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Abstract: Additive manufacturing is increasingly being used for satisfying spare 
parts needs of capital products using a nearby 3D printer. Such a technology allows 
inventory managers to start manufacturing after the demand realization which 
eliminates significant portion of spare parts inventory being held due to random 
nature of component breakdowns. Quality difference between printed and original 
parts, which is one of the biggest problems of using 3D printers, can be decreased 
by the use of laser polishing which alleviates surface roughness and increases 
reliability of parts in exchange of an additional cost term. Using different 
parameters, reliability of parts can be altered depending on needs of capital 
products and systems’ status. In this study, the problem where surface roughness 
and reliability of printed parts are jointly optimized with inventory levels of 
original spare parts is considered. In the problem setting, a machine part 
consisting of a constant number of identical products which are subject to random 
breakdowns over a finite planning horizon is considered. Using mathematical 
analysis and exhaustive numerical experiments, the relationship between 
optimum control policy and cost parameters was shown, which might be critical 
for cost-effective management of the system. 

  
  

Yedek Parçaların Talebe Yönelik Eklemeli Üretiminde Lazer Cilalamanın Optimum 
Karar Verme Politikası Üzerinde Etkisi 

 
 

Anahtar Kelimeler 
Lazer cilalama, 
Eklemeli üretim, 
Üç boyutlu yazma, 
Optimizasyon 

Özet: Eklemeli imalatın yakınlarda bulunan bir 3D yazıcı kullanılarak sermaye 
ürünlerinin yedek parça ihtiyaçlarını karşılamak için kullanılması giderek 
yaygınlaşmaktadır. Böyle bir teknoloji, talebe-binaen parça üretimini mümkün 
kılarak arızaların rassallığı nedeniyle tutulan yedek parça envanterinin önemli bir 
kısmını ortadan kaldırma imkânı sunmaktadır. 3D yazıcı kullanımının en büyük 
sorunlarından biri olan basılı ve orijinal parçalar arasındaki kalite farkı, yüzey 
pürüzlülüğünü hafifleten ve ek maliyet terimi karşılığında parçaların 
güvenilirliğini artıran lazer parlatma kullanılarak azaltılabilir. Farklı parametreler 
kullanılarak, parçaların güvenilirliği, sermaye ürünlerinin ihtiyaçlarına ve 
sistemlerin durumuna göre değiştirilebilir. Bu çalışmada, basılı parçaların yüzey 
pürüzlülüğü ve güvenilirliğinin orijinal yedek parçaların envanter seviyeleri ile 
birlikte optimize edilmesi sorunu ele alınmıştır. Çalışmada, sınırlı bir planlama 
ufku üzerinde rastgele arızalara maruz kalan sabit sayıda özdeş makinadan oluşan 
bir üretim tesisi dikkate alınmıştır. Matematiksel analiz ve ayrıntılı sayısal 
deneyler kullanılarak, sistemin uygun maliyetli yönetimi için kritik olabilecek 
optimum kontrol politikası ve maliyet parametreleri arasındaki ilişki 
gösterilmiştir. 

  
 
1. Introduction 
 
Additive manufacturing (3D-printing) is a process 
where final product is created in a layer-by-layer 

fashion [1]. Major benefits of methods of additive 
manufacturing compared to subtractive 
manufacturing methods are decreased cost in terms 
of lead time and setup time, decreased process 
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complexity, and increased product design complexity. 
Despite the controversial problems additive 
manufacturing generated such as copyright issues, 
relative mobility of equipment and capability to 
implement the technology at low-cost has instigated 
considerations of innovative application ideas. 
 
One of the biggest technical issues with all additive 
manufacturing processes is the staircase appearance 
of the final product due to the layer-by-layer nature 
of the process [2]. In some cases where tolerances are 
not constraining (such as rapid prototyping), 
staircase appearance may not be of great importance 
and the product can be kept as is. However, in most 
modern cases, where tolerances better than those for 
rapid prototyping are required, staircase appearance 
of the product is not acceptable, therefore must be 
dealt with in some way. Although there are more 
complex methods researchers develop such as 5-axis 
3D-printing and robotic 3D-printing, employing a 
relatively inexpensive subtractive technique to post-
process the 3D-printed part to required dimensions 
is a favored method [3, 4]. One of these subtractive 
post-processing techniques is known as laser 
polishing, where a laser beam is focused on the part 
surface to eliminate irregular wavy texture that is 
created by the staircase appearance [5]. Therefore, 
the laser beam results in a smoother surface on the 
product than before. 
 

Smoothness of the product surface is not merely a 
cosmetic issue. It is established that surface defects 
such as increased surface roughness result in 
lowered fatigue life of the end product among other 
worsened important mechanical properties [6]. 
Another major issue with 3D-printed products is 
their significantly lower reliability in the long run and 
their continuous usage. This issue is related to the 
reduced surface quality, which makes reducing 
surface roughness of 3D-printed parts a priority in 
the industry. Laser polishing can be utilized as an 
assisting subtractive process to improve surface 
quality and therefore the reliability of such parts [5]. 
However, laser polishing parameters need to be 
selected carefully. With incorrect sets of laser 
polishing parameters, a) process may not be effective 
in polishing the surface at all, b) process may be too 
slow to contribute to cost savings efficiently, or c) 
laser beam may burn the surface, resulting in 
unfavorable surface qualities as well as worsened 
tolerances. 
 

With all these considered, innovative ideas of 
production as well as innovative ideas of process 
planning emerge. For example, if 3D-printers are 
made available more commonly in different areas of 
the world, different approaches to shipping and 
logistics can be developed. Instead of shipping 
finished goods from one place (e.g. warehouse) to 
another (e.g. plant) with special and costly packaging 
and care procedures, companies can ship raw 
materials to location and convey the design via cyber 

communication. This way, many costs incurred by 
transportation of finished products can be 
eliminated. Furthermore, holding costs can be 
reduced significantly since inventory of finished or 
partially finished goods will not be necessary. 
Instead, companies can only store raw materials that 
can be used to create multiple parts whenever 
necessary. However, in order to facilitate all of these, 
companies need to have a good understanding of the 
processes involved in such technologies and how 
they can benefit from these technologies. 
 

