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Abstract: In this article, homotopy perturbation method is implemented to give 
approximate and analytical solutions of nonlinear ordinary differential equation systems 
such as modelling the pollution of a system of lakes. The proposed scheme is based on 
homotopy perturbation method (HPM), Laplace transform and Padé approximants. The 
results to get the homotopy perturbation method (HPM) are applied Padé approximants. 
The accuracy of this method is examined by comparison with the Matlab ode23s. Our 
proposed approach showed results to analytical solutions of nonlinear ordinary 
differential equation systems. Some plots are presented to show the reliability and 
simplicity of the methods. 
 
Key words: Padé approximants, homotopy perturbation method, modelling the 
pollution of a system of lakes 
 
AMS Mathematics Subject Classifications (2000): 65L10, 65L06, 65K10, 65K05 
 
 
BİR GÖLLER SİSTEMİNİN KİRLİLİK MODELİNİN HOMOTOPY PERTURBATİON 

YÖNTEMİ İLE ÇÖZÜMÜ 
 

Özet: Bu makale de bir göller sisteminin kirlilik modeli gibi lineer olmayan adi diferensiyel 
denklem sisteminin yaklaşık analitik çözümünü bulmak için homotopy perturbation yöntemi 
uygulandı. Önerilen yöntem homotopy perturbation yöntemi, Laplace dönüşümü ve Padé 
yaklaşımını baz alır. Homotopy perturbation yöntemin’den elde edilen sonuçlara Padé 
yaklaşımı önerildi. Bu yöntemin doğruluğu Matlab ode23s ile mukayese edildi. 
Önerdiğimiz yaklaşım, lineer olmayan adi diferensiyel denklem sistemlerinin analitik 
çözümlerini gösterdi. Yöntemin güvenilirliğini ve basitliğini göstermek için bazı 
grafikler sunuldu. 
 
Anahtar kelimeler: Padé yaklaşımı, Homotopy perturbation yöntemi, Bir göller 
sisteminin kirlilik modeli 
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1. INTRODUCTION 
 
Modelling the pollution of a system of lakes is examined in the study (BIAZAR & 
FARROKHI 2006). The system of three lakes that are modeled in this study 
(HOGGARD 2007). Each lake is considered to be a large compartment and the 
interconnecting channel as pipes between the compartments. The direction of flow in 
the channels or pipes is indicated by the arrows in (HOGGARD 2007). A pollutant is 
introduced into the first lake where ( )p t  denotes the rate at which the pollutant enters 

the lake per unit time. The function ( )p t  may be constant or may vary with time. We 
are interested in knowing the levels of pollution in each lake at any time. 

 
The components of the basic three-component model are the amount of the pollutant in 
lake 1 at any time 0t ≥ , the amount of the pollutant in lake 2 at any time 0t ≥ and the 
amount of the pollutant in lake 3 at any time 0t ≥ , are denoted respectively by 
( ) ( ) ( )1 2 3, andx t x t x t .These quantities satisfy 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

13 311 21
3 1 1

3 1 1

322 21
1 2

1 2

3 31 32 13
1 2 3

1 2 3

.

F Fdx F
x t p t x t x t

dt V V V
Fdx F

x t x t
dt V V

dx F F F
x t x t x t

dt V V V

= + − −

= −

= + −

    (1) 

with the initial conditions: 
1 1 2 2 3 3(0) , (0) , (0) .x r x r x r= = =  Throughout this paper, we assume the following 

