
PAPER DETAILS

TITLE: Global Boundedness and Mass Persistence of Solutions to A Chemotaxis-Competition

System with Logistic Source

AUTHORS: Halil Ibrahim Kurt

PAGES: 167-175

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/4552613



*Corresponding author: hk2357@hotmail.com 

167 

 DOI: 10.19113/sdufenbed.1627078 
 

Global Boundedness and Mass Persistence of Solutions to A Chemotaxis-Competition 
System with Logistic Source  

 

 Halil İbrahim KURT  
  

 Karadeniz Teknik Üniversitesi, Fen Fakültesi, Matematik Bölümü, 61080, Trabzon, Türkiye 
 

(Alınış / Received: 25.01.2025, Kabul / Accepted: 15.03.2025, Online Yayınlanma / Published Online: 25.04.2025) 
 

  
Keywords 
Regular sensitivity, 
Logistic source, 
Global existence, 
Global boundedness, 
Mass persistence 

Abstract: This article examines the population dynamics of solutions such as global 
existence, global boundedness, and mass persistence, to a parabolic elliptic type of 
chemotaxis-competition system including logistics kinetics under no-flux boundary 
conditions in a smoothly bounded domain. Tello and Winkler were the first to 
investigate the global existence and global boundedness of the system mentioned 
above. Then Tao and Winkler examined qualitative properties of the given system 
such as the mass persistence of solutions. This study improves some known results 
and reveals that under some suitable conditions, there exists a classical solution to 
the system described above that is globally bounded. In addition, it is shown that the 
population as a whole is never extinct. In other words, any globally defined positive 
solution eventually persists in mass from below and is bounded in pointwise above 
by certain positive constants. We wanted to highlight that the methods and 
techniques utilized in this article are completely different from the approach used 
in the previous research. 

  
  

Bir Lojistik Kemotaksis-Rekabet Sisteminin Çözümlerinin Küresel Sınırlılığı ve Kitlesel 
Kalıcılığı 

 
 

Anahtar Kelimeler 
Lineer hassasiyet, 
Lojistik kaynak, 
Global varlık, 
Global sınırlılık, 
Kitlesel kalıcılık 

Öz: Bu makale, düzgün sınırlı bir alanda akısız sınır koşulları altında lojistik kinetik 
içeren parabolik eliptik tipte bir kemotaksi-rekabet sistemine ait global varlık, 
global sınırlılık ve kütlesel kalıcılığı gibi çözümlerin popülasyon dinamiklerini 
incelemektedir. Tello ve Winkler'in ilk olarak yukarıda belirtilen sistemin küresel 
varlığını ve sınırlılığını incelemiştir. Daha sonra Tao ve Winkler, verilen sistemin 
çözümlerin kütlesel kalıcılığı gibi dinamik özelliklerini araştırmışlardır. Bu 
çalışmada, bilinen bazı sonuçlar geliştirilmiştir ve uygun koşullar altında sistemin 
küresel olarak var ve sınırlı olan tek bir klasik çözüme sahip olduğunu göstermiştir. 
Buna ilave olarak, popülasyonun bir bütün olarak asla yok olmadığı gösterilmiştir. 
Başka bir deyişle, küresel olarak tanımlanmış herhangi bir pozitif çözüm er yada geç 
belirli birer pozitif sabitlerle noktasal olrak üstten ve kütlesel olarak alttan 
sınırlandırılır. Bu makalede kullanılan yöntem ve tekniklerin, daha önceki 
araştırmalarda kullanılan yaklaşımdan tamamen farklıdır. 

  
 

1. Introduction 
 
The term chemotaxis depicts the motion of living 
organisms or mobile cells in return for a chemical 
gradient. Keller and Segel in [1, 2] presented this 
phenomenon in the 1970's and it plays an important 
role in many biological circumstances, for instance, 
immune system response, gravitational collapse, 
tumor growth, population dynamics, and immune cell 
migration, etc. In these models, the density of cells or 
creatures correlates with the concentration of the 

chemical, leading them to migrate towards areas of 
elevated chemical concentrations or away from areas 
of heightened chemical concentrations. Keller-Segel 
type chemotaxis models are typically expressed by 
partial differential equations (PDEs), which delineate 
the spatiotemporal evolution of cell density and 
chemical concentration. Through the interplay of 
processes such as diffusion and chemotaxis, these 
equations provide a framework for comprehending 
the intricate dynamics of chemotactic systems. 
 

Süleyman Demirel University 
Journal of Natural and Applied Sciences 

Volume 29, Issue 1, 167-175, 2025 
 
 

 

Süleyman Demirel Üniversitesi 
Fen Bilimleri Enstitüsü Dergisi 
Cilt 29, Sayı 1, 167-175, 2025 

 

 



H.İ. Kurt / Global Boundedness and Mass Persistence of Solutions to A Chemotaxis-Competition System with Logistic Source 

168 
 

Core challenges in chemotaxis models determines 
whether solutions blows-up in finite-time or exist 
globally. The following question is whether these 
solutions are bounded provided that solutions are 
exist. Furthermore, if they are ultimately bounded, it 
is crucial to examine the long-term dynamics of 
bounded solutions, including persistence, stability, 
etc. In this context, a ton of research have been 
performed on the dynamical properties of many 
chemotaxis systems, for example the investigation of 
local existence, uniqueness, global existence, global 
boundedness, a finite time blow-up, persistence and 
asymptotic stability, etc. We refer the reader to 
explore the articles [3, 4, 5] for more details. 
 
