent. It does not require much temperature during tillering and booting stage. 10-15 °C temperature, 65 % humidity and partly cloudy weather are favorable. Temperature and humidity requirement increase with booting. High relative humidity just before heading positively affects yield. Low humidity and high temperature at fertilization increase seed quality. 500 mm uniform rainfall during growing period is enough for maximum yield (Kün, 1988).

Wheat crop grown almost every part of Turkey comes first in field crops in terms of both area and production. Wheat growing areas range between 9-9.5 million hectares of which 1.8 million ha is for durum and the rest is for bread wheat (Anonymous, 2006). It interests 2.9 million farms in terms of production which is about 15 million people and whole nation in terms of consumption. Moreover wheat is used as row material industry. Wheat is only crop for certain areas.

| Year | Area sown     | Production     | Yield   |  |  |
|------|---------------|----------------|---------|--|--|
|      | Million of ha | Million of ton | (kg/ha) |  |  |
| 1980 | 9,020         | 16,500         | 1829    |  |  |
| 1990 | 9,450         | 20,000         | 2116    |  |  |
| 1995 | 9,400         | 18,000         | 1915    |  |  |
| 1996 | 9,350         | 18,500         | 1978    |  |  |
| 1997 | 9,340         | 18,650         | 1997    |  |  |
| 1998 | 9,400         | 21,000         | 2234    |  |  |
| 1999 | 9,380         | 18,000         | 1919    |  |  |
| 2000 | 9,400         | 21,000         | 2234    |  |  |
| 2001 | 9,350         | 19,000         | 2032    |  |  |
| 2002 | 9,300         | 19,500         | 2097    |  |  |
| 2003 | 9,100         | 19,000         | 2099    |  |  |
| 2004 | 9,300         | 21,000         | 2258    |  |  |
| 2005 | 9,250         | 21,500         | 2320    |  |  |
| 2006 | 8,490         | 20,010         | 2360    |  |  |
| 2007 | 8,490         | 17,234         | 1948    |  |  |

Table 1. Wheat production area and average yield in Turkey (Anonymus, 2006; Anonymus-a, 2007).

Wheat yields change from year to year depending on climate. Average wheat yield is 1 829-2 360 kg/ha. This shows that wheat yield is dependent on environment and climatic conditions changing from year to year and it is necessary that variety improvement and irrigation practices should be developed in order to decrease effects of environmental factors for stabile and high yield.

### WHEAT GROWING IN AEGEAN REGION

In relation to wheat growing, Aegean Region has two distinct regions, coastal stripe and transition zones. The area called coastal stripe consist of İzmir, Aydın counties and low parts of Manisa-Denizli-Muğla, coastal and southern parts of Çanakkale-Bursa and Balıkesir counties where wheat varieties with spring type is grown. Coastal region has Mediterranean climatic condition having mild and rainy winters. Highlands and inner parts called west transition zone of Manisa-Denizli-Muğla-Balıkesir counties and northern and inner parts of Bursa-Çanakkale-and Uşak counties have continental climate with harsh winter conditions. Wheat varieties with winter-facultative type and more vernalization requirement and tolerant to winter cold are grown in these regions (Ünsal, 2004).

Average occupation of wheat growing areas in Aegean region is about 850 000-900 000 ha maintaining 10 % of Turkey's wheat growing areas. Coastal area of the region has nearly 350 000 ha wheat growing area 280 000 ha of which is grown with bread type wheat cultivars and 70 000 ha of which is cultivated with durum type of wheat varieties. Average yield of the region is 3100-3200 kg/ha which is about 1.5 times as high as Turkey's average. But yield of coastal area is higher being 4500-5000 kg/ha (Ünsal, 2004).

| Province  | Area sown (ha) | Production (ton) | Yield (kg/ha) |
|-----------|----------------|------------------|---------------|
| İzmir     | 53186          | 185812           | 3494          |
| Aydın     | 30129          | 129050           | 3840          |
| Manisa    | 119974         | 293071           | 2443          |
| Denizli   | 98418          | 233991           | 3000          |
| Muğla     | 50805          | 153285           | 3000          |
| Balıkesir | 182310         | 578393           | 3170          |
| Çanakkale | 128305         | 425351           | 3315          |
| Bursa     | 127735         | 392767           | 3075          |
| Uşak      | 55600          | 147150           | 3030          |

 Table 2. Wheat production areas and average yields in Aegean Region (Anonymus, 2006).

