PAPER DETAILS

TITLE: Yildizlarin Bünyesel Parlaklik Degisimlerinin Örtme Olayi Üzerindeki Etkisi: WASP-19 ve

WASP-33 Sistemleri Üzerine Bir Analiz

AUTHORS: Rahmi Can Yüksel, Orkun Özdarcan

PAGES: 158-166

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/4448644

DOI: 10.19113/sdufenbed.1603303

Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz

Rahmi Can YÜKSEL*10, Orkun ÖZDARCAN20

^{1,2} Ege Üniversitesi, Fen Fakültesi, Astronomi ve Uzay Bilimleri Bölümü, 35100, İzmir, Türkiye

(Alınış / Received: 17.12.2024, Kabul / Accepted: 14.03.2025, Online Yayınlanma / Published Online: 25.04.2025)

Anahtar Kelimeler Ötegezegenler, Yıldızlar: aktivite, Yıldızlar: salınım, Teknikler: fotometrik, Metotlar: veri analizi, Astronomik veri tabanları: TESS

Öz: Bu çalışma, WASP-19 ve WASP-33 sistemlerinin TESS ışık eğrilerinin bir analizini içermektedir. WASP-19 sistemindeki barınak yıldız Günes benzeri aktivite gösterirken, WASP-33 sistemindeki barınak yıldız zonklama yapmaktadır. Her iki sistemde de transit geçiş yapan birer ötegezegen bulunur. Bu araştırma kapsamında, barınak yıldızları bünyesel parlaklık değişimi gösteren ötegezegenlerin transit ışık eğrisi analizinde ne tür etkilerle karşılaşılabileceğinin bir incelemesi amaçlanmıştır. Işık eğrileri, hem orijinal haliyle hem de barınak yıldızın bünyesel parlaklık değişimlerinden arındırılmış haliyle analiz edilmiştir. Yapılan analizler her iki sistemdeki barınak yıldızın bünyesel parlaklık değişimlerinin ötegezegene ilişkin parametrelerin ışık eğrisi modellemesi ile hesaplanmasında önemli bir etkisi olmadığı sonucuna varılmıştır. Ancak bu sonuç barınak yıldızın transit derinliğinden daha derin bünyesel parlaklık değişimi göstermesi durumunda geçerli değildir. WASP-19 sistemine ilişkin ortalama yörünge eğikliği ve yarıçaplar oranı, sırasıyla, 79.2±0.2 ve 0.148±0.002 bulunmuşken WASP-33 sistemi için bu parametrelerin değeri, aynı sırayla, 88.1±1.1 ve 0.1095±0.0005 bulunmuştur.

Effect of Intrinsic Brightness Variations of Stars on Transit: An Analysis of WASP-19 and WASP-33 Systems

Keywords

Exoplanets, Stars: activity, Stars: oscillations, Techniques: photometric, Methods: data analysis, Astronomical data bases: TESS **Abstract:** This study involves an analysis of the TESS light curves of the WASP-19 and WASP-33 systems. While the host star in the WASP-19 system exhibits solarlike activity, the host star in the WASP-33 system pulsates. Both systems contain one transiting exoplanet. The research aims to examine the potential effects of intrinsic brightness variations in host stars on the analysis of transit light curves for these exoplanets. Light curves were analyzed both in their original form and after removing the intrinsic brightness variations of the host stars. The analyses concluded that the intrinsic brightness variations of the host stars in both systems do not significantly affect the determination of exoplanetary parameters through light curve modeling. However, this conclusion does not apply if the host star's intrinsic brightness variation exceeds the transit depth. The average orbital inclination and radii ratio for the WASP-19 system were found to be 79.2 \pm 0.2 and 0.148 \pm 0.002, respectively, while the values of these parameters for the WASP-33 system were found to be 88.1 \pm 1.1 and 0.1095 \pm 0.0005, respectively.

1. Giriş

Ötegezegenler, Güneş Sistemi dışında yer alan ve başka yıldızların yörüngesinde dolanan gezegenlerdir. Kopernik devrimi bilim insanlarından Giordano Bruno, 1584 yılında "De l'infinito Universo et Mondi" kitabında yıldızların kendi gezegenlerine sahip uzak güneşler olduğunu ve bu gezegenlerin Yer'deki gibi yaşamlar barındırabileceğini savunmuştur. Bu teori, ötegezegenler fikrini akıllara düşüren ilk tohumdur. Struve [1] ise ötegezegenlerin yıldızlarına Güneş sistemindekinden daha yakın olabileceklerini ve süper Jüpiterlerin kısa yörüngelerde dikine hız ve örtme yöntemiyle tespit edilebileceğini öne sürmüştür. İlk keşiflerin gerçekleşmesi ise 1990'ları bulmuştur. 1992 yılında PSR 1257+12 atarcasının yörüngesinde iki ötegezegen; 1995 yılında Güneş benzeri bir anakol yıldızının (51 Pegasi) yörüngesinde bir ötegezegen keşfedilmiştir [2][3]. Bu uzak dünyaların keşfi, Astronomi biliminde yeni bir araştırma alanı açmış, evrenin çeşitliliği konusunda ufkumuzu genişletmiştir. Uzay teleskoplarıyla hızlanan ötegezegen araştırmalarında keşifler günden güne artmakta, doğrulanan ötegezegen sayısı 6000'e yaklaşmaktadır [4].

Ötegezegenleri keşfetmenin birçok yöntemi olsa da en etkili yöntem örtme (transit) yöntemidir. Bu yöntem, ötegezegenin kütleçekimsel olarak bağlı olduğu yıldızın (barınak yıldız) önünden geçerken yıldızın ışığında oluşturduğu parlaklık azalmasını ölçmeye dayanır. Yıldızın parlaklığında ölçülen bu değişim, ötegezegenin yörünge dönemine bağlı olarak düzenli aralıklarla tekrarlanır. Parlaklık değişim miktarı, ötegezegenin boyutuna göre değişmekle birlikte azdır. genellikle %1'den Örten çift vıldız sistemlerinden farklı olarak, gezegenin vıldız tarafından örtüldüğü andaki parlaklık değişimi genellikle gözlenmez. Işık eğrisinde örtülmenin görüldüğü durumlarda ise beaming, elipsoidal değisimler ve vansıtma icin öngörülen katkı milyonda 100'den (100 parts per million; ppm) düşük olmasıdır [5]. Yapılan gözlemsel çalışmalar da bu doğrultuda sonuçlar rapor etmektedir [6][7]. Bununla beraber WASP-33 sisteminde örtülme derinliği 305.8±35.5 ppm olarak hesaplanmıştır [8].