The following logistic chemotaxis model will be 
investigated in this paper: 
 

{
𝑢𝑡 = 𝛥𝑢 − 𝜒𝛻 ⋅ (𝑢𝛻𝑣) + ℎ𝑢 − 𝑘𝑢2,
0 = 𝛥𝑣 − 𝑎𝑣 + 𝑏𝑢,                              

 (1) 

 
for 𝑥 ∈ Ω, 𝑡 > 0,  along with the homogeneous 
Neumann boundary conditions 
 

∂𝑢

∂𝜈
=

∂𝑣

∂𝜈
= 0    on  ∂Ω, (2) 

 
and the initial conditions 𝑢0(𝑥): = 𝑢(0, 𝑥; 𝑢0)  that 
satisfies 

𝑢0 ∈ 𝐶0(Ω̅)    a𝑛𝑑    𝑢0 ≥ 0, (3) 
 
as well as Ω ⊂ ℝ𝑁  with 𝑁 ≥ 1  is a smooth domain 
and  𝜒, 𝑎, 𝑏, ℎ, 𝑘 > 0 are positive numbers. 
 
The biological interpretation of model (1) describes 
the mechanism of cellular movement, where mobile 
cells migrate towards regions with a higher 
concentration of chemical substance. The chemotaxis 
term −𝜒∇ ⋅ (𝑢∇𝑣) depicts the impact of chemotactic 
migration,  and the parameter ℎ > 0  denotes the 
growth rate of cells; 𝑘 > 0 indicates self-limitation of 
the cells; 𝑎 > 0 reflects the rate at which degradation 
occurs of the chemical substance; and 𝑏 > 0 
represents the pace at which production occurs of the 
mobile cells.  
 
We remark that model (1) has been analyzed in many 
research works up to now, and many results have 
been obtained in the existing literature. When 𝑁 ≥ 2 
and ℎ = 𝑘 = 0, it was shown that a finite-time blows-
up occurs in solutions of (1) under some restriction 
on the initial condition, look at [6, 7, 8, 9] for more 
details. When 𝑎 = 𝑏 = 1  and ℎ, 𝑘 > 0 , Tello and 
Winkler in [10] demonstrated that for any suitable 
nonnegative initial function, (1) possesses a global 
bounded solution if  

    𝑁 ≤ 2  or 𝑁 ≥ 3 whenever   𝜒 <
𝑘𝑁

𝑁 − 2
.  (4) 

The long-term behaviors of solutions has also been 
examined in many research paper, for example, the 
readers are referred to the research papers [11, 12, 

13, 14, 15, 16, 17, 18] for the other studies including 
weak solutions, boundedness, and stability of positive 
constant solution, etc.  
 
For reader intersrts, we present the following 
parabolic-elliptic chemotaxis system with a logistics 
source and singular sensitivity:  

   {
 𝑢𝑡 = Δ𝑢 − 𝜒∇ ⋅ (

𝑢

𝑣𝑚
∇𝑣) + ℎ𝑢 − 𝑘𝑢2,        𝑥 ∈ Ω,    

−Δ𝑣 + a𝑣 = b𝑢,                               𝑥 ∈ Ω.
 

When 𝑛 = 2 and 𝑚 = 1, Fujue, Winkler and Yokota in 
[19] showed that any finite-time blow-up was not 
observed in the above system and all global solutions 
are globally bounded provided that 

ℎ > {
𝑎𝜒2

4
, for   0 < 𝜒 ≤ 2

𝑎(𝜒 − 1), for   𝜒 > 2.
  

Then, this result was generalized by the authors Kurt 
and Shen in [20] to the all space dimensions, and they 
proved that any positive classical solutions exists 
globally and stays bounded under some parameter 
conditions between 𝑎, 𝜒 and the initial function 𝑢0.  
 
When 𝑛 = 2 and 𝑚 ∈ (0,1),  Zhao in [21] proved that 
mentioned system admits a globally bounded 
classical solution with 𝑘  being large enough. 
Recently, Kurt in [22] demostrated that there is a 
global classical solution for sufficiently large 𝑘. 
Moreover, the global boundedness are given under 
the additional restriction  

𝑚 <
1

2
+

1

𝑛
    with    𝑛 ≥ 2. 

For additional variants of the aforementioned model, 
concerning the long-term properties of nonnegative 
solutions including the problems such as uniform 
boundedness, persistence, stability, entire and 
periodic solutions and more, we recommend the 
reader to explore the research articles [23, 24, 25, 26, 
27, 28, 29] for further reading.  
 
Our motivation to investigate the problems discussed 
in this paper is outlined as follows. It is well known 
that [10, Lemma 2.4] proves that if (4) holds, then 
model (1) admits a classical solution that is globally 
bounded, i.e.,  

   sup ∥ 𝑢(𝑡,⋅) ∥𝐿∞(Ω)< ∞, ∀𝑡 > 0.    (5) 
 
This result was improved by Hu and Tao in [12, 
Theorem 1.1], and they obtained the same result even 
at the critical point. Furthermore, Tao and Winkler in 
[30, Theorem 1.1] studied the mass persistence of 
solutions and they proved that when Ω ⊂ ℝ𝑁  with  
𝑁 ≥ 1 is convex, all positive solutions to model (1) 
always persists as a whole, in other words, for every 
given nonnegative global classical solution  (𝑢, 𝑣) of 
model (1), if  Ω  is a convex domain and (4) is valid, 
then for some  𝑘0 > 0 , we have 
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∫
Ω

𝑢(𝑡, 𝑥)𝑑𝑥 ≥ 𝑘0    for  all    𝑡 > 0. (6) 

 
However, it still remains open whether (6) is true 
when the case Ω ⊂ ℝ𝑁 with 𝑁 ≥ 1 is not  convex. As 
far as our knowledge, there has not been carried out 
any research on this problem yet. This papers aims to 
answer to this question.  

1.1 Fundamental results 

We provide our results in this subsection. The generic 
constant C is not dependent on solutions, and may 
vary in value at different places. Moreover, we 
assume that 

𝑁 ≤ 2  or  𝜒 ≤
𝑘

𝑏
⋅

𝑁

𝑁 − 2
 with 𝑁 ≥ 3. (7) 

 
The first result is on the global 𝐿𝑝-norm of 𝑢. 
 