#### Climatic factors limiting wheat yield in Aegean Region

Wheat yield can reach up to 10000 kg/ha under favorable years and good management in Aegean coastal region in which rainfall ranges between 550-1100 mm. But, unusual weather conditions prevailing in the region like other parts of the globe during recent years have become major factor limiting wheat production.

Amoung the factors limiting wheat yield, erratic rainfall comes first. Particularly, excessive and late autumn rainfall reaching up to 100 mm a day experienced recent year's results in delay in sowing time and crop lost some years. In addition to this, winds cause lodging. Flooding and lodging also decrease yield and quality.

The importance of the rainfall distribution during the growing season cannot be overstated. Even for rainfall amounts of 200-330 mm, any additional rainfall affects the yield both positively and negatively depending on climate and the crop phenelogical stage (Lomas and Shashoua, 1970). The effect of rainfall distribution on wheat yields in the Aegean Region of Turkey showed positive effects during the months of March to May when the average amount of rainfall is 139 mm and the potential rate of evapotranspiration in 392 (Anonymus, 2002).

Inadequate rainfall during mid-February and mid-March when spikelet primordial initiation occurs limits the yield significantly. Apart from this, drought stress happening in May and afterwards because of lack of rainfall also decrease the yield as well as quality. In order to decrease losses, crop should be irrigated at flowering time. Another choice to escape from drought stress is to use early varieties.

The most significant variables, which explained wheat yield variability, are rainfall (during December, May and June) and soil moisture stress (following the reproductive stage of wheat) (Anonymus, 2002).

Another important factor limiting the yield is sudden air temperature changes. On coastal area summer varieties with no vernalization requirement are grown. Wheat excessively growing under warm autumn conditions is more prone to temperature changes happening in January and March. At this cold period if wheat is at tillering stage, damage is low, but if it is at booting or heading stage damage is high. Sowing time is important to reduce cold damage. Sudden air temperature increase in second part of May also causes yield and quality losses.

| Months    | Der  | nizli | Balıkesir |      | Çanakkale |      | Aydın |      |
|-----------|------|-------|-----------|------|-----------|------|-------|------|
|           | (mm) | °C    | (mm)      | °C   | (mm)      | °C   | (mm)  | °C   |
| October   | 32   | 16,3  | 44        | 15,7 | 45        | 16   | 48    | 17,9 |
| November  | 50   | 11,4  | 78        | 10,1 | 85        | 11,4 | 74    | 13,6 |
| December  | 86   | 7,4   | 100       | 6,6  | 105       | 8,1  | 135   | 9,5  |
| January   | 83   | 5,5   | 92        | 5,0  | 97        | 6,4  | 121   | 7,8  |
| February  | 70   | 6,7   | 74        | 5,6  | 71        | 6,4  | 54    | 9,0  |
| March     | 63   | 9,8   | 61        | 8,1  | 66        | 8,3  | 69    | 11,2 |
| April     | 49   | 14,1  | 49        | 13,3 | 39        | 12,5 | 46    | 15,7 |
| May       | 46   | 19,2  | 44        | 17,8 | 28        | 17,4 | 30    | 20,6 |
| June      | 22   | 23,8  | 24        | 22,6 | 23        | 22,3 | 14    | 25,4 |
| July      | 10   | 26,6  | 8         | 24,4 | 11        | 25,0 | 4     | 28,0 |
| August    | 5    | 26,0  | 8         | 24,0 | 8         | 24,7 | 2     | 27,4 |
| September | 14   | 21,5  | 21        | 20,6 | 23        | 20,8 | 15    | 23,3 |
| Total     | 535  |       | 607       |      | 606       |      | 656   |      |

Table 3. Long term rainfall (mm) and average air temperature (°C) data in Aegean Region (Anonymus, 2008).