conditions: 
Lake 1: 13 21 31F F F= + , 

                                                     Lake 2: 21 32F F= , 
Lake 3: 31 32 13F F F+ =  

 
A technique for calculating the analytical solutions of nonlinear ordinary differential 
equation systems is developed in this paper. The developed technique depends only on 
the fundamental operation properties of Laplace transform and Padé approximants. The 
calculated results are exactly the same as those obtained by other analytical or 
approximate methods and demonstrate the reliability and efficiency of the technique. 
We will use Laplace transform and Padé approximant to deal with the truncated series. 
Pade´ approximant (BAKER 1975) approximates a function by the ratio of two 
polynomials. The coefficients of the powers occurring in the polynomials are 
determined by the coefficients in the Taylor series expansion of the function. Generally, 
the Pade´ approximant can enlarge the convergence domain of the truncated Taylor 
series and can improve greatly the convergence rate of the truncated Maclaurin series. 
Many different new methods have recently presented such as the variational iteration 
(HE 1998, HE 1999, HE 2000, MOMANI & ABUASAD 2006, SOLIMAN 2006, 
ABULWAFA et al. 2006, ODIBAT & MOMANI 2006), the homotopy analysis method 
(LIAO 1992, LIAO 1995, LIAO 1997, LIAO 1999, LIAO 2002, LIAO 2003, LIAO   
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2004, LIAO 2005, AYUB et al. 2003, HAYAT et al. 2004, HAYAT & KHAN 2005,  
TAN & ABBASBANDY 2008), the homotopy perturbation method (EL-SHAHED  
2005, SIDDIQUI et al. 2006, HE 2003, HE 2004, HE 2005, LIU 2005, GOLBABAI & 
JAVIDI 2007, YILDIRIM & TURGUT 2007) , the exp function method (HE 2006, 
WANG & Lİ 2005), the F-expansion method (ADOMIAN 1994), the adomian 
decomposition method (HE 2001) and others (BİLDİK & KONURALP 2006). 

 
In this paper, the homotopy-perturbation method (HPM) (EL-SHAHED 2005, 
SIDDIQUI et al. 2006, HE 2003, HE 2004, HE 2005, LIU 2005, GOLBABAI & 
JAVIDI 2007, YILDIRIM & TURGUT 2007) and Padé approximants (BAKER 1975) 
used to solve of modelling the pollution of a system of lakes (1).  
 
2. PADÉ APPROXIMATION 
 
A rational approximation to ( )f x  on [ ],a b  is the quotient of two polynomials 

( ) and ( )N MP x Q x  of degrees N and M, respectively. We use the notation , ( )N MR x  to 
denote this quotient. The , ( )N MR x  Padé approximations to a function ( )f x  are given by  

    ,
( )( )    for  a x b
( )

N
N M

M

P xR x
Q x

= ≤ ≤        (2) 

(BIAZAR & FARROKHI 2006). 
The method of Padé requires that ( )f x  and its derivative be continuous at 0x = . The 
polynomials used in (1) are  
    2

0 1 2( ) ... N
N NP x p p x p x p x= + + + +       (3) 

    2
1 2( ) 1 ... M

M MQ x q x q x q x= + + + +        (4) 
The polynomials in (3) and (4) are constructed so that ( )f x  and , ( )N MR x  agree at 

0x =  and their derivatives up to N M+  agree at 0x = . In the case 0 ( ) 1Q x = , the 
approximation is just the Maclaurin expansion for ( )f x . For a fixed value of N M+  
the error is smallest when ( ) and ( )N MP x Q x  have the same degree or when ( )NP x  has 
degree one higher then ( )MQ x . 
Notice that the constant coefficient of MQ  is 0 1q = . This is permissible, because it 
notice be 0 and , ( )N MR x  is not changed when both ( ) and ( )N MP x Q x  are divided by the 
same constant. Hence the rational function , ( )N MR x  has 1N M+ +  unknown 
coefficients. Assume that ( )f x  is analytic and has the Maclaurin expansion 
    2

0 1 2( ) ... ...,k
kf x a a x a x a x= + + + + +       (5) 

and from the difference ( ) ( ) ( ) ( ) :M Nf x Q x P x Z x− =  

   
0 0 0 1

,
M N

i i i i
i i i i

i i i i N M

a x q x p x c x
∞ ∞

= = = = + +

       − =              
∑ ∑ ∑ ∑       (6) 

