PAPER DETAILS

TITLE: Su ve Benzen Çözeltilerinde 5,5-Dimetil-1-Pirolin N-Oksit'in Bazi Radikal Ürünlerinin Teorik

Ince Yapi Çiftlenim Sabitleri

AUTHORS: Mustafa KARAKAYA, Sefik NARDALI, Fatih UCUN

PAGES: 61-74

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/274635

Su ve Benzen Çözeltilerinde 5,5-Dimetil-1-Pirolin N-Oksit'in Bazı Radikal Ürünlerinin Teorik İnce Yapı Çiftlenim Sabitleri

Mustafa Karakaya¹, Şefik Nardalı^{2,*}, Fatih Ucun²

¹Sinop Üniversitesi, Mühendislik Mimarlık Fakültesi, Enerji Sistemleri Bölümü, 52000, Sinop, Türkiye ²Süleyman Demirel Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, 32260, Isparta, Türkiye *yazışılan yazar e-posta:sefiknardali@gmail.com

Alınış: 03 Mayıs 2016, Kabul: 07 Haziran 2016

Özet: Su ve benzen çözeltilerinde 5,5-dimetil-1-pirolin *N*-oksit (DMPO)'nun bazı radikal ürünlerinin temel hal optimize yapıları, 6-31G (d,p), 6-311++G (d,p), LanL2DZ, LanL2MB ve SDD setlerinde Yoğunluk Fonksiyon Teori (DFT/B3LYP, DFT/B3PW91 ve DFT/PBEPBE) ve Hartree Fock (HF) metotları kullanılarak hesaplandı. Tuzaklanmış radikaller olarak, H, OH, O(CH₂)(CH₃) ve OC(CH₃)₃ kullanıldı. Tuzaklanan radikallerin hesaplanan izotropik ince yapı çiftlenim sabitlerinin, deneysel veriler uyum içinde olduğu görüldü. Azot radikalinin β protonundan kaynaklı aşırı ince yapı çiftlenim sabitinin, azota bağlı oksijen çekirdeğindeki zıt spin yoğunluğundan etkilendiği görüldü. Elde edilen bütün teorik sonuçlardan, kullanılan radikaller için ince yapı hesaplamalarında, DFT(B3LYP)/LANL2MB setinin diğer setlere kıyasla deneysel veriler ile daha uyumlu sonuçlar verdiği tespit edildi. Ayrıca çalışma, bütün radikal ürünleri için teorik geometrik parametreler, bağlanma enerjileri, atomik spin yoğunlukları ve hiper konjugatif etkileşim enerjileri ile zenginleştirildi.

Anahtar kelimeler: Aşırı ince yapı sabiti, DMPO, radikal, ESR, DFT

Theoretical Hyperfine Coupling Constants of Some Radical Adducts to 5,5-Dimethyl-1-Pyrroline N-Oxide in Water and Benzene Solutions

Abstract: The ground state optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) in water and benzene solutions have been determined by using Density Functional Theory (DFT/B3LYP, DFT/B3PW91 ve DFT/PBEPBE) ve Hartree Fock (HF) methods with 6-31G (d,p), 6-311++G (d,p), LanL2DZ, LanL2MB and SDD levels. As trapped radicals, H, OH, O(CH₂)(CH₃) and OC(CH₃)₃ have been used. The calculated isotropic hyperfine coupling constants of all the trapped radicals have been seen to be agree with the corresponding experimental data. The hyperfine coupling constant due to the β proton of nitroxide radical is concluded to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. From all the calculated data it was obtained that on the hyperfine calculations the DFT (B3LYP) LANL2MB level is superior relative to the other levels for the used radicals. Also, the study has been enriched by the computational of the geometrical parameters, binding energies, atomic spin densities and hyper conjugative interaction energies for all the radical adducts.

Key words: Hyperfine constant, DMPO, radical, ESR, DFT

1. Giriş

Elektron spin rezonans (ESR) tekniği ile tespit edilebilen pek çok serbest radikal normal şartlarda kararsızdır. Ancak bu radikaller, spin tuzak moleküllerle reaksiyona girmeleri sonucu kararlı hale getirilebilirler. Spin tuzaklama, ESR spektroskopisinde genellikle kısa ömürlü serbest radikalleri tanımlamada kullanılır. Spin tuzaklama için radikalin tuzak moleküle ilave edilmesi gereklidir. Böylece, bir spin katkısı ile ortaya çıkan sistem ESR ile tespit edilebilir. İki çeşit spin tuzaklama metodu vardır. Bunlar nitrose ve nitrone bileşikleridir. Nitrose bileşiklerinde MNP (2 metil- 2 nitrose propen) de olduğu gibi radikaller doğrudan nitrose azotu tarafından tuzaklanırken, nitrone bileşiklerinde örneğin PBN (α -fenil-N-tersiyel-bütil nitron) ve 5,5-dimetil-1-pirolin *N*-oksit (DMPO) radikaller azota bitişik karbon tarafından tuzaklanır.