Theorem 1 ( 𝑳𝒑 -boundedness). Suppose that (3) 
and (7) are valid. Then 
 

∫
Ω

𝑢𝑝(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≤ 𝐶,  

 
for all 𝑡 ∈ (0, 𝑇max).  

The second result  is on the global existence & 
boundedness of solutions. 
 
Theorem 2. Suppose that (3) and (7) hold.   

 • (Global existence) The solution (𝑢, v)  is global, 
which means,  

𝑇max(𝑢0) = ∞.  
 

 • (Global boundedness) There is 𝐶∞ > 0 such that  

∥ 𝑢 ∥𝐿∞(Ω)≤ 𝐶∞    ∀ 𝑡 > 0.  
 

 The last result is on the mass persistence of solutions. 

Theorem 3 (Mass persistence).  Suppose that (3) 
and (7) are valid. Then 

∫
Ω

𝑢(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≥ 𝛿∗    ∀ t > 𝑡0 > 0,  

 

for some constant  𝛿∗ > 0. 

We organized the remain part of this paper as below. 
Section 2 is dedicated to present some key estimates 
and some well known formulas and estimates. 
Section 3 is devoted to the analysis of the 𝐿𝑝-norm of 
𝑢 , the global existence and global boundedness of 
solutions to (1). Additionally, we will investigate 

mass persistence of globally bounded solutions of (1). 
Then we discuss and compare our results to previous 
results obtained in the previous research papers in 
the literature in Section 4. 

2. Material and Method 

This section is dedicated to present some elementary 
lemmas.  

Lemma 1.  Assume that u0 satisfies (3). Then there is 
Tmax(u0) ∈ (0, ∞]  such that (1) admits a unique 
classical solution, which is symbolized by (u(t, x; u0), 
v(t, x; u0)) , on (0, Tmax(u0))  with u(0, x; u0) = u0(x) 
and 𝑢 ∈ 𝐶2,1((0, 𝑇max) × Ω̅) ∩ C((0, 𝑇max) × Ω̅),  and 

𝑣 ∈ 𝐶2,0((0, 𝑇max) × Ω̅). Moreover, if 𝑇max < ∞, then  

limsup
𝑡↗𝑇max

‖𝑢(𝑡,⋅)‖𝐶0(Ω̅) = ∞. 

Proof. The proof can be obtained from the similar 
arguments of [10, Theorem 2.1]. 

Second, suppose 1 < 𝑝 < ∞  and let 𝑋𝑝 = 𝐿𝑝(Ω)  and 

−Δ + 𝑎𝐼: 𝐷(−Δ + 𝑎𝐼) ⊂ 𝐿𝑝(Ω) → 𝐿𝑝(Ω)  with  

𝐷(−Δ + 𝑎𝐼) = {𝑢 ∈ 𝑊2,𝑝(Ω) |  
∂𝑢

∂𝑛
= 0    on ∂Ω}. 

Assume that  (𝑎𝐼 − Δ)𝛽  is the fractional power 

operator of  (𝑎𝐼 − Δ)   and let 𝑋𝑝
𝛽

= 𝒟((𝑎𝐼 − Δ)𝛽) 

with graph norm  

∥ 𝑢 ∥
𝑋𝑝

𝛽=∥ (𝑎𝐼 − Δ)𝛽𝑢 ∥𝐿𝑝(Ω) 

for 𝛽 ≥ 0 and 𝑢 ∈ 𝑋𝑝
𝛽

. See [31, Definitions 1.4.1 and 

1.4.7] for more details. 

Lemma 2.  Assume that 1 < 𝑝 < ∞.   

• If 2𝛽 −
𝑁

𝑝
> 𝜃 ≥ 0, then 𝑋𝑝

𝛽
↪ 𝐶𝜃(Ω). 

• Assume  𝜑 ∈ 𝐶1(Ω̅)  satisfying 
∂𝜑

∂𝜈
= 0  on ∂Ω.  Then 

there are constants 𝜁, 𝐶𝑝 > 0 such that 

∥ 𝑒−(𝑎𝐼−Δ)𝑡∇ ⋅ 𝜑 ∥𝐿𝑝(Ω)≤ 𝐶𝑝 (1 + 𝑡−
1

2) 𝑒−𝜁𝑡 ∥ 𝜑 ∥𝐿𝑝(Ω) 

for every 𝑡 > 0.  

Proof. (1) might be obtained from [6, Theorem 1.6.1]. 
(2) follows from [32, Lemma 1.3].  

Lemma 3.  It holds that  

∫
Ω

𝑢 ≤ 𝑚0 ≔ m𝑎𝑥 {
ℎ

𝑘
|Ω|, ∫

Ω

𝑢0}   

  
for every 𝑡 ∈ (0, 𝑇max),  where |Ω|  is the Lebesgue 
measure of Ω.  

Proof. Integrating (1) and employing Hölder’s 
inequality entails 
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𝑑

𝑑𝑡
∫

Ω

𝑢 = ℎ ∫
Ω

𝑢 − 𝑘 ∫
Ω

𝑢2 ≤ ℎ ∫
Ω

𝑢 −
𝑘

|Ω|
(∫

Ω

𝑢)

2

   

for every 𝑡 ∈ (0, 𝑇max).  Then ODE's comparison 
principle completes the proof.  

3. Results 

We provide our fundamental results throughout this 
section. 

3.1.  𝑳𝒑-boundedness 

This section examines the 𝐿𝑝-norm of 𝑢. We first give 
some estimates. 

Lemma 4.  For all  m ∈ ℝ, we have  

𝑚 ∫
Ω

𝑢𝑚−1∇𝑢 ⋅ ∇𝑣 + 𝑎 ∫
Ω

𝑣𝑢𝑚 = 𝑏 ∫
Ω

𝑢𝑚+1, 

 for every 𝑡 ∈ (0, 𝑇max).  