| Months    | İzmir |      | Ma   | nisa | Muğla |      |  |  |  |
|-----------|-------|------|------|------|-------|------|--|--|--|
|           | (mm)  | °C   | (mm) | °C   | (mm)  | °C   |  |  |  |
| October   | 43    | 18,4 | 49   | 17,6 | 68    | 15,8 |  |  |  |
| November  | 86    | 14   | 91   | 12,3 | 125   | 10,7 |  |  |  |
| December  | 146   | 10,4 | 148  | 8,4  | 284   | 7    |  |  |  |
| January   | 136   | 8,6  | 129  | 6,8  | 262   | 5,4  |  |  |  |
| February  | 102   | 9,4  | 111  | 8,0  | 179   | 6    |  |  |  |
| March     | 71    | 11,3 | 77   | 10,4 | 117   | 8,3  |  |  |  |
| April     | 43    | 15,6 | 55   | 15,1 | 62    | 12,5 |  |  |  |
| May       | 34    | 20,5 | 42   | 20,1 | 44    | 17,4 |  |  |  |
| June      | 9     | 25,1 | 16   | 25,0 | 22    | 22,4 |  |  |  |
| July      | 2     | 27,6 | 6    | 27,6 | 6     | 26   |  |  |  |
| August    | 2     | 27,1 | 4    | 27,2 | 6     | 25,6 |  |  |  |
| September | 13    | 23,4 | 18   | 23,1 | 15    | 21,6 |  |  |  |
| Total     | 691   |      | 751  |      | 1195  |      |  |  |  |

#### Yields and adaptation of wheat cultivars grown in Aegean Region

Acreage of cultivated areas are steadily decreasing like allover the world. Consequently, to develop cultivars getting highest yield per unit area is the purpose of the breeding studies. It is important that varieties show stabile performance against environment conditions in terms of sustainability of the yield. Since climatic

conditions are not intervened it is more important to improve stabile varieties to climatic changes.

Genotype x environment interaction is important to breeders. Yıldırım at all. (1979), described adaptation as ability of genotype to adapt to different environmental conditions and stability as measure of probability of changes to be done at environmental condition on genotype. It is accepted that varieties with high stability value have higher yield than average yield and varieties that show superior yield at certain environments have good specific adaptation ability.

Yields values maintained at study carried out by Aegean Agricultural Research Institute using registered bread wheat varieties during the years of 2001-2004 are given in Table 4. Irrigations were applied at different places and years where facilities were suitable. Experiments were irrigated once at Menemen and twice in Salihli locations and there was no irrigation at Bandırma location in 2001. There was no irrigated once at Menemen location was irrigated once at heading stage in 2004 when rainfall was only 252 mm.

Yields of Adana 99 were 9544 kg/ha at Salihli, 6356 kg/ha at Menemen, and 3845 kg/ha Bandırma location where there was no irrigation in 2001. Yields of Basribey 95 were 7789 kg/ha at Menemen, 8338 kg/ha at Salihli, and 5724 at Bandırma location. Particularly inadequate rainfall in May which wheat was at seed filling stage caused yield losses at later heading varieties. This shows how important irrigation is.

The yields of varieties ranged from 7410 kg/ha (Basribey 95) to 3687 kg/ha (Momtheil) in 2002-2003. Low rainfall in April and May, lack of irrigation decreased the yield of alternative and late varieties.

The year 2004 was very dry. Total rainfall was 252.75 mm of which 134.25 mm was in January. Irrigation applied at heading stage and cool spring put late varieties with high vernalization requirement first (Katea-1 8882 kg/ha). Temperature decrease in February, May and April caused significant cold damage in fields sown early.

At breeding studies, it is important to determine stability parameters and adaptation as well as increase in yield. In general, it is accepted that genotypes with high mean yield, regression coefficient (b) 1 or close to 1, deviation value from regression zero are ideal (Eberhart and Russel, 1996). Moreover, varieties with regression coefficient higher than 1 adapt to good environment conditions, and lower than 1 to bad environment conditions.

