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Abstract: In this paper, we study the tubular surface around a spacelike focal curve in
Lorentz 3-Space. First for better understanding of the subject, the definitions and equations
of the canal surface around a regular curve in 3-dimensional Euclidean space are given.
Section 3, concerned with some important definitions and theorems about focal curves
in 3-dimensional Lorentz space. In section 4, we derive equations for canal and tubular
surfaces around a spacelike focal curve in 3-dimensional Lorentz. Then we obtain the first
and the second fundamental forms on the tubular surfaces in the same space. Gauss and
mean curvatures of this surface are obtained. Finally, in this space it is investigated if the
parameter curves for the tubular surface are geodesic or asymptotic and related theorems
about them are stated and proved.

3-Boyutlu Lorentz Uzayinda Bir Uzaybenzeri Focal Egri Etrafindaki Kanal Yiizeyi

Anahtar Kelimeler
Kanal yiizeyler,
Boru yiizeyler,
Focal egriler,
Lorentz uzayi

Ozet: Bu calismada 3-boyutlu Lorentz uzayinda bir uzaybenzeri focal egri etrafindaki
tiip yiizeyini incelendik. Oncelikle konunun daha iyi anlasilmas igin 3-boyutlu Oklid
uzayinda bir regiiler egriye gore kanal ve tiip ylizeylerinin tanimlar1 ve denklemleri verildi.
3. boliimde 3-boyutlu Lorentz uzayinda focal egriler ile ilgili nemli tanim ve teoremler
verildi. 4. boliimde 3-boyutlu Lorentz uzayinda bir uzaybenzeri focal egri etrafindaki
kanal ve tiip yiizeylerin denklemleri ¢ikarildi. Daha sonra bu uzayda tiip yiizeyinin birinci
ve ikinci temel formlar1 ¢ikarildi, Gauss ve ortalama egrilikleri verildi. Sonunda da bu
uzayda tiip yiizeyleri i¢in parametre egrilerinin geodezik veya asimptot olma durumlari
incelendi ve onlarla ilgili teoremler verilip ispatlandi.

1. Preliminaries

e If || X|| =1, X is called a unit vector.

Let R = {(x1,x2,%3) | x1,X2,x3 € R} be a 3-dimensional
vector space, and let X = (x1,x2,x3) and ¥ = (y1,y2,y3)
be two vectors in R3. The Lorentz scalar product of X and
Y is defined by

< X,Y >=x1y1 — X2y2 +x3y3. (D

E} = (R® <,>) is called 3—dimensional Lorentzian
space, Minkowski Space or 3—dimensional semi-
Euclidean space. Any X € R} is named

e spacelike if < X, X >>0or X =0,

e timelike if < X, X >< 0,

e nullif <X, X >=0and X #0.
LetX,YGR? andselCR.

e The norm of the vector X in R7 is defined as || X|| =
1
[<X,X >|2.

e If < X,Y >=0, then the vectors X and Y € R% are
said to be orthogonal.

* Corresponding author: abdullahyildirim@ harran.edu.tr

Similarly, if the velocity vector o’ (s) = T (s) at each point
s is locally spacelike, timelike or null (lightlike), then « is
spacelike, timelike or null, respectively.

The Lorentzian vector product of X and Y is defined as

X AY = (xay3 —X3y2,X1y3 —X3y1,X1y2 —%2y1) . (2)

Hyperbolic and Lorentzian spheres of center M =
(m1,mz,m3) with radius r in the space E3 can be written
as

Hj = {A=(a1,a0,a3) €E} |[<A-M,A—M >= —1*}
and
S% = {A: (ar1,a2,a3) GE? |[<A—M,A—M>= rz}’

respectively.

If normal vectors at each point of M are timelike or space-

like vectors, then it is called as spacelike or timelike sur-

face, respecively[6].

Let a curve o = c(s) : I — E3 be given by arclength s.
do(s)

We know that its velocity vector is T'(s) = o' (s) = s
s
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T'(s)
17" ()l
the vector B as B=N AT. The family {T,N,B} is or-
thonormal triad. These three vectors are called the tangent,
the principal normal and the binormal vectors, respectively.
The family {7, N, B} is called the Frenet frame.