Proof. Let us multiply the equation (1) by 𝑢𝑚−1 and 
integrating by parts over Ω. Then 

∫
Ω

𝑢𝑚−1 ⋅ (Δ𝑣 − 𝑎𝑣 + 𝑏𝑢) = 0   

for all 𝑡 ∈ (0, 𝑇max). The proof thus holds.  

Lemma 5.  For given 𝑞 ∈ (1,
𝜒𝑏

(𝜒𝑏−𝑘)+
),  there exists  

𝐶𝑞 > 0  such that  

         ∫
Ω

𝑢𝑞(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≤ 𝐶𝑞 , (8) 

 

for all 𝑡 ∈ (0, 𝑇max).  

Proof. First of all, we remark that if 𝑘 ≥ 𝜒𝑏, then (8) 
naturally follows. Therefore, we assume that 𝑘 < 𝜒𝑏. 
For every given 𝜒, 𝑏, 𝑘 > 0,  let us define 𝑞 > 1  such 
that  

𝑞: = 1 +
𝑘

𝜒𝑏 − 𝑘
. (9) 

 

Next, let us multiply (1) by 𝑢𝑞−1 and integrating over 
Ω. Then  

1

𝑞
⋅

𝑑

𝑑𝑡
∫

Ω

𝑢𝑞 = ∫
Ω

𝑢𝑞−1Δ𝑢 − 𝜒 ∫
Ω

𝑢𝑞−1∇ ⋅ (𝑢∇𝑣)

+ ℎ ∫
Ω

𝑢𝑞 − 𝑘 ∫
Ω

𝑢𝑞+1 

= −(𝑞 − 1) ∫
Ω

𝑢𝑞−2|∇𝑢|2 

+(𝑞 − 1)𝜒 ∫
Ω

𝑢𝑞−1∇𝑢 ⋅ ∇𝑣 

+ℎ ∫
Ω

𝑢𝑞 − 𝑘 ∫
Ω

𝑢𝑞+1, (10) 

 

for 𝑡 ∈ (0, 𝑇max). Note that letting 𝑚 = 𝑞 in Lemma 4 
together with (9) yields that   

(𝑞 − 1)𝜒 ∫
Ω

𝑢𝑞−1∇𝑢 ⋅ ∇𝑣 ≤
(𝑞 − 1)𝜒𝑏

𝑞
∫

Ω

𝑢𝑞+1 

= 𝑘 ∫
Ω

𝑢𝑞+1. (11) 

 

Note also that, by the Erhling type lemma, for given 
𝜀 > 0, we find  𝐶(𝜀) > 0 such that   

∫
Ω

𝑢𝑞 ≤
4𝜀

𝑞2
∫

Ω

|∇𝑢
𝑞

2|2 + 𝐶(𝜀, 𝑞)(∫
Ω

𝑢)𝑞  

≤ 𝜀 ∫
Ω

𝑢𝑞−2|∇𝑢|2 + 𝐶(𝜀, 𝑞), 

 which, by Lemma 3, implies  

 −(𝑞 − 1) ∫
Ω

𝑢𝑞−2|∇𝑢|2  ≤ − (
1

𝑞
+ ℎ) ∫

Ω

𝑢𝑞  

+𝐶(ℎ, 𝑞)(𝑚0)𝑞 , (12) 
 

for all 𝑡 ∈ (0, 𝑇max). Collecting from (10) to (12), we 
obtain  

𝑑

𝑑𝑡
∫

Ω

𝑢𝑞 ≤ − ∫
Ω

𝑢𝑞 + 𝐶(ℎ, 𝑞)(𝑚0)𝑞     

for all 𝑡 ∈ (0, 𝑇max). The ODE's comparison principle 
yields  

∫
Ω

𝑢𝑞(𝑡, 𝑥; 𝑢0)𝑑𝑥

≤ max {∫
Ω

𝑢0
𝑞(𝑥)𝑑𝑥, 2𝐶(ℎ, 𝑞)(𝑚0)𝑞}    

for all 𝑡 ∈ (0, 𝑇max). The lemma thus follows.  

Proof of Theorem 1. First, since 𝜒 ≤
𝑘

𝑏
⋅

𝑁

𝑁−2
, Lemma 5 

guarantees that there are some 𝑞 >
𝑁

2
 such that  

∫
Ω

𝑢𝑞(𝑡, 𝑥)𝑑𝑥 ≤ 𝐾𝑞    for  all  𝑡 ∈ (0, 𝑇max). 

Next, in view of the Gagliardo-Nirenberg embedding 
theorem, Young's inequality, we obtain for all given 
𝜀 > 0, we have  

 ∫
Ω

𝑢𝑝+1 =∥ 𝑢
𝑝

2 ∥
𝐿

2(𝑝+1)
𝑝 (Ω)

2(𝑝+1)

𝑝  
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            ≤ 𝐶 ∥ ∇𝑢
𝑝

2 ∥
𝐿2(Ω)

2(𝑝+1)𝜃

𝑝 ∥ 𝑢
𝑝

2 ∥
𝐿

2𝑞
𝑝 (Ω)

2(𝑝+1)(1−𝜃)

𝑝  

                   +𝐶 ∥ 𝑢
𝑝

2 ∥
𝐿

2𝑞
𝑝 (Ω)

2(𝑝+1)𝜃

𝑝 , 

         ≤ 𝐶 (
𝑝2

4
∫

Ω

𝑢𝑝−2|∇𝑢|2)

(𝑝+1)𝜃

𝑝

(𝐾𝑞)
(𝑝+1)(1−𝜃)

𝑞  

       +𝐶(𝐾𝑞)
(𝑝+1)𝜃

𝑞  

    ≤ 𝜀 ∫
Ω

𝑢𝑝−2|∇𝑢|2 + 𝐶(𝑝, 𝑞, 𝜀, 𝜃, 𝐾𝑞 , |Ω|) 

 
(13) 

for  all    𝑡 ∈ (0, 𝑇max), where  

              𝜃 =

𝑝

2𝑞
−

𝑝

2(𝑝+1)

1 +
𝑝

2𝑞
−

1

2

=
𝑝

𝑝 + 1
⋅

𝑝 + 1 − 𝑞

𝑝 + 𝑞
∈ (0,1) 

and  
(𝑝+1)𝜃

𝑝
< 1. 