Serbest radikaller, çekirdeğin aşırı ince yapı çiftlenim sabiti ve g değeri ile tanımlanır. MNP, PBN veya DMPO tarafından tuzaklanan radikallerin karakteristik özelliği, azot (N) (I=1) ve hidrojen β (I=1/2) çekirdeklerinden kaynaklı sırasıyla üçlü (triplet) ve ikili (duplet) ince yapı yarılmalarıdır. Azot radikalinin β protonundan kaynaklı aşırı ince yapı çiftlenim sabiti, McConnell bağıntısı $a_{\beta} = B_0+B_1cos^2\theta$ [1] ile elde edilebilir. Burada B_0 spin polarizasyonu katkısı (0-3,5), B₁ hiper konjugüye katkı (~50) ve θ azotun P_z orbitali ve CH bağının P_z orbital düzlemine izdüşümü arasındaki açıdır. ESR de tuzaklanmış radikallere ait yalnızca birkaç çekirdeğin ince yapı sabitleri deneysel olarak gözlenebildiğinden, radikal ürünün yapısının tespit edilmesi oldukça zordur. Bu nedenle, teorik olarak bir radikal yapıdaki tüm çekirdeklerin aşırı ince yapı sabitlerinin hesaplamaları, radikalin tüm özellikleri yorumlamada daha sağlıklı sonuçlar verebilir. Ancak izotropik ince yapı sabitleri, çekirdeğin konumundaki spin yoğunluğuna çok duyarlı olduğundan deneysel değerlerle tamamen uyumlu olan teorik hesaplar yapmak oldukça zordur[2].

ESR spin tuzaklama tekniği kullanılarak, karbon merkezli radikaller ve hidroksil üretiminde taksifolin etkisi, Makarov ve arkadaşları tarafından çalışılmış ayrıca FDMPO/taksifolin için ince yapı değerleri DFT(B3LYP) metodu kullanılarak hesaplanmıştır[3]. Yaygın spin tuzakları için, bazı tuzak spinlerinin ESR ince yapı değerleri, genis bir sekilde Buettner tarafından listelenmiştir[4]. Başka bir çalışmada, geniş ölçüde alkoksi radikallerine sahip DMPO ürünleri sentezlenmiş ve DMPO radikal ürünlerinin ince yapı sabitleri farklı deneysel koşullarda, Dikalov ve Mason tarafından hesaplanmıştır[5]. Bazı yazarlar, 4-Hidroksi-5,5-dimetil-2-triflorametilprolin-1-oksit (FDMPO)'in bazı radikal ürünleri için, N ve F atomlarının ince yapı sabitlerini, DFT(B3LYP)/6-31G(d,p) ve DFT(B3LYP)/6-31G++(d,p)setlerini kullanarak hesaplayıp, deneysel değerleri ile karşılaştırdılar[6]. Bizim önceki çalışmamızda ise, su ve benzen çözeltilerinde PBN'nin bazı radikal ürünlerinin temel hal optimize yapıları, DFT (B3LYP, B3PW91 ve PBEPBE) ve HF metotlari ile 6-311++G(d, p), 6-31G(d, p) ve LanL2DZ setlerinde hesaplandi^[7], tuzaklanmış radikaller olarak, F, Cl, Br, H, OH, CN, NCO ve N₃ kullanıldı. Bu çalışmada, su ve benzen çözeltilerinde, DMPO'nun H, OH, O(CH₂)(CH₃) ve OC(CH₃)₃ radikal ürünlerin temel hal optimize yapıları elde edilerek, radikal yapıdaki çekirdeklerin izotropik ince yapı çiftlenimi sabitleri hesaplandı ve teorik sonuçlar, deneysel sonuçlar ile karsılaştırıldı. Literatürde O(CH₂)(CH₃) ve OC(CH₃)₃ radikalleri için yalnızca tek bir çözeltide deneysel sonuçlar elde edilebildiğinden, O(CH₂)(CH₃) için yalnızca benzen OC(CH₃)₃ için ise yalnızca su çözeltisi kullanıldı.