In this study, effect of the total cost incurred by laser 
polishing of 3D-printed parts on process planning is 
investigated. First, the theory of laser polishing of 3D-
printed parts is presented in Section 2.1. Then, the 
mathematical model of minimizing the total 
discounted cost in a finite planning horizon is 
introduced in Section 2.2. Results of the method are 
presented in Section 3 with discussions and 
concluding remarks in Section 4. 
 

2.  Material and Method 
 

2.1. Theory 
 

In this work, a mathematical model that jointly 
optimizes inventory level and reliability of 
manufactured parts is presented. Inventory costs 
increase when multiple parts are stored as backup 
due to lead time and uncertain reliability 
considerations. In this study, additive manufacturing 
of backup parts is discussed, which means that 
inventory of significantly reduced number of 
different parts (raw materials) is sufficient. For 
example, assuming that all parts of a system can be 
3D-printed with three different raw materials, total 
number of inventory parts can be reduced to three. 
Since commonality between parts is increased, total 
space requirement for inventory can be minimized. 
Therefore, with the eliminated requirement of actual 
part inventory, reduction of inventory costs is aimed. 
Reliability of spare parts also determines the viability 
of such a cost reduction. Reliability of parts produced, 
as measured with fatigue life, has been agreed to 
strongly depend on their surface quality. When the 
surface is not sufficiently smooth, cracks can initiate, 
propagate, and eventually lead to premature part 
failure due to stress concentrations on defective 
(non-smooth) portions. The most common method to 
measure surface quality is its roughness. Therefore, 
in order to increase reliability of additively 
manufactured parts, it is essential to improve the 
surface quality by decreasing surface roughness. 
 

The usage of post-production processes, such as laser 
polishing or heat treatment, increases the reliability 
of manufactured spare parts in exchange of increased 
marginal cost. Researchers considered laser polishing 
for reducing surface roughness of a part 
manufactured additively [7, 8]. They found that 
surface roughness of a spare part can be expressed as 
a convex function of the laser energy density (𝜉), 
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which is the most important factor of the laser 
polishing technique (Figure 1). This laser energy 
density (𝜉) is known to be a function of laser power P, 
laser speed V, and laser spot diameter D, as given in 
(1). 

𝜉 =
𝑃

𝑉𝐷
 (1) 

 

Experimentally, surface roughness was shown to 
remain high at low laser energy density levels, which 
was attributed to the ineffectiveness of the laser 
beam at low power and high speed (laser beam not 
having an effect at all) [7]. When laser energy density 
is increased either by increasing laser power, 
decreasing speed of laser beam, or decreasing the 
laser spot diameter, surface roughness starts to 
decrease [8]. After a certain increase in laser energy 
density, surface roughness is observed to reach a 
plateau, not changing significantly with further 
increase in laser energy density. If the laser energy 
density is increased even further, it is possible that 
adverse effects of laser polishing (e.g. burning the 
surface) can outweigh its benefits. Therefore, at 
extremely high energy density levels, surface 
roughness can be expected to increase compared to 
the plateau reached at moderate levels. The inverse 
quadratic empirical model that was developed 
represents all of these behaviors successfully [7]. For 
the reader’s reference, the magnitude difference 
between axes of the two graphics on Figure 1 is due 
to the different materials used in these two studies. 
 

Chang et al. [7] suggested that there is a functional 
relationship between laser energy density and 
surface roughness. They used an inverse quadratic 
function where the surface roughness Ra depends 
only on the laser energy density 𝜉. Their resultant 
function is provided on Figure 1a, along with the 
constant values they obtained via the empirical study. 
In this study, a similar functional relationship is 
assumed between laser energy density and spare part 
reliability, which is directly related to the surface 
quality. This function is given with (2), 
 

�̃�(𝜉): = 𝑝 +
1

𝑎 + 𝑟𝜉 + 𝑠𝜉2
 , (2) 

 
where, constants a, r, and s are found empirically to 
fit the curve, with boundaries a ≥ 0, r ≥ 0, s < 0, and p 
is the failure probability of the original spare part 
within a fixed time period, such as weeks, months, 
etc. This mathematical model has important 
properties given in the following proposition: 
 

Proposition 1: The following statements hold: 
1. �̃�(𝜉) is a convex function of 𝜉 and decreasing in 

[0, −
𝑟

2𝑠
]. 

2. 𝑝 − min
𝜉

�̃�(𝜉), which is named as the originality 

difference, is 
4𝑠

Δ
, where Δ is the discriminant of 

the quadratic polynomial in �̃�(𝜉). 

 
 

 
Figure 1. Experimental results and empirical 
approximations of surface roughness with varying laser 
energy density (𝜉) by (a) [7], and (b) [8]. 

 
Proof 
The first statement will be shown using the second 
derivative test as  �̃�(𝜉) is a continuous function of 𝜉. 
For notational simplicity, define 𝐴 =  𝑎 + 𝑟𝜉 + 𝑠𝜉2 . 

Then  �̃�(𝜉) = 𝑝 +
1

𝐴
.  

𝜕 𝑝(𝜉) 

𝜕 𝜉
=  −

𝐴′

𝐴2 ,  and 
𝜕2 𝑝(𝜉)

𝜕 𝜉2 =

−
𝐴′′𝐴2−2𝐴(𝐴′)

2

𝐴4 ,  where 𝐴′ =
𝜕 𝐴

𝜕 𝜉
= 𝑟 + 2𝑠𝜉 ,  and 𝐴′′ =

𝜕2 𝐴

𝜕 𝜉2 = 2𝑠.   Using this, 
𝜕2 𝑝(𝜉)