Barınak yıldızda gözlenen bünyesel parlaklık değişimleri ötegezegenlerin kesfi ve sınıflandırmasında önemli etkilere sahiptir. Barınak yıldız güneş türü bir yıldız ise, yüzeyinde Güneş'tekine benzer manyetik aktivite yapıları (lekeler, fakülalar vb.) bulunur ve bu yapılar, yıldızın ışık eğrisinde biçimi ve genliği zamanla değişen dalga benzeri desenler gözlenmesine neden olur. Diğer yandan, barınak yıldız, Hertzsprung-Russell diyagramında kararsızlık kuşağında konumlanıyorsa zonklama mekanizmasının etkin olarak calısması nedeniyle ısık eğrisinde vine dalga benzeri desenler gösterir. Bu desenlerin biçimleri ve genlikleri, güneş türü yıldızlarda gözlenen desenlerden karakter olarak biraz daha farklıdır. Barınak yıldızın doğası nedeniyle ortaya çıkan bu parlaklık değişimleri, ötegezegenin örtme olayı nedeniyle ortaya çıkan parlaklık değişimiyle üst üste bindiğinde, ışık eğrisi modellemeleri üzerinden elde edilecek bilgilerin, hatalı veya güvenilirliği düşük olmasına neden olabilir. Örtme olayına denk gelen bir yıldız lekesi geçiş derinliğini kısa bir süreliğine azaltırken, fakülanın denk geldiği durumlarda ise geçiş derinliği kısa bir süreliğine artar. Hatalı sonuçlara yol açmamak için ışık eğrilerinin detaylı modellenmesine ihtiyaç vardır [9][10].

Bu çalışmada, barınak yıldızı bünyesel parlaklık değişimi gösteren sistemlerde, bu değişimlerin ötegezegen parametrelerine ne tür etkisi olduğuna ilişkin bir inceleme yapılması amaçlanmıştır. Bu cercevede, Güneş benzeri yıldız aktivitesi sergileyen WASP-19 ve bir zonklayan yıldız olan WASP-33 sistemleri hedef olarak seçilmiştir [11][12]. WASP-19, 0.965 M_{\odot} kütleye, 1.006 R_{\odot} yarıçapa ve 5616 K etkin sıcaklığa sahiptir [13]. Bu yıldızın kütle, yarıçap ve etkin sıcaklık değerleri göz önüne alındığında Günes türü bir vıldız olduğu anlaşılmaktadır. WASP-33'ün ise kütlesi 1.495 Mo, yarıçapı 1.444 R₀ ve etkin sıcaklığı 7430 K'dir [14]. WASP-19 b ötegezegeni 2009'da; WASP-33 b ötegezegeni 2010 yılında keşfedilmiştir [15][16]. Barınak yıldızına 0.01652 AB uzaklıkta bulunan WASP-19 b, 1.154 M_{Jup} kütleye, 1.415 R_{Jup} yarıçapa, 2113 K etkin sıcaklığa sahiptir [13]. WASP-33 b ötegezegeninin ise kütlesi 2.093 MJup, yarıçapı 1.593 R_{Jup}, etkin sıcaklığı 2781 K'dir ve barınak yıldızına 0.0239 AB uzaklıkta bulunur [14]. Her iki ötegezegen de 'Sıcak Jüpiter' sınıfında yer almaktadır [13][14].

Sistemlerin ışık eğrisi modellemeleri, önce bünyesel parlaklık değişimi ve ötegezegen geçişinin birlikte gözlendiği orijinal ışık eğrileriyle yapılmıştır. Ardından, gözlenen bünyesel parlaklık değişimleri orijinal ışık eğrisinden çıkarılmış ve kalan arındırılmış ışık eğrisi tekrar modellenmiştir. Son adımda, orijinal ve arındırılmış ışık eğrilerinin modellenmesinden elde edilen sonuçlar karşılaştırılarak tartışılmıştır.

2. Işık Eğrilerinin Elde Edilmesi ve Analizi

Hedef sistemlerin ışık eğrileri Transiting Exoplanet Survey Satellite (TESS) uzay teleskobundan elde edilmiştir. TESS, 2018 yılında görevine başlayan örtme gösteren ötegezegenleri tarama projesidir. 10 cm açıklığa ve f/1.4 odak oranına sahip her biri özdeş 4 kameradan oluşmaktadır. Kameralarına 4096x4096 piksellik CCD alıcılar bağlıdır. 600-1000 nm arasında dalgaboyu geçirgenliğine sahiptir. 21"/piksel'lik piksel ölçeğiyle 2300 derece²'lik geniş bir alan görür [17]. TESS projesi kapsamında farklı amaçlarla 20, 120, 200, 600, 1800 saniyelik integrasyon süreleri kullanılmaktadır. TESS, 2 yıllık bir görev olarak planlansa da görevine aktif bir şekilde devam etmektedir.