Third, multiplying the equation (1) by 𝑢𝑝−1 with 𝑝 >
1 and integration by parts over the set Ω, we get that  

1

𝑝
⋅

𝑑

𝑑𝑡
∫

Ω

𝑢𝑝 = −(𝑝 − 1) ∫
Ω

𝑢𝑝−2|∇𝑢|2 

                                  +𝜒(𝑝 − 1) ∫
Ω

𝑢𝑝−1

𝑣𝜆
∇𝑢 ⋅ ∇𝑣 

+ℎ ∫
Ω

𝑢𝑝 − 𝑘 ∫
Ω

𝑢𝑝+1, 

for all 𝑡 ∈ (0, 𝑇max). Letting 𝑚 = 𝑝 in Lemma 4 yields 

𝜒(𝑝 − 1) ∫
Ω

𝑢𝑝−1∇𝑢 ⋅ ∇𝑣 ≤
𝜒(𝑝 − 1)

𝑝
∫

Ω

𝑢𝑝+1, 

 

(14) 

  

for all 𝑡 ∈ (0, 𝑇max). Moreover, by Young's inequality, 
we have  

(ℎ +
1

𝑝
) ∫

Ω

𝑢𝑝 ≤ 𝑘 ∫
Ω

𝑢𝑝+1 + 𝐶(ℎ, 𝑘, |Ω|)    

for all 𝑡 ∈ (0, 𝑇max). This together (13) and (14) yields 
that  

𝜒(𝑝 − 1) ∫
Ω

𝑢𝑝−1∇𝑢 ⋅ ∇𝑣 + ℎ ∫
Ω

𝑢𝑝 − 𝑘 ∫
Ω

𝑢𝑝+1

≤
𝜒(𝑝 − 1)

𝑝
∫

Ω

𝑢𝑝+1 + 𝐶(ℎ, 𝑘, |Ω|) 

≤ (𝑝 − 1) ∫
Ω

𝑢𝑝−2|∇𝑢|2 −
1

𝑝
∫

Ω

𝑢𝑝 + 𝐶(𝑝, 𝜒, ℎ, 𝑘, |Ω|), 

for all 𝑡 ∈ (0, 𝑇max). We then arrive at  

1

𝑝
⋅

𝑑

𝑑𝑡
∫

Ω

𝑢𝑝 ≤ −(𝑝 − 1) ∫
Ω

𝑢𝑝−2|∇𝑢|2 

                                    +(𝑝 − 1) ∫
Ω

𝑢𝑝−2|∇𝑢|2  

                                  −
1

𝑝
∫

Ω

𝑢𝑝 + 𝐶(𝑝, 𝜒, ℎ, 𝑘, |Ω|), 

which implies  

𝑑

𝑑𝑡
∫

Ω

𝑢𝑝 ≤ − ∫
Ω

𝑢𝑝 + 𝐶(𝑝, 𝜒, ℎ, 𝑘, |Ω|)    

for all 𝑡 ∈ (0, 𝑇max).   Let 𝑦(𝑡): = ∫
Ω

𝑢𝑝(𝑡, 𝑥)𝑑𝑥  such 

that  

𝑦′(𝑡) + 𝑦(𝑡) ≤ 𝐶(𝑝, 𝜒, ℎ, 𝑘, |Ω|)    

for all 𝑡 ∈ (0, 𝑇max).  Then the ODE's comparison 
principle implies that  

𝑦(𝑡) ≤ max {∫
Ω

𝑢0
𝑝(𝑥)𝑑𝑥, 2𝐶(𝑝, 𝜒, ℎ, 𝑘, |Ω|)}    

for all 𝑡 ∈ (0, 𝑇max). The proof is completed.  

3.2. Global existence and boundedness 

We now prove Theorem 2. 
 
Proof of Theorem 2. We will show 𝑇max = ∞  by 
contradiction. First, let us suppose that  𝑇max < ∞. 
Then by the constant formula, we have  

𝑢(𝑡,⋅) = 𝑒−(𝑎𝐼−Δ)𝑡𝑢0 

−𝜒 ∫
𝑡

0

𝑒−(𝑎𝐼−Δ)𝑡∇ ⋅ (𝑢(⋅, 𝑠)∇𝑣(⋅, 𝑠))𝑑𝑠 

   + ∫
𝑡

0

𝑒−(𝑎𝐼−Δ)𝑡𝑢(⋅, 𝑠)(𝑎 + ℎ − 𝑘𝑢(⋅, 𝑠))𝑑𝑠 

=: 𝐼1 + 𝐼2 + 𝐼3 for all 𝑡 ∈ (0, 𝑇max). 
 

(15) 

We now give the following estimates for 𝐼1, 𝐼2 and 𝐼3. 
First,  

∥ 𝐼1 ∥𝐿∞(Ω)=∥ 𝑒−(𝑎𝐼−Δ)𝑡𝑢0 ∥𝐿∞(Ω) 

                             ≤∥ 𝑢0 ∥𝐿∞  for all    𝑡 > 0.    

 Second,  

∥ 𝐼3 ∥𝐿∞(Ω) 

= ∫
𝑡

0

𝑒−(𝑎𝐼−Δ)𝑡𝑢(⋅, 𝑠)(𝑎 + ℎ − 𝑘𝑢(⋅, 𝑠))𝑑𝑠 

     ≤
(𝑎 + ℎ)2

4𝑘
  for all    𝑡 ∈ [0, 𝑇max).   
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Third, let 𝑝 ≥ 1 and assume that 
𝑁

2
< 𝑝 < 𝑁 < 𝑞 and 

𝜆 ∈ (1, ∞) such that   

1

𝑝
−

1

𝑁
<

1

𝑞
  and  

1

𝜆
< 1 − 𝑞 (

1

𝑝
−

1

𝑁
).  