𝜕 𝜉2 = −
2

𝐴3
[𝑠𝐴 − 𝐴′2

 ] =

−
2

𝐴3
[𝑠𝑎 − 𝑟2 − 3𝜉𝑠𝑟 − 3𝑠2𝜉2].  This equation is 

positive, if 𝐽(𝜉) ≔ 𝑠𝑎 − 𝑟2 − 3𝜉𝑠𝑟 − 3𝑠2𝜉2 < 0, ∀𝜉 ∈
 ℝ. Since 𝐽(𝜉) is a concave function, it has a single 

maximum point at 𝜉̅ = −
𝑟

2𝑠
. Substituting this value 

into 𝐽(𝜉) , we get  𝐽(𝜉̅) = 𝑠𝑎 −
𝑟2

4
 . 𝑠 < 0  and 𝑎 ≥ 0 
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imply that 𝐽(𝜉) < 0, ∀𝜉 ∈ ℝ and 
𝜕2 𝑝(𝜉)

𝜕 𝜉2  is positive as 

𝐴 > 0 for 𝑥 ≥ 0. This implies that  �̃�(𝜉) is a convex 
function if the condition holds. Convexity implies that 
there is a unique minimizer (𝜉∗) and can be obtained 

with 
𝜕 𝑝(𝜉) 

𝜕 𝜉
=

𝑟+2𝑠𝜉

𝐴2 = 0 ⇒ 𝜉∗ = −
𝑟

2𝑠
. Statement 1 is 

proved. 
 

For statement 2, we calculate 𝑝 − �̃�(𝜉∗) for 𝜉∗ = −
𝑟

2𝑠
. 

This leads us to 𝑝 − �̃�(𝜉∗) = −
4𝑠2

4𝑠2 𝑎−𝑟2𝑠
. Define Δ =

𝑟2 − 4𝑎𝑠. Then 𝑝 − �̃�(𝜉∗) = −
4𝑠2

4𝑠2 𝛼−𝑟2𝑠
=

4𝑠

Δ
. Q.E.D. 

 

The cost of manufacturing a part in a 3D printer, 𝑐𝑝, is 
considered to be lower than the acquisition cost of 
the original part, denoted by 𝑐𝑜 .  In addition, the cost 
of laser polishing (𝑐𝑙𝑝), which is assumed to be an 
additive cost component for the printing cost of spare 
parts, is assumed to be an increasing function of the 
laser energy density as follows: 𝑐𝑙𝑝(𝜉) ≔  𝑐0𝜉𝛾 , where 
𝛾 is a constant parameter depending on the polishing 
equipment used. 
 

The study in this work is an exploratory one whereby 
developing a mathematical model that minimizes the 
total discounted cost that occurs in a finite planning 
horizon consisting of fixed time periods such as 
weeks, months, etc. is aimed. At each period, parts at 
different quality levels working in a finite amount of 
identical capital products, denoted by 𝑁, fail with 
different probabilities. For traceability of the optimal 
control model, we assume that there is a finite 
amount of different energy densities, denoted by 𝑣, 
that can be used in the laser polishing process. From 
a mathematical point of view, this is equivalent to 
having a finite amount of quality levels ( 𝑣 + 1 
different failure probabilities) that can be selected for 
printing spare parts during the planning horizon. 
Two examples of such a discretization of reliability 
for 𝑣 = 3 and 𝑣 = 10 are given in Figure 2 against the 
continuous case (𝑣 = ∞). 
 

 
Figure 2. Discretization of laser energy density 

In the problem setting, we assume that events occur 
in the following order. First, delivery of the order that 
is placed lead time (𝑙𝑡) periods ago is delivered. After 
the delivery, printed parts that are working in the 
system, if any, are replaced with their originals. A 
new order, 𝑞𝑡

𝑟 , to the original part supplier is placed. 
Then random breakdowns (spare parts demand) are 
realized during the period. Once all random 
breakdowns are realized, remaining original parts 
are used for maintenance of those capital products. If 
there is no original part available, the printing 
process takes place. The event order of each period is 
depicted in Figure 3. 
 

 
Figure 3. Event order within a review period 

 
At each period of the planning horizon, a periodic 
cost function in (3), consisting of acquisition cost, 
printing cost (printing plus laser polishing), holding 
and downtime costs is incurred. The cost function 
depends on the amount of parts ordered to the 
original part supplier (OPS), denoted by 𝑞𝑡

𝑜 , parts 
printed at different energy densities, �̅�𝑡

𝑝
≔

(𝑞𝑡
𝑝1 , 𝑞𝑡

𝑝2 , … , 𝑞𝑡
𝑝𝑣), and the number of working printed 

parts at different quality levels denoted by �̅�. 
 
If an original spare part is held at inventory for one 
period, holding cost is incurred with rate ℎ. When a 
capital product stays down for a period due to the 
lack of available (original or printed) parts, then 
downtime cost with a rate of 𝑏 is incurred. Assuming 
each machinery has a single spare part, then the 
conditional expectation of holding and downtime cost 
of a machinery can be expressed with (3). 
 

𝐿(𝑦, 𝑞𝑝, 𝑑) = ℎ(𝑦 − 𝑑)+ + 𝑏(𝑑 − 𝑦 − 𝑞𝑝)+, (3) 
 
where �̅� = (𝑑0, 𝑑1, … , 𝑑𝑣). On the right-hand-side of 
the equation, the first term of (3) is the amount of 
excess inventory at the end of a period whereas the 
second term is the total downtime cost at the same 
period given that the amount of original parts broken 
during a period is 𝑑0 and the number of broken parts 
from other quality levels are 𝑑𝑖 , 𝑖 = 1,2, … , 𝑣 . 
Mathematical models for the optimum cost of 
printing and acquisition are given in (4) and (5). 
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𝑉𝑡(�̅�𝒕
𝒓, 𝑦𝑡 , 𝑚0, �̅�) = 𝑚𝑖𝑛

𝑞𝑡
𝑟≥0,

{𝑐𝑟𝑞𝑟

+ ((𝑦𝑡 + 𝑞𝑡−𝑙𝑡
𝑟 )⋀ ∑ 𝑚𝑖

𝑣

𝑖=1

) 𝜓

+ 𝐸 [𝐺 (�̅�𝒕+𝟏
𝒓 , 𝑦𝑡 + 𝑞𝑡−𝑙𝑡

𝑟

− ((𝑦𝑡 + 𝑞𝑡−𝑙𝑡
𝑟 )⋀ ∑ 𝑚𝑖

𝑣

𝑖=1

) , 𝑚0

+ ((𝑦𝑡

+ 𝑞𝑡−𝑙𝑡
𝑟 )⋀ ∑ 𝑚𝑖

𝑣

𝑖=1

) , �̿�, 𝐷𝑜 , �̅�𝑝)]} , 

(4) 