TESS verilerini ön-indirgeme işlemi uygulayarak sunan farklı çalışma grupları bulunmaktadır. Bu calışma kapsamında ise 120 saniyelik integrasyon süreli verileri kullanan TESS Science Processing Operations Center (TESS-SPOC) tarafından sunulan ışık eğrisi dosyaları tercih edilmiştir [18]. Örtmenin başlangıç bitiş anlarını çok duyarlı analiz edebilmek ve sadece birkac saat süren örtme olavı sırasında veterli gözlem verisi elde edebilmek için kısa poz süreleri tercih edilir. Ancak poz süresi kısaldıkça sinyal/gürültü (SN) oranı da düşer. Bu çalışmada SN oranının yeterli olabileceği ama aynı zamanda poz

süresinin de kısa olacağı en uygun durumu yakalamak için 120 saniyelik integrasyon süreli gözlem verileri kullanılmıştır. TESS uydusu, gökyüzünde belirli bir bölgenin yaklaşık 27 gün süren zaman aralığında ışık ölçümünü yapar. Bu zaman aralığında alınan ölçümler bir sektör olarak adlandırılır. İlgili zaman aralığı sona erdiğinde, uydunun programına göre başka bir bölge gözlenmeye başlar ve bu bölgenin 27 günlük gözlemleri de ayrı bir sektör olarak kabul edilir. Her bir sektöre bir numara verilir. WASP-19 sisteminin TESS-SPOC gözlemleri 9, 36, 62 ve 63 numaralı sektörlerde mevcutken, WASP-33 sisteminin sadece 18 ve 58 numaralı sektörlerde TESS-SPOC verisi mevcuttur. Her bir yıldızın mevcut TESS-SPOC verileri Mikulski Archive for Space Telescopes (MAST) portalında herkesin erişimine açık şekilde mevcuttur. Verilerin pratik olarak edinilmesi ve analize hazır hale getirilmesi için Python ortamında hazırlanmış Lightkurve (v2.3.0) programından faydalanılmıştır [19]. Her bir sektöre ilişkin veri tek tek incelenerek uydudan kaynaklı düşük frekanslı parlaklık değişimlerinin varlığı araştırılmış, bu tür bir değişim mevcutsa Lightkurve paketindeki "flatten" işlevi kullanılarak bu değişim veriden arındırılmıştır. Ardından, tüm veri maksimum ışık düzeyine göre normalize edilerek analize hazır veri elde edilmiştir. Bu sürec esnasında, savısal bir değer bulunmadığı icin NaN olarak işaretlenen, yani parlaklık ölçümü bulunmayan ölçümler de verilerden arındırılmıştır. Her iki sisteme ilişkin TESS-SPOC verileri Şekil 1'de gösterilmiştir. Şekilde zamana karşı (Güneş Sistemi'nin kütle merkezine indirgenmis Jülyen tarihi, BJD) ölçülen parlaklık değerleri noktalanmıştır. Ötegezegenlerin gerçekleştirdiği geçişler, aşağıya doğru uzanan noktalar halinde görülmektedir.

$$m = -2.5 \times \log_{10}(f) \tag{1}$$

Verileri kadir birimine dönüştürmek için Eşitlik (1) kullanılmıştır. Bu dönüşüm, verileri ışık eğrisi modellemesinde kullanılacak olan bilgisayar koduna uyumlu hale getirmek için uygulanmıştır (bkz. Bir sonraki bölüm). Bu noktada bünyesel parlaklık değişimlerinin arındırılmadığı veri analiz için hazırdır. Değişimlerin arındırıldığı verinin elde edilebilmesi için periodogram analizi uygulanmıştır.

Şekil 1. WASP-19 (üstte; 62. ve 63. sektörler) ve WASP-33 (altta; 58. sektör) sistemlerine ait TESS-SPOC gözlemleri.

2.1. Yıldızlardaki bünyesel parlaklık değişimlerinin arındırılması

Barınak yıldızın bünyesel parlaklık değişiminin arındırılmasında, ötegezegen geçişine ilişkin sinyalin veriden silinmemesi için geçişin gözlenmediği zaman aralıklarındaki veriler göz önüne alınmış, geçiş gözlenen zaman aralıkları veriden silinmiştir. Geçiş gözlenmeyen zamanlardaki ışık eğrisine Lomb-Scargle periodogram [20][21] algoritmasını temel alan çoklu frekans analiz yöntemi uygulanmıştır. Bu vöntemde, ilgili verive bir defa uvgulanan periodogram analizi sonucunda bir frekans-genlik tayfı elde edilir. Bu tayfta en güçlü olan sinyalin frekans ve genlik değeri belirlenir. Belirlenen frekans ve genlik değerlerinin iyileştirilmesi ve bu değerlere karsılık gelen evre değerinin belirlenmesi en kücük kareler yöntemi ile yapılır. En küçük kareler kullanılan temel eşitlik vönteminde aşağıda verilmiştir.

$$I = a_0 + \sum_{i} A_i \sin \left[2\pi (w_i t + \Phi_i) \right]$$
(2)

Burada I ışık eğrisindeki ölçümü, a₀ sıfır nokta sabitini, A genliği, ω frekansı ve Φ evreyi ifade eder. En baskın sinyale ilişkin frekans, genlik ve evre değerleri belirlendikten sonra Eşitlik (2) yardımıyla bu baskın sinyal veriden arındırılır. Geriye kalan arındırılmış veriye tekrar periodogram uygulanır ve yukarıda anlatılan adımlar aynen tekrarlanarak başka güçlü sinyallerin varlığı aranır. Bu döngü, periodogram sonucunda bulunan sinyalin SN değerinin, tanımlanan bir eşik değerinin altına düşmesi durumunda sonlandırılır. TESS uydusuyla yapılan 120 saniyelik integrasyon süreli gözlemler için eşik değeri SN=5 olarak önerilmiştir [22][23]. İlgili çalışmalarda verilen bu eşik değeri gözlemsel olarak belirlenmiştir. Bu değerden daha düşük eşik değerleri kabul edildiğinde uydudan kaynaklı aletsel etkilerin ürettiği düşük genlikli frekanslar yıldızdan kaynaklı düşük genlikli frekanslarla karışabilir. Daha yüksek eşik değeri seçildiğinde yıldızdan kaynaklı değişimleri gösteren frekansların bazılarının belirlenememe durumu ortaya çıkar. Dolayısıyla bu çalışmada eşik değeri SN=5 olarak kabul edilmiştir. Her iki yıldıza yapılan uygulamalarda, frekans tarama aralığı olarak 0 çevrim/gün ile nyquist limiti arasında kalan frekans bölgesi göz önüne alınmıştır. TESS-SPOC verileri 120 saniye poz süresine karşılık gelecek şekilde görüntülerden birlestirilen olustuğundan 120 saniyeye karşılık gelen nyquist değeri 360 çevrim/gün olarak hesaplanmış ve bu değer frekans tarama aralığının üst sınırı olarak benimsenmistir.