For a non-lightlike curve «, the rate of change of the
Frenet-Serret vector equations may be expressed as

Let as define the unit vector N =

Finally, define

T' = kN,
N' = «T + 1B,
B =1N

the coefficients k and 7 are the first and the second curva-
tures of the «, respectively [7].
In IE% curvatures of an arbitrary curve X is derived as

_ IXIAXT
222
X

<X'NX" X" >

3
X AKX ®

b

where A is cross product in IE? [3].

If o’ and o are linearly independent in /, then the curve
« is said to be good [8].

From now on, we will assume that the given curves are
good curves.

Let

7) =5 (ICa—alP 7).

If there exist infinitely close joint 4-points between the
curve o with its osculating sphere at s = 5o then we have
mn

F(s0) = £ (s0) = £ (s0) = /" (50) =0.

The sphere, ||Co — ot||* = 12 , with the center Cy, obtained
in this way is called the osculating Lorentzian sphere.
The plane spanned by the tangent vector and the principle
normal vector of a curve is called the osculating plane.
A point of a smooth curve in E% for which the derivative
of the curve of order 3 belongs to the osculating plane is
called a flattening.

If there exist infinitely close 5-points in the neighbourhood
of a point with the osculator sphere at s = sq of the curve «,
it is called a vertex of the curve. Conversely, If there does
not exist infinitely close 5-points in the neighbourhood of
a point with the osculator sphere at s = sq of the curve «,
it is called a non-vertex of the curve.

From now on, we assume that all points of the given curves
are non-vertex.

“)

2. Focal Curves in E}

In this section, we will show that, in IE? it is possible to
obtain a Lorentzian tubular surface around a spacelike
focal curve.

Definition 2.1. [9] Let a = a(s) : I — E3 be any curve.
That the points of Cy are the centres of the osculating
spheres of « is called the focal curve of o.

Lemma 2.2. Let a be a spacelike curve with spacelike
binormal in E3 and its Frenet frame be {T (s),N(s),B(s)}.
Then the focal curve Cy, of O is

Co=0+cIN+cB (5)

609

and the focal coefficients of Cy are given by

1 1
Cl=——, ) =C1—
K T

(6)

where K # 0 and T # 0 are the first and the second curva-
tures of the curve «.

Proof. We can always write the vector Cy — o with re-
spect to the linear independence vectors {T (s),N(s),B(s)}.
Namly

Coq—0=coT +ciN+coB 7

If we take the Lorentz scalar product with 7', N and B both
sides of equation (7), then

< T,Coqy—a>=cy,
< N,Cq—0o>=—cy,
< B,Cy—a>=cy.

On the other hand by using equation (4), we may write

f 0=<Cq—0,Co— 0t >=1r2,
f 0=><T,Co—a>=0,

1
o= 0:><N,Ca—oc>=?
1\'1
= 0=<B,Ch—a>=|—| —.

K) 7

1 1
Making use of the equations ¢ = . and ¢z = ¢, . Fi-

nally, we may write the focal curve as

Lemma 2.3. Let a = a(s) : | — E3 be a spacelike curve
with spacelike binormal. If a non-flattening point of & is a
vertex, then

ch+c1t=0.

Converse is also true.

Proof. The equation of the Lorentzian spheres with center
at Cy is

76) =5 (ICa—alP 7).

If there exist infinitely close 5-points between o and its
osculating sphere at s = s, then we have

f(s0) = f'(s0) = £"(s0) = f"(s0) = f¥ (s0) = 0.

Calculating these derivatives we easily obtain the desired
result ¢}, +¢17=0. O
The forthcoming theorem, lemmas and corollaries state the
relations between o and its focal curve C.

Theorem 2.4. Let o : ] — IE? be a spacelike curve with
spacelike binormal. Let {T,N,B} (resp. {t,n,b}) be the
Frenet frame to o (resp. Cy). Let K and T be first and
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second curvatures of Q, respectively. Then we have the
connections

t = &B, ®)
n = &N, 9
b= —enT, (10)
between {T,N,B} and {t,n,b} where
_ htar T
t = W, n = m

Proof. Let ¢ be the arclength parameter of the focal curve
Cy. If we take the derivative of both sides of (5) with
respect to the arclength parameter s, we have

dCy dCyqdo ,
—=———= T|B 11
i~ do a5~ atarlB (11
and if we take the norm of both sides of (11), we get
ds 1
do |y +cit|’
/ T
and if & = <27 1C_ihen
‘C2+C]T
4 T dC
t:&B:(Clz-Ficl) el (12)
|c2—|—cl’L'| do