 
(16) 

Hence, employing the Gagliardo-Nirenberg inequality 
and Theorem 1.1, we have  

∥ ∇𝑣 ∥
𝐿

𝑞𝜆
𝜆−1(Ω)

≤ 𝐶 ∥ ∇𝑣 ∥
𝐿

𝑁𝑝
𝑁−𝑝(Ω)

≤ 𝐶 ∥ 𝑢 ∥𝐿𝑝(Ω)

≤ 𝑀𝑝 

 

(17) 

for all 𝑡 ∈ (0, 𝑇max), thanks to  

𝑞𝜆

𝜆 − 1
=

𝑞

1 −
1

𝜆

<
𝑞

(
1

𝑝
−

1

𝑁
)𝑞

=
1

1

𝑝
−

1

𝑁

=
𝑁𝑝

𝑁 − 𝑝
. 

Then, by Lemma 3, Hölder inequality, (16), and (17), 
we get  

∥ 𝑢∇𝑣 ∥𝐿𝑞(Ω)≤∥ 𝑢 ∥𝐿𝑞𝜆(Ω)⋅∥ ∇𝑣 ∥
𝐿

𝑞𝜆
𝜆−1(Ω)

 

≤∥ 𝑢 ∥
𝐿1(Ω)

1

𝑞𝜆 ⋅∥ 𝑢 ∥
𝐿∞(Ω)

1−
1

𝑞𝜆 ⋅∥ ∇𝑣 ∥
𝐿

𝑁𝑝
𝑁−𝑝(Ω)

 

≤ (𝑚0)
1

𝑞𝜆𝑀𝑝 ⋅∥ 𝑢 ∥
𝐿∞(Ω)

1−
1

𝑞𝜆  

 
(18) 

for all 𝑡 ∈ (0, 𝑇max). Now let us fix 𝛽 ∈ (
𝑁

2𝑝
,

1

2
) and 𝜁 ∈

(0,
1

2
− 𝛽) as well as 𝑇 ∈ (0, 𝑇max). Hence, by Lemma 

2, Theorem 1 and (18), we obtain  

∥ 𝐼2 ∥𝐿∞(Ω)=∥ 𝜒 ∫
𝑡

0

𝑒−(𝑎𝐼−Δ)𝑡∇ ⋅ 𝑢∇𝑣 ∥𝐿∞(Ω) 

≤ 𝐶1𝜒 ∫
𝑡

0

∥ 𝑒−(𝑎𝐼−Δ)𝑡∇ ⋅ u∇𝑣 ∥
𝑋𝑝

𝛽
(Ω)

 

= 𝐶1𝜒 ∫
𝑡

0

∥ (𝑎𝐼 − Δ)𝛽𝑒−(𝑎𝐼−Δ)𝑡∇ ⋅ u∇𝑣 ∥𝐿𝑝(Ω) 

≤ 𝐶2𝜒 ∫
𝑡

0

(𝑡 − 𝑠)−𝛽(1 + (𝑡 − 𝑠)−
1

2)𝑒−𝜁(𝑡−𝑠) 

×∥ 𝑢(⋅, 𝑠)∇𝑣(⋅, 𝑠) ∥𝐿𝑝(Ω) 𝑑𝑠 

≤ 𝐶3(𝑝, 𝑞, 𝜆, 𝑚0, 𝑀𝑝)𝜒 

× ∫
𝑡

0

(𝑡 − 𝑠)−𝛽−
1

2𝑒−𝜁(𝑡−𝑠) ∥ 𝑢(⋅, 𝑠) ∥
𝐿∞(Ω)

1−
1

𝑞𝜆  𝑑𝑠 

≤ 𝐶4(𝑝, 𝑞, 𝜆, 𝑚0, 𝑀𝑝, 𝜒) 

     × ∫
∞

0

(𝑡 − 𝑠)−𝛽−
1

2𝑒−𝜁(𝑡−𝑠)𝑑𝑠 

     × sup
𝑠∈[0,𝑇]

∥ 𝑢(⋅, 𝑠) ∥
𝐿∞(Ω)

1−
1

𝑞𝜆  

≤ �̃�𝑝 sup
𝑠∈[0,𝑇]

∥ 𝑢(⋅, 𝑠) ∥
𝐿∞(Ω)

1−
1

𝑞𝜆  

for all 𝑡 ∈ [0, 𝑇], where �̃�𝑝 ∈ (0, ∞). Substituting 𝐼1, 𝐼2 

and 𝐼3 into (4.1), we get that  

sup
𝑡∈[0,𝑇]

∥ 𝑢(𝑡,⋅) ∥𝐿∞≤ 

         + ∥ 𝑢0 ∥𝐿∞(Ω)+
(𝑎 + ℎ)2

4𝑘
 

        + �̃�𝑝 ⋅ ( sup
𝑡∈[0,𝑇]

∥ 𝑢(⋅, 𝑡) ∥𝐿∞(Ω))
1−

1

𝑞𝜆 

for all 𝑇 ∈ (0, 𝑇max),  where 0 < 1 −
1

𝑞𝜆
< 1  and �̃�𝑝 >

0. Hence,  

limsup
𝑡↗𝑇max

‖𝑢(𝑡,⋅)‖𝐿∞(Ω) < ∞, 

which contradicts to Lemma 1. This immidiately 
yields that 𝑇max = ∞  and sup‖𝑢(𝑡,⋅)‖𝐿∞(Ω)  is 

bounded for all 𝑡 > 0. The proof is thus complete.  
 