Ardışık frekans arındırma döngüsünün sona ermesinin ardından, verinin barındırdığı istatistik olarak anlamlı sinyallere ilişkin frekans, genlik ve evre değerleri Tablo 1 ve Tablo 2'de verilmiştir. Periodogram analizinden bulunan frekans, genlik ve evre değerleri en küçük kareler yöntemi ile iyileştirilmiş ve istatistik hata değerleri hesaplanmıştır. Tablo 1 ve Tablo 2'de verilen değerler, bu ivilestirilmis değerlerdir. Her bir hedef sistemin genlik tayfı da Şekil 2'de gösterilmiştir. Şekilde her bir frekansın hesaplanan genlik değerleri noktalanmıştır. Yüksek genliğe sahip frekanslar grafikte keskin tepeler olarak kendilerini belli etmektedir.

Son adımda, elde edilen sinyallerin frekans, genlik ve evre değerleri yukarıdaki eşitlikte kullanılarak tüm frekansların bileşkesini gösteren model elde edilmiştir ve bu model, orijinal TESS-SPOC gözlemlerinden arındırılmıştır. Bu arındırmayla barınak yıldıza ilişkin bünyesel parlaklık değişimleri veriden tamamen arındırılmıştır ve geriye sadece ötegezegenin geçişini gösteren sinyal kalmıştır.

2.2. Işık eğrisinin analizi

Işık eğrisi modellemesi için, Örten Çiftler Yörünge Programını (Eclipsing Binary Orbit Program; EBOP) temel alan ve Fortran programlama diline yazılmış olan JKTEBOP kodu, yıldızların çift eksenli elipsoid olduğu varsayımını kullanır Bileşenlerinin biçimleri ideal küre olarak kabul edilebilen ayrık çift sistemlerin ışık eğrilerinin modellemesi için oldukça uygundur. Programın içerdiği işlevler arasında girilen başlangıç model parametre değerleri için model üretme (ikinci görev; TASK 2) ve Levenberg-Marquardt algoritması [25][26] aracılığıyla ışık eğrisine en iyi uyum sağlayan model parametrelerini bulma (üçüncü görev; TASK 3) işlevleri kullanılmıştır.

Tablo 1. WASP-19 hedef sistemi için frekans, genlik ve evre tablosu. Hata değerleri, ilgili basamağın yanında parantez içinde verilmiştir.

parantez içinde verininştir.						
Frekans	Genlik	Evre				
0.19346(2)	0.00171(6)	0.351(6)				
0.15843(1)	0.00122(3)	0.815(3)				
0.18344(1)	0.00109(7)	0.208(8)				
0.25608(1)	0.00097(3)	0.566(6)				
0.24045(2)	0.00059(4)	0.359(8)				
0.28851(1)	0.00084(2)	0.293(4)				
0.10531(1)	0.00075(2)	0.715(5)				
0.14977(1)	0.00078(3)	0.105(5)				
0.21869(1)	0.00084(4)	0.60(1)				
0.33019(2)	0.00041(2)	0.02(1)				
0.05509(2)	0.00045(2)	0.564(9)				
0.38128(1)	0.00039(2)	0.899(7)				
0.20064(2)	0.00044(9)	0.58(1)				
0.30843(1)	0.00043(2)	0.118(9)				
0.09105(2)	0.00032(2)	0.03(1)				
0.23672(1)	0.00040(4)	0.188(6)				
0.06288(2)	0.00027(2)	0.65(1)				
	Frekans 0.19346(2) 0.15843(1) 0.15843(1) 0.15843(1) 0.25608(1) 0.24045(2) 0.28851(1) 0.10531(1) 0.14977(1) 0.21869(1) 0.3019(2) 0.38128(1) 0.20064(2) 0.30843(1) 0.09105(2) 0.23672(1) 0.06288(2)	Frekans Genlik 0.19346(2) 0.00171(6) 0.15843(1) 0.00122(3) 0.18344(1) 0.0019(7) 0.25608(1) 0.00097(3) 0.24045(2) 0.00059(4) 0.28851(1) 0.00075(2) 0.14977(1) 0.00078(3) 0.21869(1) 0.00084(4) 0.33019(2) 0.00041(2) 0.05509(2) 0.00045(2) 0.38128(1) 0.00039(2) 0.20064(2) 0.00043(2) 0.09105(2) 0.00032(2) 0.23672(1) 0.00040(4) 0.06288(2) 0.00027(2)				

Tablo 2. WASP-33 hedef sistemi için frekans, genlik ve evre tablosu. Hata değerleri, ilgili basamağın yanında parantez içinde verilmiştir.

parantez içinde verilmiştir.							
	Frekans	Genlik	Evre				
F1	20.16232(1)	0.00084(3)	0.360(5)				
F2	1.90159(1)	0.00071(3)	0.651(6)				
F3	9.84676(1)	0.00069(3)	0.227(6)				
F4	21.06258(1)	0.00066(3)	0.856(7)				
F5	2.48767(4)	0.00046(3)	0.98(2)				
F6	27.7958(3)	0.0005(4)	0.862(9)				
F7	0.95119(1)	0.00038(3)	0.005(7)				
F8	7.52904(3)	0.00036(3)	0.90(1)				
F9	20.53756(2)	0.00036(3)	1.00(1)				
F10	34.12507(3)	0.00030(3)	0.54(1)				
F11	24.88612(3)	0.00027(3)	0.82(2)				
F12	2.02427(4)	0.00020(3)	0.27(2)				
F13	20.97622(4)	0.00020(3)	0.38(2)				
F14	9.43902(4)	0.00018(3)	0.66(2)				
F15	2.09689(4)	0.00018(3)	0.15(2)				
F16	10.67121(5)	0.00019(3)	0.87(3)				
F17	7.76799(5)	0.00018(3)	0.81(2)				
F18	27.7944(6)	0.0002(4)	0.98(2)				
F19	10.78538(4)	0.00016(3)	0.46(2)				
F20	11.82965(5)	0.00016(3)	0.96(3)				
F21	9.17469(5)	0.00015(3)	0.21(2)				
F22	8.28615(5)	0.00016(3)	0.98(3)				
F23	8.35626(7)	0.00015(3)	0.59(4)				
F24	1.637729(3)	0.00014(3)	0.776(2)				
F25	10.74804(7)	0.00013(3)	0.38(4)				
F26	19.97049(6)	0.00013(3)	0.24(3)				
F27	23.20588(7)	0.00012(3)	0.81(4)				
F28	19.20829(6)	0.00012(3)	0.65(3)				
F29	10.25262(7)	0.00012(3)	0.03(4)				