Now, differentiating both sides of (12) with respect to the
arclength parameter s, we obtain

n =gepN (13)
and .
T
Ke= 15— (14)
’62 +c1 ’C’
On the other hand, we may write
b=tAn=(&B) A (&&eN)
and
b= —¢,T. (15)

Then, taking the derivative of (15) with respect to the
arclength parameter s, we obtain

(16)
O

Corollary 2.5. Let o = a(s) : I — E3 be a spacelike
curve with spacelike binormal. If the curve o is Lorentzian
spherical, then

K=|%||c)+c17].

o= ||Ca—al?,
le1N + 2B,

2 2
=y,

where r is radius of the Lorentzian spherical and differ-
entiating the last equation with respect to the arclenght

parameter s we get
() =2¢2 (h+e17). (17)

Converse is also true. According to equation (17), if risa
constant, then
c =0.

Because the curve o is a non-vertex curve, ¢5 +c¢iT # 0.
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Corollary 2.6. If we consider equations (17) and (17),
the focal coefficients of c1, c» of the curve o satisfy the
following matrix-vector equation

1
/ 0 —-x O 0
1 K T
2 ! - C1
ch— Q 0 -7 0 2
26‘2
If the curve a. is spherical, (rz)/ =0

According to this, we can express the following corollary.

Corollary 2.7. Let K and 7T (resp. K. and T.) be the first
and the second curvatures of a (resp. the first and the
second curvatures of the focal curve Cy, ). If we consider
equations (14) and (16), then

K _lwl_ 1 2
7| K !c’z—i-cm'! |(r2)/| '

Corollary 2.8. Because det(t,n,b) = 1, the focal curve
Cy is a right-handed curve.

From now on, we assume that the ranking of {t,n,b} will
be {space, time, space} or {space, space, time} type.

Lemma 2.9. Let r be the radius of Lorentzian osculating
sphere. If r is constant, then K is constant and

1
r:|cl‘:E’

where K and c| are first curvature of the curve o and the
first focal coefficient of the focal curve Cg, respectively.

Proof. Since r is constant equation (17) implies either
c2=0o0rch+c1T=0.If ¢y +¢;T =0, then the curve is

spherical. If ¢, =0, 0/1% = 0. This means that ¢; = —lK is
constant. O
Lemma 2.10. If we take the derivative of the Frenet frame
{t,n,b} of the focal curve Cy, with respect to the arclength
parameter s, we have

t/ 0 vk. O t
n|l=|vke 0 vz |n|,
b’ 0 vi. O b

do
where v = I |ch + c1 7). If the radius of the osculating
s

sphere r is constant, then

=rlt
dS r| |7

where s and o are the arclength parameters of the curve
a and the focal curve Cgy, respecively.

Now, let us state the equations for canal and tubular sur-
faces around any good curve in E3.



A. Yildirim / Canal Surface Around A Spacelike Focal Curve In Lorentz 3-Space

3. Canal Surfaces in E>

Let us recall the definitions and the results of [1, 9]. A
canal surface is named as the envelope of a family of
1-parameter spheres. In other words, it is the envelope
of a moving sphere with varying radius, defined by the
trajectory with center c(¢) and a radius function r(¢). This
moving sphere S(¢) touches it at a characteristic circle
K (¢). If the radius function r(z) = r is a constant, then it is
called a tubular or pipe surface. Let {T,N, B} be the Frenet
vector fields of &, where T, N and B are tangent, principal
normal and binormal vectors to &, respectively. Since the
canal surface K(z,0) is the envelope of a family of one
parameter spheres with the center o and radius function r,
it is parametrized as

K(1,0) = Oc(t)—r(t)r/(t)HZ,EgH
o @)]|* =7 ()2
+cosOr(t) ] N(t)
. e (0)]|* = ¥ ()2
+sinOr(r) @ B(r).

This surface is called the canal surface around the curve .

Clearly, N(¢) and B(t) are spanning the plane that contains
the characteristic circle. If the spine curve a(s) has an

arclenght parametrization (H o ()| = l) , then the canal
surface is reparametrized as

a(s) —r(s)r ()T (s)
+cosOr(s)y/1—r (s)2N(s)

K(s,0)

+sin0r(s)\/ 1 —7r (s)2B(s).

For the constant radius case r(s) = r, the canal surface is
called a tubular (pipe) surface and in this case the equation
takes the form

L(s,0) = a(s) +r(cosON(s) +sin OB(s)),

where 0 < 0 < 27.