Stability parameters obtained from experiments carried out at 9 locations and for 4 years are summarized in Table 5. Stability graph containing regression coefficient of varieties is given in Figure 1.

Regression coefficient (b) of varieties ranged from 0.541 to 1.941 (Table 5) at this study. In terms of regression coefficient stability of Basribey 95 (0.982), Golia (0.916), Karacabey 97 (1.051) and Ziyabey 98 (1.048) are seen to be good. It may be misleading that to get in conclusion about cultivars stability by taking into consideration only regression coefficient. Therefore, it is wise to use all parameters while justification. Mean square error  $(s^2d)$  value should be targeted low and theoretically 0.

Table 4. Yield of wheat varieties (2001-2004, 9 Locations) (Anonymus-b, 2007).

| Varieties     |                        |                         | 105 (200               |                        |                        | utions) (1             | monym                  |                         |                        |
|---------------|------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|
| varieties     | Menemen<br>2001(kg/ha) | Bandırma<br>2001(kg/ha) | Salihli<br>2001(kg/ha) | Menemen<br>2002(kg/ha) | Menemen<br>2003(kg/ha) | Dalaman<br>2003(kg/ha) | Menemen<br>2004(kg/ha) | Bandırma<br>2004(kg/ha) | Dalaman<br>2004(kg/ha) |
| Adana 99      | 6356                   | 3845                    | 9544                   | 6436                   | 5260                   | 4658                   | 7515                   | 6188                    | 6458                   |
| Bandırma 97   | 6650                   | 4761                    | 6887                   | 6438                   | 7022                   | 5961                   | 7400                   | 6471                    | 6106                   |
| Basribey 95   | 7789                   | 5724                    | 8338                   | 7410                   | 6649                   | 5884                   | 8564                   | 6551                    | 6397                   |
| Ceyhan 99     | 6801                   | 4243                    | 9263                   | 6401                   | 5688                   | 5409                   | 7689                   | 6913                    | 7048                   |
| Cumhuriyet 75 | 7124                   | 4732                    | 5929                   | 6116                   | 5620                   | 3393                   | 7753                   | 6328                    | 4893                   |
| Doğankent     | 6974                   | 4944                    | 9159                   | 6120                   | 5943                   | 5376                   | 8339                   | 6790                    | 5663                   |
| Golia         | 6825                   | 5633                    | 8048                   | 6488                   | 5352                   | 5458                   | 7806                   | 6591                    | 7353                   |
| Gönen 98      | 6897                   | 4755                    | 6960                   | 6783                   | 6417                   | 4635                   | 7068                   | 6309                    | 6093                   |
| İzmir 85      | 6929                   | 6092                    | 7168                   | 6496                   | 6524                   | 5650                   | 8735                   | 7431                    | 6254                   |
| Karacabey 97  | 6750                   | 4838                    | 7985                   | 5967                   | 6398                   | 5384                   | 7713                   | 6698                    | 4673                   |
| Karacadağ 98  | 6250                   | 3660                    | 5532                   | 6260                   | 6241                   | 5580                   | 6483                   | 5525                    | 5031                   |
| Kaşifbey 95   | 7837                   | 5284                    | 5003                   | 4793                   | 5458                   | 5464                   | 7870                   | 6982                    | 6629                   |
| Katea -1      |                        |                         |                        |                        | 4872                   | 4730                   | 8882                   | 6914                    | 6478                   |
| Momtchil      | 5442                   | 4128                    | 6213                   | 3687                   | 3983                   | 4298                   | 6213                   | 6150                    | 5724                   |
| Nurkent       | 6279                   | 3898                    | 8747                   | 6490                   | 6131                   | 5757                   | 7421                   | 7052                    | 5896                   |
| Pamukova 97   | 6280                   | 4436                    | 7329                   | 5322                   | 5527                   | 4902                   | 7134                   | 5522                    | 4827                   |
| Panda         | 5785                   | 3630                    | 7686                   | 5419                   | 5987                   | 5223                   | 5920                   | 6238                    | 5934                   |
| Sakin         |                        |                         |                        |                        | 4704                   | 3934                   | 6293                   | 7110                    | 5976                   |
| Seri 82       | 7050                   | 4823                    | 6349                   | 4379                   | 5937                   | 4653                   | 6981                   | 6599                    | 5900                   |
| Seyhan 95     | 6838                   | 5247                    | 8633                   | 6304                   | 6377                   | 6655                   | 7175                   | 6473                    | 6195                   |
| Tahirova 2000 | 5613                   | 4628                    | 6371                   | 5180                   | 4789                   | 5110                   | 7705                   | 6807                    | 7123                   |
| Yüreğir 89    | 5814                   | 3232                    | 7916                   | 6357                   | 5384                   | 5599                   | 7139                   | 6447                    | 6160                   |
| Ziyabey 98    | 7379                   | 4948                    | 8694                   | 6614                   | 6800                   | 6758                   | 8373                   | 6512                    | 6655                   |
| CV            | 7,3                    | 13,5                    | 10,0                   | 10,4                   | 8,9                    | 12,7                   | 6,9                    | 5,6                     | 7,3                    |
| LSD(%5)       | 68,7                   | 88,4                    | 106,6                  | 88,3                   | 73,03                  | 94,24                  | 73,03                  | 51,92                   | 63,02                  |