The lower index 1j N M= + +  in the summation on the right side of (6) is chosen 
because the first N M+  derivatives of ( )f x  and , ( )N MR x  are to agree at 0x = . 
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When the left side of (6) is multiplied out and the coefficients of the powers of ix  are 
set equal to zero for 0,1, 2,...,k N M= + , the result is a system of 1N M+ +  linear 
equations: 

and                                

0 0

1 0 1 1

2 0 1 1 2 2

3 0 2 1 1 2 3 3

1 1

0
0

0
0

0M N M M N M N N

a p
q a a p
q a q a a p
q a q a q a a p
q a q a a p− − − +

− =
+ − =

+ + − =
+ + + − =

+ + − =

                  (7) 

1 1 2 1 2

2 1 3 1 1 2

...     + 0
...     + 0

.                                                                      .

.                                              

M N M M N M N N

M N M M N M N N

q a q a q a a
q a q a q a a

− + − − + +

− + − − + + +

+ + + =
+ + + =

1 1 1 1

                       .
.                                                                     .

...     + 0M N M N N M N Mq a q a q a a− + + + ++ + + =

   (8) 

Notice that in each equation the sum of the subscripts on the factors of each product is 
the same, and this sum increases consecutively from 0 to N M+ . The M  equations in 
(8) involve only the unknowns 1 2 3, , ,..., Mq q q q  and must be solved first. Then the 
equations in (7) are used successively to find 1 2 3, , ,..., Np p p p  (BAKER 1975). 
  
3. HOMOTOPY PERTURBATION METHOD 
 
To illustrate the homotopy perturbation method (HPM) for solving non-linear 
differential equations, He considered the following non-linear differential equation: 

( ) ( ),A u f r r= ∈Ω      (9) 
subject to the boundary condition 

    , 0,uB u r
n
∂  = ∈Γ ∂ 

      (10) 

where A is a general differential operator, B is a boundary operator, f(r) is a known 

analytic function, Γ  is the boundary of the domain Ω  and 
n
∂
∂

 denotes differentiation 

along the normal vector drawn outwards from Ω  (HE 2000, HE 1999). The operator A 
can generally be divided into two parts M and N. Therefore, (9) can be rewritten as 
follows: 
    ( ) ( ) ( ),M u N u f r r+ = ∈Ω      (11) 
He constructed a homotopy [ ]( , ) : 0, 1v r p xΩ →ℜ  which satisfies 

   [ ] [ ]0( , ) (1 ) ( ) ( ) ( ) ( ) 0,H v p p M v M u p A v f r= − − + − =    (12) 
which is equivalent to 

                      [ ]0 0( , ) ( ) ( ) ( ) ( ) ( ) 0,H v p M v M u pM v p N v f r= − + + − =              (13) 
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where [ ]0, 1p∈  is an embedding parameter, and 0u  is an initial approximation of (9) 
(HE 2003, HE 2004). Obviously, we have 
  0( ,0) ( ) ( ) 0, ( ,1) ( ) ( ) 0.H v M v M u H v A v f r= − = = − =     (14) 
The changing process of p from zero to unity is just that of H(v,p) from 

0( ) ( ) to ( ) ( )M v M v A v f r− − . In topology, this is called deformation and 

0( ) ( ) and ( ) ( )M v M v A v f r− −  are called homotopic. According to the homotopy 
perturbation method, the parameter p is used as a small parameter, and the solution of 
Eq. (12) can be expressed as a series in p in the form 
    2 3

0 1 2 3 ...v v pv p v p v= + + + +      (15) 
When 1p → , Eq. (12) corresponds to the original one, Eqs. (11) and (15) become the 
approximate solution of Eq. (11), i.e., 

0 1 2 31
lim ...
p

u v v v v v
→

= = + + + +      (16) 

The convergence of the series in Eq. (16) is discussed by He (HE 2000, HE 1999). 
 

4. APPLICATIONS 
 
In this section, we will apply the homotopy perturbation method to nonlinear ordinary 
differential systems (1). 
 