 
𝐺𝑡(�̅�𝒕+𝟏

𝒓 , 𝑦𝑡 , 𝑚0, �̿�, 𝑑𝑜  , �̅�𝑝)

= 𝑚𝑖𝑛
�̅�𝑡

𝑝
≥0,

(𝑑𝑜+∑ 𝑑𝑝𝑖𝑖 −𝑦)+≥∑ 𝑞𝑡

𝑝𝑖𝑣
𝑖=1

{∑ 𝑐𝑝𝑖 𝑞𝑡
𝑝𝑖

𝑣

𝑖=1

+ 𝐿 (𝑦, ∑ 𝑞𝑡
𝑝𝑖

𝑖

, 𝑑𝑜 + ∑ 𝑑𝑝𝑖

𝑖

)

+ 𝛼𝑉𝑡+1 (�̅�𝒕+𝟏
𝒓 , 𝑦 − (𝑑𝑜 + ∑ 𝑑𝑝𝑖

𝑖

− ∑ 𝑞𝑡
𝑝𝑖 )

𝑣

𝑖=1

, 𝑚0 − (𝑑𝑜 − (𝑦)+)+, �̿�

− �̅�𝑝 + 𝑞𝑡
𝑝

)} . 

(5) 

 
The boundary condition for recursive equations (4) 
and (5) is 𝑉𝑇(�̅�𝐓

𝐫 , 𝑦𝑇 , 𝑚0, �̅�) = 0 for all parameters of 
the function. 
 
Equation (4) gives the minimization that yields the 
optimum order to the OPS, 𝑞𝑡

𝑟 ,  whereas the 
minimization in (5) gives the optimum printing 
decisions, denoted by �̅�𝑡

𝑝
≔ (𝑞𝑡

𝑝𝑖 , 𝑖 = 1,2, … 𝑣) where 

𝑞𝑡
𝑝𝑖 is the amount of printed and polished parts using 

laser density level 𝜉𝑖 . The reason behind optimizing 
these two decisions in separate minimizations is that 
part printing takes place after demand realization 
whereas, orders to OPS are placed at the beginning of 
a period. Therefore, the number of printed parts is a 
deterministic outcome of the printing policy whereas 
orders to OPS are placed using the expected cost.  
 
The optimum cost function 𝑉𝑡(�̅�𝐭

𝐫, 𝑦𝑡 , �̅�) has three 
parameters: The first parameter is the outstanding 
order vector �̅�𝐭

𝐫: = (𝑞𝑡−𝑙𝑡
𝑟 , 𝑞𝑡−𝑙𝑡+1

𝑟 , … , 𝑞𝑡−1
𝑟 )  including 

previous orders that have not been delivered. The 
second parameter 𝑦𝑡 is the inventory level at the 
beginning of period 𝑡, whereas the third parameter is 
the vector �̅�: = (𝑚1, 𝑚2, … 𝑚𝑣) including the amount 
of printed parts at quality levels 1,2, … , 𝑣.  
 
The minimization in (4) yields the optimum order to 
OPS. The first term in this minimization is the 
acquisition cost, 𝑐𝑟𝑞𝑡

𝑟 , whereas the second term 
represents the cost of changing printed parts upon 
delivery of original parts (Figure 3). The amount of 

changed parts is the minimum of total available 
original part inventory and the amount of printed 
parts at work, (𝑦𝑡 + 𝑞𝑡−𝑙𝑡

𝑟 )⋀ ∑ 𝑚𝑖
𝑣
𝑖=1 . The total cost of 

changing parts before they break, which is the 
product of the total number of parts changed and the 
cost rate (𝜓), can be seen as the substitution cost of 
using (lower quality) printed parts instead of original 
part demand. The third term in the minimization 
gives the expected cost of printing spare parts in case 
of inventory shortage at the end of period 𝑡. 
 
Given the amount of broken original and printed 
parts, denoted by 𝑑0  and  �̅�𝑝 ≔ (𝑑𝑝𝑖 , 𝑖 = 1,2, … , 𝑣), 
and the vector of printed parts at work, �̿�, the 
summation of printing cost and the expected cost 
from future periods is denoted by 
𝐺𝑡(�̅�𝐭+𝟏

𝐫 , 𝑦𝑡 , �̿�, 𝑑𝑜  , �̅�𝑝). The first parameter of this 

conditional expectation is the outstanding order 
vector �̅�𝐭+𝟏

𝐫 = (𝑞𝑡−𝑙𝑡+1
𝑟 , … , 𝑞𝑡−1+

𝑟 , 𝑞𝑡
𝑟) . Note that 

printing decision is made after the delivery of 𝑞𝑡−𝑙𝑡
𝑟  

and the placement of 𝑞𝑡
𝑟 (Figure 3) so, the pipeline 

vector is already updated from �̅�𝐭
𝐫  to  �̅�𝐭+𝟏

𝐫 . The 
second and the third parameters of the function are 
the inventory level at the beginning of period 𝑡 and 
the amount of original parts at work at the beginning 
of period t. Similarly, the amount of printed parts (at 
different quality levels) are denoted by the vector �̅� 
at the beginning of period 𝑡. Importantly, third and 
fourth parameters of the function Gt (.) in (5) are 
𝑚0 + ((𝑦𝑡 + 𝑞𝑡−𝑙𝑡

𝑟 )⋀ ∑ 𝑚𝑖
𝑣
𝑖=1 ) and 

 

�̿� ≔  ((𝑚1 − 𝑞𝑡−𝑙𝑡
𝑟 )+, (𝑚2

− (𝑞𝑡−𝑙𝑡
𝑟 − 𝑚1)+)+ , … , (𝑚𝑣

− 〖(𝑞〗𝑡−𝑙𝑡
𝑟 − ∑ 𝑚𝑖

𝑣−1

𝑖=1

)

+

)

+

) 

(6) 

Recall that the third parameter gives the number of 
original parts at the beginning of a period. After the 
replacement (upon delivery), the amount of printed 
parts is denoted by �̿� in (4). The last two parameters 
of the function Gt (.) are random amount of broken 
parts. 
 