| Varieties     | Yield   |       |       |          |       | Deviation from        |
|---------------|---------|-------|-------|----------|-------|-----------------------|
|               | (kg/ha) | %     | b     | а        | $R^2$ | Regression ( $S^2d$ ) |
| Adana 99      | 6251    | 100,6 | 1,590 | -362,526 | 0,844 | 4870,659              |
| Bandırma 97   | 6411    | 103,2 | 0,660 | 231,287  | 0,681 | 2120,434              |
| Basribey 95   | 7034    | 113,2 | 0,982 | 92,496   | 0,819 | 2213,152              |
| Ceyhan 99     | 6606    | 106,3 | 1,409 | -214,543 | 0,879 | 2840,474              |
| Cumhuriyet 75 | 5765    | 92,80 | 1,038 | -68,408  | 0,572 | 8401,047              |
| Golia         | 6576    | 105,8 | 0,916 | 88,590   | 0,747 | 2960,127              |
| Gönen 98      | 6180    | 99,4  | 0,834 | 99,761   | 0,780 | 2040,390              |
| İzmir 85      | 6841    | 110,1 | 0,774 | 203,043  | 0,675 | 3007,770              |
| Karacabey 97  | 6326    | 101,8 | 1,051 | -20,127  | 0,741 | 4015,417              |
| Karacadağ 98  | 5585    | 89,9  | 0,560 | 210,948  | 0,391 | 5085,782              |
| Kaşifbey 95   | 6310    | 101,5 | 0,541 | 295,028  | 0,224 | 10556,366             |
| Momtchil      | 5093    | 81,9  | 0,877 | -35,402  | 0,629 | 4730,293              |
| Nurkent       | 6407    | 103,1 | 1,267 | -146,378 | 0,836 | 3269,606              |
| Pamukova 97   | 5697    | 91,7  | 0,987 | -43,070  | 0,861 | 1643,313              |
| Panda         | 5758    | 92,6  | 0,920 | 4,648    | 0,686 | 4032,847              |
| Seri 82       | 5852    | 94,2  | 0,816 | 78,335   | 0,593 | 4764,348              |
| Seyhan 95     | 6655    | 107,1 | 0,786 | 177,067  | 0,679 | 3050,607              |
| Tahirova 2000 | 5926    | 95,3  | 0,865 | 55,517   | 0,554 | 6274,878              |
| Yüreğir 89    | 6005    | 96,6  | 1,221 | -157,718 | 0,801 | 3846,959              |
| Ziyabey 98    | 6970    | 112,2 | 1,048 | 46,303   | 0,824 | 2434,206              |
| Doğankent     | 6648    | 107   | 1,379 | -195,985 | 0,900 | 2547,665              |
| Kate-A-I      | 6375    | 102,6 | 1,941 | -570,305 | 0,941 | 2265,423              |
| Sakin         | 5603    | 90,2  | 1,156 | 159,478  | 0,596 | 8729,217              |
| Average yield | 6212    | 100   | -     | ĺ.       |       |                       |

Table 5. Stabilities parameter of wheat varieties (2001-04, 9 Locations) (Anonymusb, 2007).