2. Materyal ve Metot

DMPO'nun radikal ürünlerinin optimize yapıları, su ve benzen çözeltilerinde 6-311++G(d,p), 6-31G (d,p), LanL2DZ, LanL2MB ve SDD temel setli DFT(B3LYP, B3PW91 ve PBEPBE) ve HF metotları kullanılarak hesaplandı. Hesaplamalarda çözelti katkısı için, Polarize Sürekli Model (PCM)' kullanıldı[8,9]. Bütün hesaplamalar, kişisel

bilgisayarımızda Gaussian 09 package[10] ve Gauss-View moleküler görüntüleme[11] programları kullanılarak yapıldı. Tuzaklanmış bütün radikallerin bağlanma enerjileri, Boys Counterpoise metoduna bağlı olarak Temel Set Süper Pozisyon Hatası (BSSE) ile düzeltilmiş Supramoleküler yaklaşım ile bulundu[12]. Hiper konjugatif enerjiler ve Doğal Popülasyon Analiz (NPA) yüklerini bulmak için, Doğal Bağ Orbital (NBO) analizi yapıldı[13-15]. Bu hesaplamalarda, deneysel verilerle en iyi uyuma sahip olduğunu belirlediğimiz DFT(B3LYP)/LanL2MB seti kullanıldı.

3. Bulgular

DMPO'nun radikal ürünlerinin su ve benzen çözeltileri içerisinde DFT(B3LYP)/ LanL2MB seti kullanılarak hesaplanmış temel hal optimize yapıları, Şekil 1 'de verilmiştir. Tüm setlerde hesaplanan geometrik parametreler (bağ uzunluğu, bağ açısı ve torsiyon açısı) Şekil 1 deki atom numaralandırmalarına uygun bir şekilde Tablo 1'de verilmiştir. Tablodan radikallerin bağlanma konumları ve DMPO' ya radikal ürünlerinin etkisi hakkındaki bazı geometrik detaylar anlaşılabilir. Tablo aynı zamanda, su ve benzen çözeltileri için hesaplanan parametreleri karşılaştırma şansını bize verir. Örneğin, 1C-4N-17O açısı, radikal ürünleri için H > OC(CH₃)₃> OC₂H₅> OH şeklinde olduğunu söyleyebiliriz. Tüm setlerde, DMPO radikal ürünlerinin su ve benzen çözeltilerindeki temel hal optimize yapıları için hesaplanmış izotropik ince yapı sabitleri ve radikallerin bağlanma enerjileri Tablo 2 ve 3'de verilmiştir. Ayrıca karşılaştırmak amacıyla deneysel izotropik ince çiftlenim sabitleri tablolarda yazılmıştır. Teorik sonuçların tekil moleküller için yapıldığına ve deneysel sonuçların çoklu etkileşimlerin olduğu çoklu moleküllere ait olduğunu dikkate alarak, deneysel ve teorik değerlerin uyum içinde olduğunu söyleyebiliriz.

Şekil 1. DMPO/'R_{1,2,3,4} radikal ürünlerinin optimize yapıları

Ayrıca Tablo 2 den, H radikalinin bağlanma enerjisinin en yüksek olduğunu ve DFT(B3LYP)/LANL2MB seti için su ve benzen çözeltilerinde sırasıyla -106,42 kcal.

M. Karakaya vd.

mol⁻¹ ve -106,48 kcal.mol⁻¹ olduğunu görürüz. Diğer radikaller ise bunlardan daha düşük bağlanma enerjilerine sahiptirler. Tüm setlerde hesaplanan sonuçları göz önüne aldığımızda, tüm radikal ürünler için elde edilen teorik ince yapı çiftlenim sabitlerinin LanL2MB setinde deneysel değerlere daha yakın olduğunu söyleyebiliriz. Deneysel ve teorik değerler arasındaki ilişkiyi göstermek için, hesaplanmış Ortalama Mutlak Hata (MAE) ve Kuadratik Ortalama Hata (RMSD) değerleri Tablo 3 de gösterilmiştir. MAE tahmini sonuçlar ile nihai sonuçlar arasındaki ortalama sapmayı verirken, RMSD hatanın ortalama büyüklüğünü belirleyen kuadratik bir puanlamadır. Tablo 3 den görüldüğü üzere, MAE ve RMSD değerleri birbirlerine çok yakındır ve bu nedenle deneysel ve teorik ince yapı çiftlenim sabiti değerlerinin değerlerinin tüm setler için uyumlu olduğunu söyleyebiliriz. Fakat, LanL2MB setinin diğer setlere kıyasla daha uygun olduğu görülür.