Total cost of printing is minimized through the vector 
�̅�𝑡

𝑝
.  The minimization in (5) is subject to two 

constraints: The first constraint is the positivity of 
𝑞𝑡

𝑝𝑖 , 𝑖 = 1,2, … , 𝑣. The second constraint assumes that 

the total number of printed parts cannot be larger 
than the shortage of spare parts after the demand 
realization. This constraint is due to our assumption 
of preclusion of printing to stock. Under the 
assumption of on-demand production of spare parts 
with a 3D-printer that can work infinitely fast, 
inventory holding cost of printed parts becomes 
redundant. 
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The first term of the minimization gives the total cost 
of printing spare parts whereas the function 
𝐿(𝑦, ∑ 𝑞𝑡

𝑝𝑖
𝑖 , 𝑑𝑜 + ∑ 𝑑𝑝𝑖

𝑖 ) yields the cost of inventory 

holding and downtime costs. The last term, 
𝑉𝑡+1(�̅�𝐭+𝟏

𝐫 , 𝑦 − 𝑑𝑜 − ∑ 𝑑𝑝𝑖
𝑖 + ∑ 𝑞𝑡

𝑝𝑖𝑣
𝑖=1 , 𝑚0 −

(𝑑𝑜 − (𝑦)+)+, �̅� − �̅�𝑝 + �̅�𝑡
𝑝

),  in the minimization 

yields the optimum discounted cost starting from 
period 𝑡 + 1 . In this term, the first parameter 
represents the pipeline vector. The second parameter 
gives the total amount of spare parts inventory that 
will be available starting from period 𝑡 + 1.  Note that 
this formulation of problem allows the possibility of 
not printing spare parts at the period of shortage. 
Therefore, the second parameter of the recursive 
function 𝑉𝑡+1(. ) might be negative which indicates 
the number of capital products that are not working 
at beginning of period t+1. The third input parameter 
of 𝑉𝑡+1(. )  is the amount of original parts after 
demand realization and the usage of available 
inventory. This variable is denoted by 𝑚0 −
(𝑑𝑜 − (𝑦)+)+. The last parameter of 𝑉𝑡+1(. ) is the 
number of printed parts at the beginning of the next 
period, denoted by �̿� − �̅�𝑝 + �̅�𝑡

𝑝
. 

 
One important feature of the mathematical model in 
(4) and (5) is that its state space can be decomposed 
into two subregions. Since printed parts are replaced 
upon delivery of original parts and print-to-stock is 
not allowed, the system can be found in one of the 
following two states at the beginning of any period in 
the planning horizon: Either there is positive number 
of original parts in stock and all capital products are 
working with original part (𝑦𝑡 > 0, 𝑚0 = 𝑁 and  �̅� =
0) or original part inventory is empty and there are 
some printed parts working (𝑦𝑡 = 0, ∃𝑖 𝑠. 𝑡. 𝑚𝑖 >
0, 𝑖 > 1) for the state space ( �̅�𝐭

𝐫, 𝑦𝑡, 𝑚0, �̅�).  This 
decomposition of the state space is also utilized by 
Westerweel et al. [9]. 
 
In this study, we conduct numerical experiments 
using (3-5) in order to understand the characteristics 
of the optimal policy that controls the production of 
spare parts using additive manufacturing. Also, we 
would like to investigate the effect of using a larger 
number of quality levels (higher 𝑣), which will allow 
finer control over the system, on total cost. 
 
2.2. Methods 
 
In this study, the mathematical models (3-5) are 
analyzed using meticulously designed numerical 
experiments in order to explore the optimum 
inventory control policy. In addition, we would like to 
understand the effect of increasing the number of 
laser energy levels on total cost. This investigation 
indicates the potential cost benefit of laser polishing 
for on-demand production of spare parts of a 
constant number of capital products at work. 
 
To this end, the recursive equations (3-5) are coded 
in C++ with the parameter setting in Table 1. To avoid 

violation of the assumption of 𝑏 ≥ 𝜓, we remove 24 
parameter combinations from a test bed of 192 
instances. The resulting test bed consists of 168 
different parameter combinations. 
 
Table 1. Parameter setting for numerical experiments 
horizon (𝑇) 𝑝 𝑐𝑟    𝑐0 ℎ 𝛾 𝑏 𝜓 𝑣 
50 0.5 100 10 2.5 0.5 300 50 1 
100 
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200  

  
 

    
300  

 
In this parameter setting, 𝑐𝑟  represents the 
acquisition cost of the regular supplier whereas 𝑐0 is 
the cost of printing without any laser polishing.  In 
our numerical experiments, we consider three 
different laser energy densities which are 100, 200, 
and 300 J/cm2. For these energy densities, calculated 
total printing cost and reliability levels are given in 
Table 2 where �̃�(𝜉𝑖) are calculated using parameters 
values 𝑎 = 3, 𝑟 = 0.01 and 𝑠 = −10−5 similar to the 
model suggested by Chang et al. [7]. 
 
Table 2: Calculated parameter levels for different laser 
energy densities (𝜉𝑖) 
  𝑐𝑝𝑖  

𝜉𝑖  𝑝(𝜉𝑖)  𝛾 = 0.5 𝛾 = 0.4  𝛾 = 0.3 
100 0.75 100.00 63.10 39.81 
200 0.70 141.42 83.26 49.01 
300 0.66 173.21 97.91 55.35 

 
For each parameter combination, the recursive 
equations (4) and (5) are numerically solved by the 
value iteration algorithm and backward induction 
[10] on a finite state space of �̅� × �̅�, where �̅� =
{(𝑞𝑡−1

𝑟 , 𝑦 ): 0 ≤ 𝑞𝑡−1
𝑟 ≤ 𝑁, 0 ≤ 𝑦 ≤ 𝐷𝑚𝑎𝑥

𝜖 }  and 𝐷𝑚𝑎𝑥
𝜖 =

max{𝑑: Pr{𝐷 ≥ 𝑑} < 𝜖}.  In our calculations, 𝜖 =
0.001. Note that such a truncation of the demand 
distribution, which is also used by [11], is a 
simplification for avoiding the common problem of 
curse of dimensionality in dynamic programming 
solutions. 
 