4.1 A Homotopy Perturbation Method To Modelling The Pollution Of A System 
Of Lakes 
  
According to homotopy perturbation method, we derive a correct functional as follows: 

( )( )

( )( )

( )( )

13 31 21
1 0 1 3 1 1

3 1 1

3221
2 0 2 1 2

1 2

31 32 13
3 0 3 1 2 3

1 2 3

1 0,

1 0,

1 0,

F F F
p u x p u p u u u

V V V

FF
p u y p u u u

V V

F F F
p u z p v u u u

V V V

 
− − + − − + + = 

 
 

− − + − + = 
 
 

− − + − − + = 
 

   (17) 

where “dot” denotes differentiation with respect to t , and the initial approximations are 
as follows: 

1,0 0 1 1

2,0 0 2 2

3,0 0 3 3

( ) ( ) (0) ,
( ) ( ) (0) ,
( ) ( ) (0) .

u t x t x r
u t y t x r
u t z t x r

= = =

= = =

= = =

            (18) 

and 
2 3

1 1,0 1,1 1,2 1,3

2 3
2 2,0 2,1 2,2 2,3

2 3
3 3,0 3,1 3,2 3,3

...,

...,

...,

u u pu p u p u

u u pu p u p u

u u pu p u p u

= + + + +

= + + + +

= + + + +

          (19) 
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where , , , 1, 2,3,...i jv i j = are functions yet to be determined. Substituting Eqs.(18) and 
(19) into Eq. (17) and arranging the coefficients of “p” powers, we have 

                     

213 13 13 13
1,1 3 1 1,2 3,1 1,1

3 1 3 1

313 13
1,3 3,2 1,2

3 1

232 3221 21
2,1 1 2 2,2 1,1 2,1

1 2 1 2

2,3

             ... 0,

             

F F F F
u p r r p u u u p

V V V V

F F
u u u p

V V

F FF F
u r r p u u u p

V V V V

u

   
− + + + + +   

   
 

+ + + + = 
 

   
− + + − +   

   

+ − 33221
1,2 2,2

1 2

231 32 13 31 32 13
3,1 1 2 3 2,2 1,1 2,1 3,1

1 2 3 1 2 3

331 32 13
2,3 1,2 2,2 3,2

1 2 3

... 0,

             ... 0,

FF
u u p

V V

F F F F F F
u r r r p u u u u p

V V V V V V

F F F
u u u u p

V V V

 
+ + = 

 
   

− − + + − − +   
   

 
+ − − + + = 
 

(20) 

In order to obtain the unknowns , ( ), , 1, 2,3,i jv t i j =  we must construct and solve the 
following system which includes nine equations with nine unknowns, considering the 
initial conditions   

     , (0) 0, , 1, 2,3,i jv i j= =    

                                           

13 13
1,1 3 1

3 1

13 13
1,2 3,1 1,1

3 1

13 13
1,3 3,2 1,2

3 1

3221
2,1 1 2

1 2

3221
2,2 1,1 2,1

1 2

3221
2,3 1,2 2,2

1 2

31 32 13
3,1 1 2 3

1 2 3

0,

0,

0,

0,

0,

0,

0,

F Fu p r r
V V

F Fu u u
V V
F Fu u u
V V

FFu r r
V V

FFu u u
V V

FFu u u
V V
F F Fu r r r
V V V

− + + =

+ + =

+ + =

− + =

− + =

− + =

− − + =

                                   (21)

 

31 32 13
2,2 1,1 2,1 3,1

1 2 3

31 32 13
2,3 1,2 2,2 3,2

1 2 3

0,

0,

F F Fu u u u
V V V
F F Fu u u u
V V V

− − + =

− − + =
 

From Eq. (16), if the three terms approximations are sufficient, we will obtain: 
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2