3.3. Mass persistence 
 
This section is dedicated to analysis of the mass 
persistence of solutions to (1). Note that, by Theorem 
2, we obtained that 𝑇max = ∞,  and (𝑢(𝑡, 𝑥; 𝑢0), 
𝑣(𝑡, 𝑥; 𝑢0)) is the globally bounded classical solution 
of (1) on (0, ∞).  
 
We first provide following elementary lemma, which 
was established in [33, Lemma 2.5]. 
 
Lemma 6.  Let 𝛼, 𝛽1, 𝛽2 be positive and 𝜃1 > 1, 𝜃2 > 1 
and 𝑡0 ∈ ℝ,  and 𝑦 ∈ 𝐶1([𝑡0, ∞))  is nonnegative and 
satisfies  

𝑦′(𝑡) ≥ 𝛼𝑦(𝑡) − 𝛽1𝑦𝜃1(𝑡) − 𝛽2𝑦𝜃2(𝑡) 

for all 𝑡 > 𝑡0. Then 

𝑦(𝑡) ≥ 𝑚𝑖𝑛 {𝑦(𝑡0), (
𝛼

2𝛽1

)

1

𝜃1−1
, (

𝛼

2𝛽2

)

1

𝜃2−1
} 

for all 𝑡 > 𝑡0. 

We next provide an estimate for 𝑢(𝑡, 𝑥) from below. 

Lemma 7.  Let  r ∈ (0,1). Then  

∫
Ω

𝑢𝑟(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≥ 𝛿, 

 
(19) 

for all 𝑡 > 𝑡0 > 0. 
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Proof. First, multiply the equation (1) by 𝑢𝑟−1  and 
integrate over Ω to obtain  

1

𝑟

𝑑

𝑑𝑡
∫

Ω

𝑢𝑟 = (1 − 𝑟) ∫
Ω

𝑢𝑟−2|∇𝑢|2 

                     −(1 − 𝑟)𝜒 ∫
Ω

𝑢𝑟−1∇𝑢 ⋅ ∇𝑣 

+ℎ ∫
Ω

𝑢𝑟 −  𝑘 ∫
Ω

𝑢𝑟+1, 

 
(20) 

for all  𝑡 > 0.  Second, letting 𝑚 = 𝑟  in Lemma 3.1 
gives 

−(1 − 𝑟)𝜒 ∫
Ω

𝑢𝑟−1∇𝑢 ⋅ ∇𝑣 =
(1 − 𝑟)𝜒𝑟

𝑟
∫

Ω

𝑣𝑢𝑟 

−
(1 − 𝑟)𝜒𝑏

𝑟
∫

Ω

𝑢𝑟+1, 

 

(21) 

for all 𝑡 > 0.  

Third,  let us define 𝜀 > 0 such that 

0 <
𝑞(𝑛 − 2𝑟)

𝑛(𝑞 − 𝑟)
< 𝜀 < 1 < 𝑞, 

where 𝑟 ∈ (0,1), and 𝑞 ∈ (1,2) as in Lemma 5. 
 
Then, by Lemma 5, and Hölder's inequality we get 
that 

         ∫
Ω

𝑢𝑟+1 = ∫
Ω

𝑢ε ∙ 𝑢𝑟+1−𝜀  

≤ (∫
Ω

𝑢𝑞)

𝜀

𝑞

(∫
Ω

𝑢
(𝑟+1−𝜀)𝑞

𝑞−𝜀 )

𝑞−𝜀

𝑞

 

≤ (𝐶𝑞)
𝜀

𝑞 (∫
Ω

𝑢
(𝑟+1−𝜀)𝑞

𝑞−𝜀 )

𝑞−𝜀

𝑞

 

for all 𝑡 > 𝑡0.  Note that by the Gagliardo-Nirenberg 
inequality and Young’s inequality, we also obtain that 

(∫
Ω

𝑢
(𝑟+1−𝜀)𝑞

𝑞−𝜀 )

𝑞−𝜀

𝑞

= ‖𝑢
𝑟

2‖
𝐿

2𝑞(𝑟+1−𝜀)
𝑟(𝑞−𝜀) (Ω)

2(𝑟+1−𝜀)

𝑟
 

                              ≤ 𝐶 ‖∇𝑢
𝑟

2‖
𝐿2(Ω)

2(𝑟+1−𝜀)𝜗

𝑟
‖𝑢

𝑟

2‖
𝐿2(Ω)

2(𝑟+1−𝜀)(1−𝜗)

𝑟

+ 𝐶 ‖𝑢
𝑟

2‖
𝐿2(Ω)

2(𝑟+1−𝜀)

𝑟
 

   ≤ (1 − 𝑟)(𝐶𝑞)
−

𝜀

𝑞 (𝑘 +
(1 − 𝑟)𝜒𝑏

𝑟
)

−1

∫
Ω

𝑢𝑟−2|∇𝑢|2 

         +𝐶1 (∫
Ω

𝑢
𝑟

2)

(𝑟+1−𝜀)(1−𝜗)

𝑟−𝜗(𝑟+1−𝜀)

+ 𝐶2 (∫
Ω

𝑢
𝑟

2)

𝑟+1−𝜀

𝑟

, 

where  

𝜗 =

1

2
−

𝑟(𝑞−𝜀)

2𝑞(𝑟+1−𝜀)𝜗

1

𝑛
+

1

2
−

1

2

=
𝑛

2𝑞
∙

𝑞 − 𝑞𝜀 + 𝑟𝜀

𝑟 + 1 − 𝜀
∈ (0,1), 

and 

(𝑟 + 1 − 𝜀)𝜗

𝑟
=

𝑛(𝑞 − 𝑞𝜀 + 𝑟𝜀)

2𝑞𝑟
∈ (0,1), 

and 

(𝑟 + 1 − 𝜀)(1 − 𝜗)

𝑟 − 𝜗(𝑟 + 1 − 𝜀)
> 1, 

and 

𝑟 + 1 − 𝜀

𝑟
> 1. 