In these runs, we primarily observe the optimum 
control policy’s ordering decisions to the regular 
supplier, 𝑞𝑡

𝑟 , and printing decisions at quality level 𝑖, 
denoted by 𝑞𝑡

𝑝𝑖 , for all 𝑖. Also, we are interested in the 

optimum selection of a quality level (optimum usage 
of laser energy density for polishing) for on-demand 
production of spare parts. In the following section, 
the structure of commonly observed control policy in 
our numerical experiments are presented.  
 
3. Results  
 
In our numerical investigation, we observe the effect 
of different model parameters on total cost as well as 
the structure of the optimal control policy for original 
parts inventory. In this section, we first present our 
overall results and intuition into the problem derived 
from these analyses. Next, we discuss the structure of 
the optimal policy. 
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3.1. Overall results 
 
In our analysis, we find that cost of 3D-printing is the 
most important factor that determines the primary 
source of supply. Specifically, in our numerical 
experiments we find that when 𝛾 = 0.3 or 𝛾 = 0.4, 
the optimum action is to choose to satisfy spare parts 
demand using additive manufacturing. Interestingly, 
all of these parts are printed at the lowest quality 
level where laser energy density is set to 100. When 𝛾 
is set to 0.3 or 0.4, total cost of producing a printed 
part is less than the original part as 𝑐𝑟 = 100 (Table 
2). When 𝛾 = 0.5, the combined use of printing and 
original parts takes place in the optimum policy. This 
can be seen in Table 3. 
 
Furthermore, in all of our numerical experiments we 
find that the optimal cost is invariant to 𝑏 since on-
demand production of spare parts prevents having an 
unsatisfied demand during the entire planning 
horizon (Table 3). This feature of the optimal policy is 
explained in detail in the following section. 
 
Table 3: Average optimum costs for different values of 𝑏, 𝜓 
and 𝛾. 
 𝒃 𝜸 

200 300 0.3 0.4 0.5 

𝝍 

50 28509 28509 18177 28809 38541 
100 28767 28767 18177 28809 39314 
200 29201 29201 18177 28809 40616 
300 

 
29564 18177 28809 41707 

 
Recall that the number of broken parts in a given 
review period is a random variable and the original 
spare parts inventory and 3D printing decisions are 
made according to a control policy. In the 
mathematical model given in (4-5), we consider a 
finite horizon cost minimization problem where 
decision for 𝑞𝑡

𝑟  is followed by 𝑞𝑡
𝑝𝑖  for all 𝑖 . The 

mathematical structure of the optimum control policy 
is presented in the following subsections. 
 
3.2. Structure of the optimum on-demand spare 
parts production 
 
To understand the mathematical structure of the 
optimum printing policy, we conduct a mathematical 
analysis of the model in (4-5). The following result, 
obtained from these analyses, shows the optimum 
decision for 𝑡 = 𝑇 (the end of planning horizon). 
 
Proposition 2: At the end of the planning horizon, 
given that the total number of broken parts (from all 
quality levels) is 𝑑 ≔ 𝑑0 + ∑ 𝑑𝑖

𝑣
𝑖 , the optimal policy of 

laser polishing is 𝑞𝑇
𝑝1 = (𝑑 − 𝑦)+. 

 
Proof: Assume that 𝑉𝑇(. ) = 0  for all parameters. 

For 𝑡 = 𝑇, 
 

𝐺𝑇(�̅�𝐓+𝟏
𝐫 , 𝑦𝑇 , 𝑚0, �̿�, 𝑑𝑜  , �̅�𝑝) (7) 

= min
�̅�𝑇

𝑝
≥0,

(𝑑𝑜+∑ 𝑑𝑝𝑖𝑖 −𝑦)+≥∑ 𝑞𝑇

𝑝𝑖𝑣
𝑖=1

{∑ 𝑐𝑝𝑖 𝑞𝑇
𝑝𝑖

𝑣

𝑖=1

+ 𝐿 (𝑦, ∑ 𝑞𝑇
𝑝𝑖

𝑖

, 𝑑𝑜 + ∑ 𝑑𝑝𝑖

𝑖

)} . 

 
This implies for a given that the total number of 
breakdowns is 𝑑 the function in the minimization is: 
 

 

∑ 𝑐𝑝𝑖 𝑞𝑇
𝑝𝑖

𝑣

𝑖=1

+ ℎ(𝑦 − 𝑑)+ + (𝑑 − 𝑦 −  ∑ 𝑞𝑇
𝑝𝑖

𝑖

)

+

. (8) 

 
If 𝑦 ≥ 𝑑, then the constraint of the minimization leads 
to  ∑ 𝑞𝑇

𝑝𝑖
𝑖 = 0 ⇒ 𝑞𝑇

𝑝𝑖 = 0, ∀𝑖.  If 𝑦 < 𝑑, then 

minimization leads to  ∑ 𝑞𝑇
𝑝𝑖

𝑖 = 𝑑 − 𝑦.   Hence, 

∑ 𝑞𝑇
𝑝𝑖

𝑖 = (𝑑 − 𝑦)+. Since the cost is increasing in 𝑖, 

𝑞𝑇
𝑝𝑖 > 0 is subotimal for 𝑖>1. Q.E.D. 

 
Proposition 2 implies that the optimum policy prints 
parts from the worst quality level (no laser polishing) 
as it is the cheapest option. This result is quite 
intuitive in the sense that the end of the planning 
horizon, there is no point of increasing quality levels 
of parts in exchange of extra cost. 
 