Şekil 2. WASP-19 (üstte) ve WASP-33 (altta) hedef sistemlerinin genlik tayfları. Her iki sistem için genlik tayflarının tamamı (sol paneller) ve 50 çevrim/gün değerine sınırlanmış aralığı (sağ paneller) ayrı ayrı gösterilmiştir.

Modellemenin ilk adımında, model parametrelerinin baslangıc değerlerini belirlemek icin hedef sistemlere ilişkin önceden yapılmış çalışmalara başvurulmuştur. WASP-19 için Cortés-Zuleta vd. [13] çalışmasından; WASP-33 için Chakrabarty & Sengupta [14] çalışmasından faydalanılmıştır. İlgili çalışmalardan benimsenen model parametreleri başlangıç zamanı (T₀), dönem (P), yarıçaplar oranı ($k=R_p/R_{\star}$; R_p ve R_{\star} , yıldızın sırasıyla, ötegezegenin ve barınak yarıçapıdır), yörünge düzleminin gökyüzü düzlemiyle yaptığı açı (i) olarak sayılabilir. Yukarıda atıf verilen çalışmalardan alınan parametre değerleri Tablo 3'te gösterilmiştir. Ancak Chakrabarty & Sengupta [14] çalışmasında T₀ değeri bulunmadığı için WASP-33 modellemesinde kullanılacak başlangıç T₀ değeri gözlem verisindeki ilk örtme olayının tam ortasına denk gelen zaman olarak belirlenmiştir. Bu parametreler, JKTEBOP programının ikinci görevinde girdi parametreleri olarak kullanılarak test modelleri üretilmiş ve bu modellerin gözlemlerle uyumu incelenmiştir. Bu noktada To ve P'nin duyarlı olarak belirlenmesi için geçiş zamanı değişimi (Transit Time Variation; TTV) yöntemi kullanılabilir. Ancak bu yöntem sadece T₀ ve P belirlemekle kalmayıp sisteme ilişkin başkaca özelliklerin de keşfedilmesine olanak sağlar [27][28][29]. Ayrıca yıldız aktiviteleri, geçiş sırasında yıldız parlaklığını değistirerek, gecis süresini kısaltarak, geçiş derinliğini sığlaştırarak veya asimetrik ışık eğrilerine yol açarak TTV'ye etki etmektedir Bununla beraber [30]. çalışma kapsamında sadece T₀ ve P'nin iyileştirilmesi amaçlandığından ilgili parametrelerin hesaplanması ışık eğrisi modellemesiyle yapılmıştır. Kabul edilebilir bir uyum bulunduğunda, JKTEBOP kodunun üçüncü

görevi vasıtasıyla T₀, P, k, *i* ve ısık eğrisi düzevini avarlavan ölcek carpanı parametresi icin ısık eğrisini en iyi temsil eden model parametre değerleri aranmıştır. Modelleme yapılırken, ışık eğrilerinde örtülme olayı (ötegezegenin barınak yıldızın arkasında kaldığı durum) gözlenemediği için vörüngenin eliptikliği hakkında bilgi üretilememis, bu nedenle her iki sistem için yörüngenin çember olduğu varsayılmıştır. Dolayısıyla yörünge basıklığı (e) ve enberi boylamı (w) sıfır olarak sabitlenmiştir. Kenar kararma katsayıları hesaplanırken göz önüne alınan barınak yıldız parametreleri (etkin sıcaklık, yüzey çekim ivmesinin logaritması (log*q*) ve metal bolluğu) WASP-19 için Cortés-Zuleta vd. [13] çalışmasından; WASP-33 için Stassun vd. [31] çalışmasından alınmıştır. Buna göre WASP-19 ve WASP-33 için etkin sıcaklıklar, sırasıyla 5616 K ve 7308 K, logg değerleri, sırasıyla 4.417 ve 4.50 ve metal bolluğu değerleri, sırasıyla 0.040 dex ve 0.0 dex'tir. Barınak yıldıza ilişkin kenar kararması için lineer yasa benimsenmiş, lineer kararma katsayıları Van Hamme [32] kenar çalışmasından** alınmıştır. Bu doğrultuda kenar kararma katsayıları WASP-19 için 0.474; WASP-33 icin 0.348 olarak belirlenmistir. Modelleme süreci tamamlandığında gözlem ve model arasındaki farkların standart sapmasının 3 katından (30) daha büyük saçılmaya sahip gözlem noktaları veriden çıkarılmış ve kalan gözlem noktalarıyla modelleme tekrarlanmıştır. Bu işlem, iki adım arasındaki parametre değerlerinin hassasiyeti 3 anlamlı rakam ile ifade edilene kadar tekrarlanmış, bunun sonucunda gözlemleri en iyi temsil eden model parametre setine ulaşılmıştır.