Azot radikalinin β protonuna bağlı ince yapı çiftlenim sabitinin θ açısı ile değişimi, $a_{\beta} = 1,062+17,78 \cos^2\theta$ olarak bulundu. Şekil 2'de azotun P_z orbitali ile CH bağının P_z orbital düzlemine izdüşümü arasındaki θ açısının tanımını görebiliriz. Azot radikalinin β protonuna (5H) bağlı ince vapı ciftlenim sabitinin $cos^2\theta$ ile değisim grafiği, Sekil 3'de verilmiştir. Hesaplanan tüm radikal ürünleri için θ açısı ve 5H çekirdeğini ince yapı sabiti değerleri Tablo 4 de görülebilir. θ açısı, 17O-4N-1C-5H dihedral açı değeri yardımıyla elde edilmiştir (Şekil 2). Biz burada farklı çözeltilerde hesaplanan β protonuna bağlı ince yapı sabitlerini bir arada kullandık. Cünkü deneysel olarak azot radikal anyonunun β protonuna bağlı ince yapı sabitinin çözelti değişikliğinden etkilenmediği belirlenmiştir [16]. Elde ettiğimiz $a_{\beta} = 1,062+17,78 \cos^2\theta$ denklemini, a_{β} $= B_0 + B_1 \cos^2 \theta$ McConnell ifadesi ile karşılaştırdığımızda, daha önce de söylediğimiz gibi burada B_0 spin kutuplanma katkısı 0-3.5 aralığında ve B_1 hiper konjugatif katkısı ise yaklaşık 50 civarındadır[1] bulduğumuz B_0 değerinin uygun, B_1 değerinin ise bir miktar düşük olduğunu söyleyebiliriz. Bunu, 4N azot atomuna bağlanmış 17O oksijen çekirdeğinin ($a_{(170)} \sim -18$ G) zıt spin yoğunluğuna sahip olmasına atfediyoruz. O halde, McConnell denklemi farklı ortamlardaki radikaller içinde kullanılabilir.

Şekil 2. Azot atomunun P_z orbitali ile CH bağının P_z orbital düzlemine izdüşümü arasındaki θ açısı.

Şekil 3. Azot radikalinin β protonuna (5H) bağlı ince yapı sabitinin $\cos^2\theta$ ile değişim grafiği.

DMPO/'H, 'OH, 'OC $_2H_5$ ve 'OC(CH $_3$) $_3$ spin ürün bileşikleri için Tekil Yerleşimli Moleküler Orbitalleri (SOMO) (yarı dolu HOMO orbitalleri) Şekil 4 te verilmiştir.

Şekil 4. DMPO/'R_{1,2,3,4} radikal ürünleri için SOMO orbital biçimleri.

Tüm DMPO radikal ürünleri için 4N ve 17O atomlarının Mulliken spin yoğunlukları, Mulliken yükleri ve NPA yükleri Tablo 5'te verilmiştir. Sonuçlar, komşu atomlar arasındaki ferromanyetik etkileşmelerin sebep olduğu, spinlerin paralel olarak yönlendirilmesi nedeniyle, spin yoğunlukları aynı işaretli olmasına rağmen, 4N ve 17O çekirdeklerinin izotropik ince yapı çiftlenim sabitlerinin zıt işaretli olduğunu gösterir (Bkz Tablo 2). Tablo 5'ten ayrıca O atomunun spin yoğunluğu artarken, azot atomunun spin yoğunluğunu azaldığı görülmektedir ve bunun da 5H β protonuna bağlı daha düşük bir ince yapı çiftlenim sabiti ile sonuçlandığını söyleyebiliriz (Bkz Tablo 4).