Importantly, we realized that the result in Theorem 1 
also holds for periods before the end of the planning 
horizon, i.e. 𝑡 < 𝑇 in our numerical experiments. Our 
detailed investigation into our numerical results 
reveals that this result primarily stems from our 
assumption on the exchange of spare parts upon 
delivery of original parts together with uncapacitated 
(capacity equal to infinity [12]) OPS. In our system, 
spare part production with 3D-printing is used in 
case of the shortage of original parts during 
maintenance of capital products. Since we assume 
that OPS is capacitated, these shortages mainly occur 
due to unexpected spare parts demand in previous or 
current periods and they are rare. Also, delivery of 
original parts in pipeline triggers replacements. 
Therefore, in this system, 3D printing is used as a 
temporary solution to avoid costly downtimes of 
capital products and using laser polishing does not 
create any additional cost reduction.  
 
3.3. Structure of the optimum order to OPS 
 
Given that in case of shortage spare parts are printed 
after the demand realization, the control of original 
part inventory resembles to classical lost sales 
problem in the inventory control literature [13] 
depending on the magnitude of substitution cost. In 
lost sales problems, customers refuse to wait for 
delivery of products and leave without buying 
anything when they cannot find their desired product 
in stock. The inventory control decisions are made 
based on the trade-off between costs of lost sales and 
inventory holding. In our problem setting, printed 
spare parts stand for lost sales from the perspective 
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of the inventory manager of original spare parts. The 
cost of lost sales is equal to 𝑐𝑝𝑖  for some 𝑖. This 
equivalence between the lost sales problem and our 
problem setting can be seen from [14] for 𝜓 = 0. As 
an extra cost element of using 3D printing in case of 
shortage, 𝜓 significantly changes the structure of the 
optimal policy in our problem. To explore these 
changes, we extend the test bed in Table 1 with new 
parameter combinations of  𝜓 and 𝑏. We respectively 
present results of our numerical experiments for low 
and high values of 𝜓 below. In these expositions, we 
utilized the decomposition of the state space in 
Section 2. We first explained the optimal orders to 
OPS when 𝑦𝑡 = 0 and  �̅� ≠ 0. Next, we present the 
structure of the optimal policy when 𝑦𝑡 > 0 and 𝑚0 =
𝑁. 
 
3.3.1. The optimum policy when 𝝍/𝒃 is close to 0  
 
In case of low substitution cost, which is incurred due 
to replacement upon delivery, the summation of 
printing and substitution cost would be the cost of 
losing customer in a regular, single-supplier 
inventory control problem. The optimal control 
policy of this case has a state-dependent structure in 
the sense that the total amount of existing inventory 
level and ordered quantity, 𝑦𝑡 + 𝑞𝑡−𝑙𝑡

𝑟 + 𝑞𝑡
𝑟 , also 

known as inventory position after ordering, is small 
for low values of 𝑦𝑡 + 𝑞𝑡−𝑙𝑡

𝑟  and they are equal to base 
stock policy for moderate and large values of the 
summation. Note that the base stock policy is the 
optimum control policy for inventory control 
problems where unsatisfied demand is backlogged 
[12]. The optimal ordering policy to OPS places 
smaller orders than the base stock policy for low 
levels of inventory due to the fact that low inventory 
level leads to shortage which will be satisfied with 3D 
printing within the same period before the delivery of 
orders placed in the current period. On the other 
hand, in case of backlogged demand and a single 
supply source, where the base stock policy is optimal, 
unsatisfied demand is carried to the next period and 
keeps creating backlog cost until it is satisfied with 
new deliveries. This difference between the optimal 
orders to OPS for 𝑦𝑡 = 0, �̅� ≠ 0 and the base stock 
policy is depicted in Figure 4 for 𝑣 = 3, 𝑇 = 50 , 
𝑏 =300, 𝜓 = 50, ℎ = 2.5, 𝛾 = 0.5 and 𝑁 = 10.  
 

In Figure 4, optimal 𝑞𝑡
𝑟 for different 𝑦𝑡 levels are given 

for two different �̅� vectors which are (1,9,0,0) and 
(9,1,0,0). The first vector represents a case where 
only one of 𝑁 = 10  of machines works with an 
original part while the rest works with parts printed 
without laser polishing. The second vector represents 
the case with nine original and one printed parts. 
Obviously, the optimum policy generates the same 
orders with the base stock policy with the order-up-
to level being equal to 21, which is denoted by 
𝐵𝑆(21), when the existing inventory level is larger 
than equal to 10 for the first vector. For the second 
vector, the optimum policy is much closer to the base 
stock policy as the optimum policy generates the 

same order sizes when the inventory level is larger 
than equal to 3. The difference between the two part 
vector is due to the fact that some of existing 
inventory level will be used to replace printed parts 
at work and remaining ones will be available for the 
satisfaction of broken spare parts within the review 
period when the number of printed parts at work is 
higher (as in  �̅�=(1,9,0,0)). 
 

 
Figure 4. Difference between optimal ordering policy to 
OPS and the base stock policy for 𝑣 = 3, 𝑇 = 50, 𝑏 =300, 
𝜓 = 50, ℎ = 2.5, 𝛾 = 0.5, 𝑁 = 10, 𝑙𝑡 = 1, 𝑦𝑡 = 0 and �̅� ≠ 0. 

 
When there is a positive amount of original spare 
parts in stock (and all capital products are working 
with original parts 𝑁 = 0), the structure of the 
optimal policy is much closer to the base stock policy 
as depicted in Figure 5. In fact, when there are some 
parts in the pipeline (𝑞𝑡−𝑙𝑡

𝑟 ), the optimal policy orders 
exactly the same with 𝐵𝑆(12). When there are no 
parts in the pipeline, the optimal policy is also the 
same with 𝐵𝑆(12) except 𝑦𝑡 = 0. 
 

 
Figure 5. Difference Between Optimal Ordering Policy to 
OPS for 𝑣 = 3 , 𝑇 = 50 , 𝑏 =300, 𝜓 = 50 , ℎ = 2.5 , 𝛾 = 0.5 , 
𝑚0 = 𝑁 = 10 and 𝑙𝑡 = 1, 𝑦𝑡 > 0 and �̅� = 0. 
 