Let a regular curve « : I — M be parametrized so that
!

|l (s) || = 1. Then we have

T; (s) 0 k(s) 07 [T(s)
N (s)| = |—x(s) 0 T(s)| [N(s)|,
B (s) 0 —z(s) 0 ][B(s)
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where k and 7 are the curvature and the torsion of the
curve o (s), respectively.

Now, let us see what happens if we take the focal curve Cy,
of « instead of the curve « itself in E3.

4. Canal Surfaces in E;

Now, we state and prove an important theorem related to
our present study. However, first we need the following
definition.

Definition 4.1. A canal surface in E? is named as the en-
velope of a family of 1-parameter Lorentzian spheres. In
other words, it is the envelope of a moving Lorentzian
sphere with varying radius, defined by the trajectory with
center Cy(s) and a radius function r(¢). This moving
sphere S(¢) touches it at a Lorentzian characteristic cir-
cle K(t). If the radius function r(¢) = r is a constant, then
it is called as a Lorentzian tubular or pipe surface in E?

Theorem 4.2. Let o0 = a(s) : I — E3 be a spacelike
curve with spacelike binormal. Then, the canal surface
around its spacelike focal curve Cy(s) can be parametrized
as follows

Kis) = Cale)~ g
() 2
=20 1- (“2) 769

Proof. Let K be any point of the canal surface and Cy
be the center of a Lorentzian spheres S}(s). Then the
difference K (s,t) — Cy(s) can be written in terms of the
orthogonal vectors {t,n,b} as

K(s,1) —Cql(s) c(s,0)t(s) +b(s,t)n(s)

“+a(s,t)b(s).

By using the connections in (8), the last equation can be
rewritten as

K(s,t) — Cqy(s) —a(s,t)enT(s) —b(s,1)&&nN(s)

+c(s,1)&B(s) (18)

where a, b and ¢ have partial derivatives with respect to
the variables s and 7 on /. On the other hand, taking the
norm of both sides of equation (18) we obtain

1K (s,1) = Ca () |I* = 1*(s). (19)

The equation (19) expresses that K(s,z) lies on a
Lorentzian sphere S?(s). Additionally, K (s,t) — Cq(s) is
an orthogonal vector to the canal surface which means that

< K(s,t) —Cq(s),K; >
< K(s,t) —Cq(s),K; >

0,
0.

(20)
21

The equations in (20) and (21) indicate that velocity vector
of parameter curves K; and K; of the canal surface are
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tangent to S%(s). By making use of (18) and (19), we
immediately obtain the equations

a?—b*+ct = r2
aas —bbs+ccy =rr'. } (22)
Using the partial derivative
K, = (—as&nt+beenk)T
+ (—agnk + bseren + c&T) N
+ (ve +beent+ &) B (23)

of (18) with respect to s, we may rewrite equation (20) as

< K(s,t) —Cq(s),Ks >=aas—bby+ccs+cv=0. (24)
Then equation (22) together with (24), lead to the equalities
—cv=rr

and

(25)

from which we obtain

1\ 2
(v) cosht,
/
Fry [1— (:}) sinht.

If we substitute these values of a and b in (18), we obtain
the equation

K( ) Ca( ) gtr( ) (S)
r'(s) 2
F en(coshi)r ( " ) T(s
+ geq(sinhi)r vs) N(s).  (26)

If the radius r is constant, the equation (26) takes the form

L(s,t) = Cq(s) + encoshtrT (s) — &y sinhzrN(s). (27)
This means that equation (27) is the Lorentzian tubular
surface with parameters s and 7. Without loss of generality,
in (27) we can take & = &, = 1. With this choice, (27)
reads as
L(s,t) =

Co(s)+rcoshtT (s) — rsinhzN(s). (28)

O
In the next section, we give the fundamental forms which
are crutial for the characterization of the Lorentzian tubular
surfaces.
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5. Fundamental Forms

Let o = a(s) : I — [E3 be any unit speed spacelike curve
with spacelike binormal. A parametrization L(s,t) of the
Lorentzian tubular surface around its spacelike focal curve
Cy(s) has given in (28). The partial derivatives of L with
respect to the surface parameters s and ¢ can be expressed
in terms of Frenet vector fields of o as

Ly
L

—sinhtT +coshtN + r7 (1 —sinht) B
rsinhtT — rcoshtN.