1 1 1,1 0
2

2 2 2,1 0
2

3 3 3,1 0

( ) lim ( ) ( ),

( ) lim ( ) ( ),

( ) lim ( ) ( ),

kp k

kp k

kp k

x t u t u t

x t u t u t

x t u t u t

→
=

→
=

→
=

= =

= =

= =

∑

∑

∑

             (22) 

therefore  

13 13
1 1 3 1

3 1

2 2
1 1 2 3 31 2 1 3 32 3 1 2 31 213

2 2 2 2
1 2 3 1 2 3 3 1 2 3 13 1 2 3 13

( )

       -
2

F F
x t r p r r t

V V

rV V V F r V V F r V V FF
t

V V V pV V V r V V V F rV V F

 
= + − − 

 
 + −
 

− −  

 

3221
2 2 1 2

1 2

2 2 2
1 2 3 21 3 1 2 13 21 1 3 2 13 21 2

2 2 2 2
1 2 3 1 1 2 3 32 21 2 1 3 32

( )

1       -
2

FF
x t r r r t

V V

pV V V F r V V F F rV V F F
t

V V V rV V V F F r V V F

 
= + − 

 
 − + +
 

−            

(23) 

                      

31 32 13
3 3 1 2 3

1 2 3

2 2 2 2 2
1 2 3 31 3 1 2 3 13 13 1 2 3 13 31

2 2 2 2 2 2 2
1 1 2 3 32 21 2 1 3 32 1 1 2 3 312 2 2

1 2 3 2 2 2 2
2 1 2 3 31 3 1 2 31

( )

1           -
2

F F F
x t r r r r t

V V V

pV V V F r V V V F F rV V F F

rV V V F F r V V F rV V V F t
V V V

r V V V F r V V F

 
= + + − 

 
 − − −
 

− − 
 − + 

 

 . 
 . 
 . 
Here  1 2 3(0) 0, (0) 0  and (0) 0x x x= = =  for the four-component model. Parameters, 

3 3 3
1 2 12900 mi ,  850 mi , 1180 mi ,V V V= = =  

3 3 3 3
21 32 31 1318 mi /year, 18 mi /year, 20 mi /year, 38 mi /year,F F F F= = = =  

A few first approximations for 1 2 3( ), ( ) and ( )x t x t x t  are calculated and presented 
below. 
Three terms approximations: 

2 3
1

2 3
2

2 3
3

( ) 100 6.5517 +.2492 ,

( ) .3103 -.0157 ,

( ) .3448 -.0148 .

x t t t t

x t t t

x t t t

= −

=

=

           (24) 

Four terms approximations:  
2 3 4

1
2 3 4

2
2 3 4

3

( ) 100 6.5517 +.2492 0.007 ,

( ) .3103 -.0157 .00046998 ,

( ) .3448 -.0148 .000409 .

x t t t t t

x t t t t

x t t t t

= − −

= +

= +

           (25) 
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Five terms approximations:  
2 3 4 5

1
2 3 4 5

2
2 3 4 5

3

( ) 100 6.5517 +.2492 0.007 .15629e-3 ,

( ) .3103 -.0157 .00046998 .10641e-4 ,

( ) .3448 -.0148 .000409 .90081e-5 .

x t t t t t t

x t t t t t

x t t t t t

= − − +

= + −

= + −

          (26) 

Six terms approximations:  
2 3 4 5 6

1
2 3 4 5 6

2
2 3 4 5 6

3

( ) 100 6.5517 +.2492 0.007 .15629e-3 .29297e-5 ,

( ) .3103 -.0157 .00046998 .10641e-4 .19924e-6 ,

( ) .3448 -.0148 .000409 .90081e-5 .16753e-6 .

x t t t t t t t

x t t t t t t

x t t t t t t

= − − + −

= + − +

= + − +

   (27) 

In this section, we apply Laplace transformation to (27), which yields 

( )1 2 3 4 5 6

7

100 13.1034 1.4952 .168 .0187548( ) - +
s s s s s
.002109384                

s

L x s = − +

−
 

( )2 3 4 5 6

7

.6206 .0942 .01127952 .00127692( ) +
s s s s

.0001434528               
s

L x s = − −

+
    (28) 