3.3.2. The optimum policy when 𝝍/𝒃 is close to 1 
 

When 𝜓/𝑏 is close to 1, then the structure of the 
state-dependent optimal policy significantly changes. 
When the original part inventory is empty 𝑦𝑡 = 0 
and  �̅� ≠ 0, the optimal policy behaves differently 
depending on the value of 𝑡 and 𝑞𝑡−𝑙𝑡

𝑟 . During the 

early periods of the planning horizon (
𝑡

𝑇
< 0.75)  , the 

optimum policy is similar to the concave decreasing 
curve given in Figure 4, i.e. order according to 𝐵𝑆(. ) 
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for large values of 𝑞𝑡−𝑙𝑡
𝑟  and order less than 𝐵𝑆(. ) 

which we call correction due to printing. In case of 
𝑦𝑡 > 0 and  �̅� = 0, the structure of the optimal policy 
is also the same with Figure 5 for different values of 
𝑦𝑡 . Towards the end of the planning horizon 

(0.75 ≤
𝑡

𝑇
), the optimum policy orders nothing to OPS 

for low value of  𝑞𝑡−𝑙𝑡
𝑟  whereas orders according to BS 

for moderate or large values of 𝑞𝑡−𝑙𝑡
𝑟 . As can be seen 

in Figure 6, ordering threshold depends on the 
number of printed parts at work. When there is one 
printed part in the system, the optimal policy orders 
according to 𝐵𝑆(14) for 𝑞𝑡−𝑙𝑡

𝑟 ≥ 4. When the number 
of printed parts is equal to nine, then ordering with 
𝐵𝑆(12) takes place for 𝑞𝑡−𝑙𝑡

𝑟 ≥ 12 (Figure 6). 
 

 
Figure 6. Optimal Ordering Policy to OPS for 𝑣 = 3, 𝑇 = 50, 
𝑏 =300, 𝜓 = 150, ℎ = 2.5, 𝛾 = 0.5, 𝑁 = 10 and 𝑙𝑡 = 1, 𝑦𝑡 =
0 and �̅� ≠ 0. 
 
Dependence of the optimal policy on the remaining 
number of periods is also depicted in Figure 7 
for  �̅� = (1,0,0,9). Towards the end of the planning 
horizon, orders to OPS significantly decreases in the 
optimum policy and production of spare parts using 
additive manufacturing becomes the main source of 
spare parts in the system.  
 
Similar to Section 3.3.1, when there is a positive 
amount of original parts in the system, the structure 
of the optimal policy is much closer to 𝐵𝑆(. ) as in 
Figure 5. There is only a minor correction in case of 
𝑞𝑡−𝑙𝑡

𝑟 = 𝑦𝑡 = 0. The rest of the orders are linearly 
decreasing in the inventory position before ordering, 
i.e. 𝑞𝑡−𝑙𝑡

𝑟 + 𝑦𝑡. 
 

 
Figure 7. Optimal Ordering Policy to for 𝑣 = 3, 𝑇 = 50, 
𝑏 =300, 𝜓 = 150, ℎ = 2.5, 𝛾 = 0.5, 𝑁 = 10 and 𝑙𝑡 = 1, 𝑦𝑡 =
0 and �̅� = (1,0,0,9). 

4. Discussion and Conclusion 
 
In this study, we consider a problem setting where 
spare parts can be produced on-demand using 
additive manufacturing at a location very close to the 
working site of a finite number of capital products. 
Capital products require regular maintenance in 
order to stay in operation and spare parts are the 
primary input of these maintenance activities. 
 
Recently, additive manufacturing, specifically 3D 
printing, is shown to be quite beneficial for spare 
parts inventory control as it allows on-demand 
production of spare parts instead of ordering them to 
OPS [9]. Since such orders are usually delivered after 
a positive lead time, maintenance companies have to 
hold spare parts inventory in order to avoid long 
downtimes of capital products which might lead to 
loss of customers or failure to satisfy service 
commitments. 
 
The main drawback of using printed spare parts is 
that they usually fail quicker than the original ones. 
This is due to their less favorable mechanical 
properties, and in particular, fatigue life. A factor 
significantly affecting reducing fatigue life and thus 
reliability of a product is surface quality. Therefore, 
improving surface quality of printed parts can 
mitigate the difference in reliabilities of original parts 
and printed parts. Laser polishing has been shown to 
be a quick and effective method to improve surface 
quality of printed parts by reducing the surface 
roughness through eliminating surface waviness 
caused by the staircase nature of 3D printing process.  
However, effectiveness of this post-production 
technique has been shown to be significantly affected 
by its technical parameters such as laser energy 
density, a factor that is dependent on laser scan 
speed and laser power [8]. From the perspective of 
manufacturing economics, laser polishing is a 
technique that can increase the reliability of a spare 
part in exchange of an additive cost of polishing. 
Hence, parameters of laser polishing (laser power & 
speed) are decision variables which should be 
optimized together with other cost elements. 
 
In this study, we consider the problem of joint 
optimization of inventory management and laser 
energy density selection in order to decrease the total 
cost of holding, printing, polishing, and downtime 
costs. To this end, we develop a recursive, two-stage 
mathematical model that aims to minimize total 
discounted cost over a finite planning horizon. We 
utilize this mathematical model in order to develop 
exploratory analysis of optimum control policies 
which are difficult to prove mathematically. 
Furthermore, we numerically analyzed the effect of 
having multiple laser energy density level on total 
cost and control policy. In these analyses, we find that 
having multiple levels of laser density has no effect 
on total cost, since in the problem setting spare parts 
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are replaced with their originals upon delivery from 
OPS before their failures. Such a preventive 
replacement strategy might be plausible for mission 
critical systems such as military sites or aircraft 
carriers. 
 
Importantly, the sum of exploratory analyses and 
results presented in this study is an initial step 
towards rigorous mathematical proofs for optimum 
control policies of a manufacturing/inventory system 
consisting of additive manufacturing, laser polishing, 
and inventory control elements. In our future 
research, we concentrate on deriving analytical 
characterization of the numerical results presented 
here. 
 
References 
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