The stability chart shown that, Ziyabey 98 (yield: 6970 kg/ha, b: 1048, a: 46,303) and Karacabey 97 (yield: 6326 kg/ha, b: 1,051, a: -20,127) have very good adaptation capability on favorable conditions. Because Nurkent, Ceyhan 99, Doğankent, and Adana 99 have >1 calculated b score and higher yield then average, these varieties may grown in good conditions.

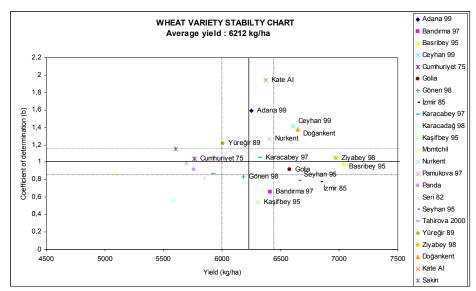



Figure 1. Stability chart of varieties (Anonymus, 2004).

It is said that Golia (yield: 6576 kg/ha, b: 0,916, a: 88,590), Basribey (yield:7034 kg/ha, b: 0,982, a: 93,496) have very good adaptation capability and stability on poor conditions. These varieties may show good performance on the favorable conditions. Izmir 85, Bandırma 97 and Kaşifbey 95 may be grown in poor conditions, because these varieties have <1 calculated b score and higher yield then average.

### RESULT

Wheat yields are very much dependent on growing conditions and year on year climatic changes, therefore it is important to release high yielded and stabile varieties.

Ziyabey 98, Basribey 95, Karacabey 97 and Golia show very good adaptation capability and stability in all location of the region. Seyhan 95, İzmir 85, Bandırma 97 and Kaşifbey 95 may be grown weak and poor conditions. Adana 99, Ceyhan 99, Doğankent and Nurkent may be preferred in favorable growing conditions because of high yield. On the other hand, quality parameters are also important to advise varieties to the region, therefore quality factors should be studied.

## LITERATURE CITED

Anonymus. 2002. The Impact of Climate, Agrotechnology, Soil and Socio-Economic Factors on Wheat Yields. Turkish-Israel Joint Project Final Report. Menemen-İzmir.

Anonymus. 2005. Toprak Mahsülleri Ofisi 2005 Yılı Hububat Raporu.

Anonymus. 2006. Bitkisel Üretim İstatistikleri. http://www.tüik.gov.tr.

Anonymus. 2007a. 2007 Yılı Hububat Raporu, Toprak Mahsülleri Ofisi.

Anonymus. 2007b. ETAE Ara Sonuç Raporu.

- Anonymus. 2008. http://www.meteor.gov.tr
- Eberhart, S.A. and Russel, W.A. 1966. Stability Parameters for Comparing Varieties. Crop Science, 6: 36-40.
- Kün, E. 1988. Serin İklim Tahılları, Ankara Ü. Z. F. Yayınları: 1032.
- Lomas, J. and Shashoua, Y. 1970. The Effect of Rainfall on Wheat Yields in An Arid Region. In:Plant Responses to Climatic Factors. Proc. Upsala Symp. Nat Resources Res. UNESCO.
- Ünsal, R. 2004. Ege Geçit Kuşağında Buğday Tarımı ve Önerilen Buğday Çeşitlerinin Özellikleri. TAYEK 2004 Yılı Tarla Bitkileri Grubu Bilgi Alışveriş Toplantısı Bildirileri. Ege Tarımsal Araştırma Enstitüsü Yayın No:117. 07-09 Eylül 2004. Menemen-İzmir.
- Yıldırım, M. B., A. Öztürk, F. İkiz ve H. Püskülcü. 1979. Bitki Islahında İstatistik-Genetik Yöntemler. Ege Bölge Zirai Araştırma Enstitüsü Yayınları No: 20, 217-251.