 It then follows that 

(𝑘 +
(1 − 𝑟)𝜒𝑏

𝑟
) ∫

Ω

𝑢𝑟+1 ≤ (1 − 𝑟) ∫
Ω

𝑢𝑟−2|∇𝑢|2 

  

+𝛽1 (∫
Ω

𝑢
𝑟

2)

𝜃1

+ 𝛽2 (∫
Ω

𝑢
𝑟

2)

𝜃2

 (22) 

for all 𝑡 > 𝑡0,  where 𝛽1, 𝛽2  are certain positive 
constants and 𝜃1 > 1 and 𝜃2 > 1. 
 
Substituting (21) and (22) into (20) yields that  

1

𝑟

𝑑

𝑑𝑡
∫

Ω

𝑢𝑟 = (1 − 𝑟) ∫
Ω

𝑢𝑟−2|∇𝑢|2 

        −(1 − 𝑟)𝜒 ∫
Ω

𝑢𝑟−1∇𝑢 ⋅ ∇𝑣 

 +ℎ ∫
Ω

𝑢𝑟 − 𝑘 ∫
Ω

𝑢𝑟+1 

= (1 − 𝑟) ∫
Ω

𝑢𝑟−2|∇𝑢|2 

                   +
(1 − 𝑟)𝜒𝑏

𝑟
∫

Ω

𝑣𝑢𝑟 + ℎ ∫
Ω

𝑢𝑟

− (𝑘 +
(1 − 𝑟)𝜒𝑏

𝑟
) ∫

Ω

𝑢𝑟+1 

≥ ℎ ∫
Ω

𝑢𝑟 − 𝛽1 (∫
Ω

𝑢
𝑟

2)

𝜃1

− 𝛽2 (∫
Ω

𝑢
𝑟

2)

𝜃2

    

for every 𝑡 > 𝑡0,  due to nonnegativity of the term 

∫
Ω

𝑣𝑢𝑟 . Now let us denote 

𝑦(𝑡) ≔ ∫
Ω

𝑢𝑟   for all t > 𝑡0. 
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Then we get  
𝑦′(𝑡) ≥ ℎ𝑦(𝑡) − 𝛽1𝑦𝜃1(𝑡) − 𝛽2𝑦𝜃2(𝑡) 

for all 𝑡 > 𝑡0. Then by Lemma 6, we get 

∫
Ω

𝑢𝑟 ≥ 𝛿 ≔ 𝑚𝑖𝑛 {𝑦(𝑡0), (
ℎ

2𝛽1

)

1

𝜃1−1

, (
ℎ

2𝛽2

)

1

𝜃2−1

} 

for all 𝑡 > 𝑡0,  where ℎ > 0,  𝜃1 =
(𝑟+1−𝜀)(1−𝜗)

𝑟−𝜗(𝑟+1−𝜀)
> 1, 

𝜃2 =
𝑟+1−𝜀

𝑟
> 1,  𝛽1 = 𝐶1(𝐶𝑞)

−
𝜀

𝑞 (𝑘 +
(1−𝑟)𝜒𝑏

𝑟
) > 0,  as 

well as 𝛽2 = 𝐶2(𝐶𝑞)
−

𝜀

𝑞 (𝑘 +
(1−𝑟)𝜒𝑏

𝑟
) > 0. The lemma 

is thus complete.  
 
Proof of Theorem 3. Note that, by Hölder inequality, 
for any given 𝑟 ∈ (0,1), we have  

∫
Ω

𝑢(𝑡, 𝑥)𝑑𝑥 ≥ |Ω|
𝑟−1

𝑟 (∫
Ω

𝑢𝑟(𝑡, 𝑥)𝑑𝑥)

1

𝑟

    

 

(23) 

for all 𝑡 > 0. Note also that, by Lemma 7, for any given 
𝑟 ∈ (0,1), there is 𝛿 > 0 such that  

∫
Ω

𝑢𝑟(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≥ 𝛿    for all t > 𝑡0. 

This together with (23) follows that  

∫
Ω

𝑢(𝑡, 𝑥; 𝑢0)𝑑𝑥 ≥ |Ω|
𝑟−1

𝑟 {∫
Ω

𝑢𝑟(𝑡, 𝑥; 𝑢0)𝑑𝑥}

1

𝑟

 

                                ≥ |Ω|
𝑟−1

𝑟 𝛿
1

𝑟 =: 𝑚∗, 

for every all t > 𝑡0. The theorem then follows.  

4. Discussion and Conclusion 
 
We now discuss our results that have been obtained 
the theorems 1, 2, and 3. 
 
First, we highlight that the technique applied in 
Theorem 3 is completely different from the approach 
utilized in [24, Theorem 1.1]. We also note that our 
approach to prove the 𝐿𝑝 -norm of u at the critical 
condition in Theorem 1 is literally different from 
approach the given in [12, Lemma 2.5]. 
 
Next, observe that the mass persistence of classical 
solutions for model (1) was gained in [24] provided 
that Ω ⊂ ℝ𝑁  is convex. However, Theorem 3 ruled 
out this condition completely. 
 
Third, it is important to remark that the assumption 
(7) presented in this paper recovers the assumption 
(4) established in the previous works [10, 24]. 
 

Fourth, 𝐿𝑝 - norm of 𝑢  yields global existence and 
global boundedness as well as mass persistence of 
classical solutions to model (1). 
 
Finally, the results of Theorems 1, 2 and 3 are 
considerably beyond the findings obtained in [10, 12, 
24]. We also point out that Theorem 1 recovers both 
[12, Lemma 2.5] and [24, Lemma 2.3]. Moreover, 
Theorem 2 recovers both [10, Lemma 2.4] and [12, 
Theorem 1.1]. Finally, Theorem 3 recovers [24, 
Theorem 1.1].   
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