We can also choose a unit normal vector field U as

L AL

U=
[[Ls ALl

= coshtT —sinhtN,

where we know that
|Ls AL|* = EG—F? = r*7> (1 —sinhs)*.  (29)
The first fundamental form 7 of L is defined as
I = Edx* +2Fdxdy + Gdy*
where

E=<LgLi>=—1+r7 (1 —sinht)2,

F=<LyL >=
G=<L,L >=—r.

On the other hand, the second fundamental form /7 of L is
defined as

11 = edx® + 2 fdxdy + gdy®
in which
e=<U,Ly>=K+r1° sinh#(1 — sinht),

f=<U,Ly>=—1,
g:<U,LU >=r.

Corollary 5.1. The tubular surface in (28) is a timelike
surface.

Definition 5.2. [1] Let M be any surface and the set
{E, F,G} be the coefficients of its first fundamental form.
M is called a regular surface if EG — F? # 0.

Lemma 5.3. L(s,1) is a regular tube, iff sinht # 1.

Proof. 1t can easily be proved by using equation (29) and
definition 5.2. O

Theorem 5.4. The mean and the Gaussian curvatures of
a regular surface L(s,t) are

and eg — f? sinht
K= e6—P = 2 —sinhn) GD
respectively.
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6. Some Special Parameter Curves on The Lorentzian
Tubular Surfaces in E3

Theorem 6.1. [5] Let the curve Yy lie on a surface. If y
is an asymptotic curve, then the acceleration vector is
orthogonal to the normal vector of the surface.

Theorem 6.2. Let L(s,t) be a Lorentzian tubular surface
around spacelike focal curve of a(s), then the curves Ly
and L; can not be asymptotic.

Proof. For the s—parameter curves we obtain the first
coefficient e of second fundamental form as

e=<U,Ly >= (k+rt*sinht) (1 —sinht) # 0

showing that they can not be asymptotic. Similarly, for
the r—parameter curves we obtain the third coefficient g of
second fundamental form as

g:< U,L[[ >:r¢0

which implies that they can not be asymptotic. O

Theorem 6.3. [2] Let the curve Y lie on a smface Ify
is a geodesic curve, then the acceleration vector y and
the normal vector U of the surface are linearly dependent.
That is, UNY =0.

Theorem 6.4. Let L(s,t) be a Lorentzian tubular surface
around a spacelike focal curve of a.(s), then

(1) The Lg curves can not be geodesic

(2) The L; curves are geodesic curves.

Proof. For the s—parameter curves, we have
UALy = —sinht[tcosht+rt’ (1 —sinhs)| T
+cosht [Tcoshs +rt’ (1 —sinhr)| N
—r12 (1 —sinht) coshtB.
If the last equation were zero, i.e., U A Lg; = 0., we would
have
sinht [Tcoshz + 7’ (1 — sinhz)] =0,
cosht [tcosht + rt’ (1 —sinht)] =0,

72 (1 — sinhr) (coshr) =0 (32)

since the vectors {T,N, B} are linearly independent. How-
ever, since L(s,t) is a regular surface, equation (32) can
not be zero. Therefore U A Ly, # 0 which shows that L

curves can not be geodesics. On the other hand, since
UNLy;=UArU=0 (33)

the r—parameter curves L, are geodesics. Converse is also
true and it is trivial. O

Example 6.5. Let y be a spacelike curve in E? defined by
I — E{’

s — y(s)= (smh

Y:

,cosh

V2 ff)

where —4 < s < 4. Figure 2 includes the graph of the
curve.
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8 6 4 5

Figure 2. The curve y of Example 6.5.

Its velocity vector of the curve is

16 = ( Jgeoh 75 73 75 75)

In this example, we will consider the Lorentz scalar prod-
uct in (1) and the Lorentzian vectorial product in (2). The
Frenet vectors {T,N, B} of the curve y are

T = (e )
N = (smh\f cosh\f >
B — ( %coshﬂ7 5 sinh \kt)

200
400
600

Figure 3. The focal curve C, of the curve y in Example
6.5.

1 1
The curvatures of y are found to be kK = — and 7 = ~1 by

making use ot the equation in (3). Hence, 7/x is constant.
Therefore, the curve ¥ is the Lorentz circular helix in E?
The focal coefficients of y can be computed from (6) as
C1 = —2 and C; = 0. For this specific example, by using
(5), the focal curve Cy of Y may be computed as

The last equation and equation (28) with r = 2 lead to the
components
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