** https://faculty.fiu.edu/~vanhamme/ldfiles

3. Işık Eğrisi Analiz Sonuçları

Bir önceki bölümde anlatılan adımlar WASP-19 ve WASP-33 hedef sistemlerinin bünyesel parlaklık değişimleri arındırılmış ve arındırılmamış gözlem verilerinin her biri için ayrı ayrı uygulanmıştır. Her iki hedef sistem için hem orijinal hem de arındırılmış ışık eğrilerinin modellenmesinden elde edilen sonuçlar, Tablo 3'te listelenmiştir. Model sonuçların grafik gösterimi ise artıklarıyla birlikte Şekil 3'te verilmiştir. Şekilde gözlem verileri evreye göre çizdirilmiş ve sadece geçişin gözlendiği evre aralıkları üzerinden arındırılmış ve arındırılmamış veriler kıyaslama için yan yana gösterilmiştir. Evrelendirme Eşitlik (3)'teki ifadeye göre yapılmıştır. Bu eşitlikte T herhangi bir gözlem noktasının zamanı, T₀ alınan bir başlangıç zamanı, P dönem ve E de T₀ anından T anına kadar geçen süredeki çevrim sayısıdır.

$$T = T_0 + E \times P \tag{3}$$

Tablo 3. WASP-19 ve WASP-33 hedef sistemlerinin TESS uzay teleskobundan alınan ışık eğrilerinin analiz sonuçları. Her bir model için artıkların karekök ortalaması (RMS) ve indirgenmiş χ² değerleri tabloda karşılaştırma amaçlı olarak verilmiştir. Tabloda a/R_{*} yarı-büyük eksen uzunluğunun yıldız yarıçapına oranını, b ölçek çarpanını, δ geçiş derinliğini ve t₁₋₄ geçiş süresini vermektedir.

Sistemler	Kaynak	T ₀ (BJD) (2450000+)	P (gün)	i (°)	a/R★	b	k	δ (%)	t ₁₋₄ (saat)	RMS (mmag)	χ^2
WASP-19	Arındırılmamış	6402.7132(2)	0.78883892(6)	79.2(2)	3.546	0.663	0.148(2)	2.189	1.641	4.129	1.512
	Arındırılmış	6402.7131(2)	0.78883895(6)	79.2(2)	3.544	0.663	0.148(2)	2.187	1.642	3.361	1.008
	[13]	6402.712(2)	0.7888385(8)	79.1(4)	3.533	0.667	0.1441(6)	2.08	1.607		
	[33]	6029.5920(1)	0.7888390(2)	79.5(3)	3.573	0.645		0.020	1.581		
	[11]	4775.3375(2)	0.7888394(3)	78.9(2)			0.1428(6)				
	[34]	5168.9680(1)	0.7888400(3)	79.4(4)		0.657		2.06	1.572		
WASP-33	Arındırılmamış	8791.41399(2)	1.21987082(3)	88.6(6)	3.671	0.087	0.1095(5)	1.200	2.854	1.597	18.715
	Arındırılmış	8791.41399(2)	1.21987078(3)	87.0(1)	3.612	0.189	0.1094(3)	1.196	2.870	0.893	5.847
	[14]		1.219870(1)	86.63(3)	3.571	0.210	0.1118(2)		2.854		
	[35]	2984.8296(3)	1.2199(1)	86.2(2)			0.1143(2)				
	[12]	5507.5222(3)	1.219867(1)	87.9(9)			0.1046(6)				

Şekil 3. WASP-19 (üstte) ve WASP-33 (altta) hedef sistemleri için bünyesel parlaklık değişimleri arındırılmış ve arındırılmamış TESS gözlem verilerinin evreye göre parlaklık grafikleri. Şekillerde sadece geçişin gözlendiği evre aralığı gösterilmiştir.

Elde edilen parametrelerin bir karşılaştırılmasının yapılabilmesi için Tablo 3'te ayrıca literatür değerleri de verilmiştir. Tabloda WASP-19 sisteminin literatür değerlerinin verildiği Cortés-Zuleta vd. [13] çalışmasında bünyesel parlaklık değişimi arındırması yapılmazken WASP-33 sisteminin literatür değerlerinin verildiği Chakrabarty & Sengupta [14] çalışmasında arındırma yapılmıştır.

Tablo 3'te WASP-19 sistemine ait arındırılmış ve arındırılmamış ışık eğrilerinin modelleme sonuçları karşılaştırıldığında parametrelerin istatistik hata sınırları içinde aynı çıktığı görülmektedir. WASP-33 sisteminde ise arındırılmış ışık eğrileriyle elde edilen modele ait sonuçlarda *i* ve k parametreleri daha küçük istatistik hataya sahiptir. Modellerin gözlemlerle uyumlu olduğu karekök ortalaması (RMS) ve indirgenmiş χ^2 değerlerinden görülmektedir. Her modelin RMS ve indirgenmiş χ^2 değerleri karşılaştırıldığında bünyesel parlaklık değişimlerinin arındırıldığı modellerin daha küçük RMS ve χ^2 değerlerine sahip olduğu görülmektedir.

4. Özet ve Tartışma

Bu çalışma kapsamında, barınak yıldızları bünyesel parlaklık değişim gösteren ötegezegenlerin, ışık eğrisi transit yöntemi ile araştırılması halinde ne tür etkilerle karşılaşılabileceğinin bir incelemesi yapılmıştır. Bu amaçla WASP-19 ve WASP-33 sistemleri hedefler olarak seçilmiştir. WASP-33 sistemindeki barınak yıldız bir zonklayan yıldız, WASP-19 sistemindeki barınak yıldız da Güneş benzeri aktivite gösteren bir yıldızdır. Her iki sistemin ışık eğrilerinde de, sergiledikleri bünyesel parlaklık değişimlerinin izleri net olarak izlenebilmektedir. Bu izlerin genlik tayflarına yansıması, değişimlerin sahip olduğu frekanslarda meydana gelen kuvvetli tepelerle kendini göstermiştir.

Sistemlerin TESS uydusu ile elde edilmiş TESS-SPOC ışık eğrilerinden uydu ve üzerinde yer alan cihazlardan kaynaklanan aletsel parlaklık değişimleri arındırılmıştır. Ardından, aletsel etkilerin arındırıldığı ışık eğrileri her iki sistem için ayrı ayrı modellenmiştir. Bir sonraki adımda, her iki sistemin sergilediği bünyesel parlaklık değişimi, çoklu frekans analizi yapılarak bir önceki adımda kullanılan ışık eğrilerinden arındırılmıştır. Işık eğrisi modellemeleri, her iki sistem için bu arındırılmış ışık eğrileri ile tekrarlanmıştır.