( )3 3 4 5 6

7

.6896 .0888 .009816 .001080972( )  +
s s s s

.0001206216               
s

L x s = − −

+
 

 

For simplicity, let 1;s
t

=  then 
2 3 4 5 6 7

1( ( )) 100 -13.1034 1.4952 -.168 +.0187548 -.002109384L x t t t t t t t= +
3 4 5 6 7

2( ( )) .6206 -.0942 .01127952 -.00127692 +.0001434528L x t t t t t t= +     (29) 
3 4 5 6 7

3( ( )) .6896 -.0888 +.009816 -.001080972 +.0001206216L x t t t t t t=  
 

Padé approximant [ ]4 / 4 of (29) and substituting 1t
s

= , we obtain [ ]4 / 4  in terms of s. 

By using the inverse Laplace transformation, we obtain 
-.1117100809 -.01872861322 .08017549675

1 ( ) -1078.819711 1081.956487 3.136776224t t tx t e e e= + −  
-.1109811493 -.02937987211 16.12398814

2 ( ) 76.39376929 -423.6377791 +.1588638879e-5t t tx t e e e=   

[ ]

-.1105664459 -11.31331389
3

-.009101928498

( ) 65.38393811 .7617257846 -7 (30)

        -65.38393811cos(.01587086927 ) 418.0079626sin(.01587086927 )

t t

t

x t e e e

e t t

= +

+ +
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Table 1. Differences between the 6-term HPM and the the Padé approximations 
solutions for the modelling the pollution of a system of lakes when 0.1ε = . 
 
t ( )1x t  ( )2x t  ( )3x t  
0 2.2400e-007 1.5786e-006 7.6173e-008 
0.1 2.2060e-007 7.9572e-006 2.3633e-007 
0.2 2.1729e-007 3.9943e-005 7.3233e-007 
0.3 2.1405e-007 2.0034e-004 2.2694e-006 
0.4 2.1080e-007 0.0010 7.0335e-006 
0.5 2.0728e-007 0.0050 2.1801e-005 
0.6 2.0288e-007 0.0253 6.7576e-005 
0.7 1.9632e-007 0.1267 2.0947e-004 
0.8 1.8528e-007 0.6354 6.4930e-004 
0.9 1.6577e-007 3.1866 0.0020 
1 1.3144e-007 15.9803 0.0062 
 
        
 
 
 

          

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100

x 1(t
)

Lake 1

ODE23s

PADE

 
Figure 1. Local changes of 1 ( )x t  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

x 2(t
)

Lake 2

ODE23s

PADE

 
Figure 2. Local changes of 2 ( )x t  
 

          

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 3(t
)

Lake 3

ODE23s

PADE

 
Figure 3. Local changes of 3 ( )x t  
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5. CONCLUSIONS 
 
In this paper, we have presented an after treatment technique for the homotopy 
perturbation method. Because the Padé approximant usually improves greatly the 
Maclaurin series in the convergence region and the convergence rate, the at leads to a 
better analytic approximate solution from homotopy perturbation method truncated 
series The homotopy perturbation method was used for finding the solutions of 
nonlinear ordinary differential equation systems such as modelling the pollution of a 
system of lakes. We demonstrated the accuracy and efficiency of these methods by 
solving some ordinary differential equation systems. We use Laplace transformation 
and Padé approximant to obtain an analytic solution and to improve the accuracy of 
homotopy perturbation method. The reliability of the method and reduction in the size 
of computational domain give this method a wider applicability. It is observed that the 
results to get the homotopy perturbation method (HPM) applied Padé approximants is 
an effective and reliable tool for the solution of the nonlinear ordinary differential 
equation systems considered in the present paper. The homotopy perturbation method 
(HPM) can be successfully used to model lake systems. Results are compared with 
Matlab ODE23s. 

 
The computations associated with the examples in this paper were performed using 
Maple 7 and Matlab 7. 
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