WASP-19 ve WASP-33 sistemleri için yukarıda özetlenen süreçle elde edilen model sonuçları karşılaştırıldığında, her bir sistem için arındırılmış ve arındırılmamış durumdaki model parametrelerinin genel olarak hata sınırları içinde birbiri ile aynı kabul edilebileceği anlaşılmaktadır. Bu durum arındırılmış ve arındırılmamış modeller arasında anlamlı bir fark olmadığına işaret eder. Bu noktada, WASP-33 sistemi için istisna olarak görünen parametreler de, hata

sınırlarının üzerinde farklılık gösteren *i* açısıdır. Bu farklılığın nedeninin, gezegenli sistemlerin ışık eğrilerinin, başka herhangi bir kısıtlayıcı veri veya parametre olmadan modellenmesi sonucu ortaya vozlasması olduğu çıkan parametre tahmin edilmektedir. Benzer bir durum daha önce Kepler-6, Kepler-12, WASP-1, WASP-4, WASP-6 ve WASP-17 sistemlerinde gözlenmiştir [36]. Özellikle, barınak yıldızın ve ötegezegenin yarıçaplar oranı (veya yörünge yarı-büyük eksenin ölçeklenmiş kesirsel yarıçapları) i açısı ile önemli yozlaşma gösterme eğilimindedir. Bu eğilimin ortadan kaldırılması için, modelleme sürecinde serbest bırakılan parametreler üzerinde ek kısıtlama sağlayacak tayf verisi kullanılabilir.

WASP-19 sistemi için bu çalışmada elde edilen kesirsel yarıçaplar ile literatürde yer alan kesirsel yarıçaplar arasında hata sınırları üzerinde bir farklılık görülmektedir. Bu çalışmanın yazarları tarafından bu farkın ilgili literatür çalışmalarında Yer konuşlu gözlemlerin de dâhil edilmesi ve ([13] için) bu çalışmaya oranla daha kısa zaman aralığına sahip TESS verisinin kullanılmasından kaynaklandığı düşünülmektedir.

WASP-33 sistemi icin bu calısma ve literatürdeki *i* ve k parametreleri arasında hata sınırları üzerinde bir farklılık mevcuttur. Bu farklılığın olası açıklaması bu çalışmada ve literatür çalışmalarında kullanılan farklı modeller olabilir. Modelleme için bu çalışmada [KTEBOP'tan faydalanılırken [12] ve [14]'te Mandel & Agol [37] tarafından sağlanan occultquad modellemesi, [35]'te ise Pearson vd. [38] EXOMOP modellemesi kullanılmıştır. Her bir model içerdiği farklı varsayımlar nedeniyle i ve k parametrelerinin hata sınırları üzerinde sonuçlar bulunmasına neden olmuş olabilir.

WASP-19 ve WASP-33 sistemlerinin bu çalışmada yapılan analizleri, her iki sistemin bünyesel parlaklık değişimlerinin, ötegezegene ilişkin parametrelerin ışık eğrisi modellemesi vasıtasıyla hesaplanması üzerinde önemli bir etkisi olmadığına işaret etmektedir. Baska bir devisle arındırma yapmanın veya yapmamanın model parametreleri üzerinde anlamlı bir etkisi görülmemektedir. Ancak bu sonuç, barınak yıldızı bünyesel parlaklık değişimi sergileyen tüm gezegenli sistemler için kesin olarak kabul edilemez. Kepler-63 sistemi gibi, ötegezegen geçişi ile karşılaştırıldığında çok daha büyük ışık değişimi üreten bünyesel parlaklık değişimleri, transit nedeniyle meydana gelen parlaklık değişimini baskılayacağından, ya veriden arındırılması ya da ışık eğrisi modelinde ek model parametreleri biciminde göz önüne alınması gereklidir [39]. Temel olarak, ötegezegen geçişi nedeniyle meydana gelen ışık değişiminin barınak yıldızın bünyesel parlaklık değişiminden daha baskın olduğu durumlarda, bünyesel değişimin arındırıldığı ve arındırılmadığı verilerin modellenmesinin pratik olarak birbiri ile aynı sonuçlar vereceği öngörülebilir. Bünyesel parlaklık değişiminin etkileri açısından, ışık eğrisinde ötegezegenin geçiş derinliği bir sınır gibi görünse de farklı sistemler üzerinden durumun test edilmesi daha kesin sonuçlar verebilir.

Teşekkür

Bu çalışma Ege Üniversitesi Fen Bilimleri Enstitüsü bünyesinde "Uzay Teleskopları Çağında Ötegezegen Keşifleri" adı altında yürütülen yüksek lisans tez çalışmasından üretilmiştir. Yazarlar, yorumları ve eleştirileriyle çalışmaya olumlu katkı sağlayan hakemlere teşekkür eder. Bu makale, Uzay Teleskobu Bilim Enstitüsü'ndeki (Space Telescope Science Institute; STScI) MAST veri arşivinden elde edilen TESS göreviyle toplanan verileri icermektedir. TESS görevi için finansman NASA Explorer Programı tarafından sağlanmaktadır. Bu araştırmada, Ötegezegen Keşif Programı (Exoplanet Exploration Program) cercevesinde NASA ile yapılan sözleşme kapsamında Kaliforniya Teknoloji Enstitüsü tarafından işletilen NASA Exoplanet Archive'nden yararlanılmıştır.

Etik Beyanı

Bu çalışmada, "Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi" kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin "Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler" başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederiz.

Kaynakça

- [1] Struve, O., 1952, Proposal for a project of highprecision stellar radial velocity work, The Observatory, 72, 199-200.
- [2] Wolszczan, A., Frail, D.A., 1992, A planetary system around the millisecond pulsar PSR1257 + 12, Nature, 355(6356), 145-147.
- [3] Mayor, M., Queloz, D., 1995, A Jupiter-mass companion to a solar-type star, Nature, 378(6555), 355-359.
- [4] NASA Exoplanet Archive, "Exoplanet and Candidate Statistics", https://exoplanetarchive.ipac.caltech.edu/index .html (Erişim tarihi: 10 Aralık 2024)
- [5] Loeb, A., Gaudi, B. S., 2003, Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions, The Astrophysical Journal, 588 (2), L117-L120.
- [6] Barbier, H., López, E., 2021, Kepler Planetary Systems: Doppler Beaming Effect Significance, Revista Mexicana de Astronomía y Astrofísica, 57, 123-132.

- [7] Mazeh, T., Nachmani, G., Sokol, G., 2012, Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter, Astronomy & Astrophysics, 541 (A56), 9.
- [8] von Essen, C., Mallonn, M., Borre, C. C., 2020, TESS unveils the phase curve of WASP-33b. Characterization of the planetary atmosphere and the pulsations from the star, Astronomy & Astrophysics, 639 (A34), 19.
- [9] Bruno, G., Deleuil, M., 2023, Stellar activity and transits, Star-Planet Interactions, 65.
- [10] Bókon, A., Kálmán, Sz., Bíró, I. B., Szabó, M. Gy., 2023, Stellar pulsations interfering with the transit light curve: Configurations with false positive misalignment, Astronomy & Astrophysics, 674 (A186), 14.
- [11] Tregloan-Reed, J., Southworth, J., Tappert, C., 2013, Transits and starspots in the WASP-19 planetary system, Monthly Notices of the Royal Astronomical Society, 428 (4), 3671-3679.
- [12] von Essen, C., Czesla, S., Wolter, U., 2014, Pulsation analysis and its impact on primary transit modeling in WASP-33, Astronomy & Astrophysics, 561 (A48), 20.
- [13] Cortés-Zuleta, P., Rojo, P., Wang, S., 2020, TraMoS.
 V. Updated ephemeris and multi-epoch monitoring of the hot Jupiters WASP-18Ab, WASP-19b, and WASP-77Ab, Astronomy & Astrophysics, 636 (A98), 17.
- [14] Chakrabarty, A., Sengupta, S., 2019, Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties, The Astronomical Journal, 158 (39), 17.
- [15] Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., 2010, WASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered, The Astrophysical Journal, 708 (1), 224-231.
- [16] Collier Cameron, A., Guenther, E., Smalley, B., 2010, Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star, Monthly Notices of the Royal Astronomical Society, 407 (1), 507-514.
- [17] Ricker, G. R., Winn, J. N., Vanderspek, R., 2015, Transiting Exoplanet Survey Satellite (TESS), Journal of Astronomical Telescopes, Instruments, and Systems, 1 (1), 014003.
- [18] Caldwell, D. A., Tenenbaum, P., Twicken, J. D., 2020, TESS Science Processing Operations Center FFI target list products, Research Notes of the AAS, 4 (11), 201.
- [19] Lightkurve Collaboration, 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library, ascl:1812.013.

- [20] Lomb, N. R., 1976, Least-Squares Frequency Analysis of Unequally Spaced Data, Astrophysics and Space Science, 39 (2), 447-462.
- [21] Scargle, J. D., 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data., Astrophysical Journal, 263, 835-853.
- [22] Baran, A. S., Koen, C., 2021, A Detection Threshold in the Amplitude Spectra Calculated from TESS Time-Series Data, Acta Astronomica, 71 (2), 113-121.
- [23] Bowman, D. M., Michielsen, M., 2021, Towards a systematic treatment of observational uncertainties in forward asteroseismic modelling of gravity-mode pulsators, Astronomy & Astrophysics, 656 (A158), 20.
- [24] Southworth, J., Maxted, P. F. L., Smalley, B., 2004, Eclipsing binaries in open clusters - II. V453 Cyg in NGC 6871, Monthly Notices of the Royal Astronomical Society, 351 (4), 1277-1289.
- [25] Levenberg, K., 1944, A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2, 164-168.
- [26] Marquardt, D. W., 1963, An algorithm for leastsquares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441.
- [27] Agol, E., Steffen, J., Sari, R., 2005, On detecting terrestrial planets with timing of giant planet transits, Monthly Notices of the Royal Astronomical Society, 359 (2), 567-579.
- [28] Nesvorný, D., 2009, Transit Timing Variations for Eccentric and Inclined Exoplanets, The Astrophysical Journal, 701 (2), 1116-1122.
- [29] Aladağ, Y., Akyüz, A., Baştürk, Ö., 2021, Geçiş Zamanları Değişimi Yöntemiyle HAT-P-16b ve TrES-3b Ötegezegenlerinin İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 2 (1), 28-37.
- [30] Barros, S. C. C., Boué, G., Gibson, N. P., 2013, Transit timing variations in WASP-10b induced by stellar activity, Monthly Notices of the Royal Astronomical Society, 430 (4), 3032-3047.
- [31] Stassun, K. G., Collins, K. A., Gaudi, B. S., 2017, Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes, The Astronomical Journal, 153 (136), 20.
- [32] Van Hamme, W., 1993, New limb-darkening coefficients for modeling binary star light curves, Astronomical Journal, 106, 2096.
- [33] Lendl, M., Gillon, M., Queloz, D., 2013, A photometric study of the hot exoplanet WASP-19b, Astronomy & Astrophysics, 552 (A2), 11.

- [34] Hellier, C., Anderson, D. R., Collier-Cameron, A., 2011, On the Orbit of the Short-period Exoplanet WASP-19b, The Astrophysical Journal Letters, 730 (L31), 4.
- [35] Turner, J. D., Pearson, K. A., Biddle, L. I., 2016, Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits, Monthly Notices of the Royal Astronomical Society, 459 (1), 789-819.
- [36] Yüksel, R. C., Özdarcan, O., 2024, Seçilen Bazı Gezegenli Sistemlerin Kepler, TESS ve SuperWASP Fotometrik Verileri Kullanılarak İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 5 (2), 28-36.
- [37] Mandel, K., Agol, E., 2002, Analytic Light Curves for Planetary Transit Searches, The Astrophysical Journal, 580 (2), L171-L175.
- [38] Pearson, K. A., Turner, J. D., Sagan, T. G., 2014, Photometric observation of HAT-P-16b in the near-UV, New Astronomy, 27, 102-110.
- [39] Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., 2013, Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star, The Astrophysical Journal, 775 (54), 13.