Radikal ürünleri							
Dihedral açı(°)	DMPO/'H	DMPO/'OH	DMPO/'OC ₂ H ₅	DMPO/'OC(CH ₃) ₃			
13C-8C-4N-17O	51,6 (52,9)	50,6 (47,8)	55,2 (57,0)	54,3			
9C-8C-4N-17O	-69,7 (-68,2)	-70,8 (-73,4)	-66,2 (-64,2)	-67,1			
3C-8C-4N-17O	171,6 (173,0)	170,6 (167,8)	175,2 (177,0)	174,3			
5H-1C-4N-17O	44,9 (43,5)	47,1 (49,7)	42,5 (40,2)	44,0			
6H-2C-1C-4N	149,4 (149,1)	150,3 (151,0)	150,2 (151,8)	151,8			
5H-1C-2C-6H	-92,0 (-92,3)	-92,6 (-92,0)	-92,3 (-91,0)	-92,2			
4N-8C-13C-14H	176,4 (177,7)	176,9 (177,9)	177,0 (177,7)	176,8			
4N-8C-9C-10H	178,2 (177,3)	178,7 (178,0)	178,1 (177,1)	178,4			
17O-4N-1C-R	-73,7 (-74,8)	-74,0 (-71,5)	-76,0 (-78,7)	-76,7			
<u>Bağ uzunluğu(Å)</u>							
8C-9C	1,541 (1,541)	1,540 (1,540)	1,540 (1,540)	1,540			
8C-13C	1,533 (1,533)	1,533 (1,533)	1,533 (1,533)	1,533			
4N-17O	1,288 (1,285)	1,288 (1,286)	1,286 (1,284)	1,286			
4N-8C	1,495 (1,494)	1,496 (1,496)	1,497 (1,495)	1,496			
4N-1C	1,473 (1,472)	1,472 (1,469)	1,466 (1,464)	1,476			
13C-14H	1,094 (1,095)	1,094 (1,094)	1,094 (1,095)	1,094			
9C-10H	1,094 (1,094)	1,094 (1,094)	1,094 (1,094)	1,094			
2C-6H	1,092 (1,092)	1,091 (1,091)	1,091 (1,092)	1,090			
1C-5H	1,093 (1,093)	1,094 (1,095)	1,097 (1,097)	1,091			
10 D	1.007 (1.000)	1,430 (1,428)	1,428 (1,426)	1,424			
IC-K	1,097 (1,098)	O-H 0,970 (0,970)	0-C 1,439 (1,434)	0-01,465			
<u>Bağ açısı(°)</u>	100 (110 0)	100 5 (100 5)	100 (100 0)	100 7			
8C-13C-14H	109,6 (110,0)	109,5 (109,7)	109,6 (109,8)	109,7			
8C-9C-10H	109,8 (110,1)	109,7 (110,0)	109,7 (110,0)	109,8			
8C-4N-17O	123,1 (122,9)	123,6 (123,6)	123,1 (122,9)	122,9			
1C-4N-17O	122,5 (122,6)	121,4 (121,3)	121,9 (122,2)	122,2			
5H-1C-4N	109,4 (109,3)	108,3 (108,2)	108,9 (108,7)	108,1			
4N-1C-R	109,1 (109,3)	111,3 (111,4)	107,7 (108,2)	109,0			
6H-2C-3C	112,3 (112,3)	112,9 (112,9)	112,7 (112,7)	113,0			
6H-2C-1C	112,1 (112,3)	111,0 (110,9)	111,6 (111,6)	111,1			

 Tablo 1. Su ve benzen* çözeltilerinde DFT(B3LYP)/LANL2MB temel seti kullanılarak hesaplanan

 DMPO/*R_{1,2,3,4} radikal ürünlerinin bazı geometrik parametreleri

* Benzen çözeltisi için oluşturulan sonuçlar parantez içerisinde verilmiştir.

		Ince yapı çiftlenim sabitleri (Gauss)						
		4N	5H (H^{β})	$6\mathrm{H}\left(H^{\gamma}\right)$	1C	170	'R	Toplam enerji (Hartree/par.)
DMPO/'H			()	()				(
(su çözeltisine	<u>de)</u>							
Deneysel Ref	. [4]	16,6	22,5					
DFT/B3LYP	6-31G (d,p)	10,37	15,77	-0,20	-7,47	-13,99	27,27	-365,944384
	6-311++G (d,p)	8,99	14,60	-0,19	-7,29	-10,92	25,37	-365,911452
	LanL2DZ	10,46	14,69	-0,19	-8,05	-14,45	25,51	-365,899814
	LanL2MB	15,59	15,15	-0,24	-7,85	-25,02	26,35	-365,883420
	SDD	6,92	14,55	-0,19	-6,65	-8,76	25,26	-365,913621
HF	6-31G (d,p)	25,34	14,77	-0,85	-16,00	-42,28	24,66	-363,597715
	6-311++G (d,p)	23,80	13,85	-0,80	-15,56	-39,05	23,28	-363,571849
	LanL2DZ	26,49	13,76	-0,82	-16,74	-45,15	23,09	-363,529267
	LanL2MB	30,85	14,95	-0,91	-16,26	-53,98	25,40	-363,507376
	SDD	19,53	13,79	-0,79	-14,27	-31,46	23,16	-363,575022
DMPO/'H				p				
<u>(benzen çöze</u>	eltisinde)		4N	$5\mathrm{H}\left(H^{p}\right)$	6H (H^{r})	1C	170 [°] R
Deneysel Ref	. [4]	14,43	18,89					
DFT/B3LYP	6-31G (d,p)	9,67	15,07	-0,12	-7,46	-14,40	25,95	-365,939680
	6-311++G (d,p)	8,35	13,93	-0,11	-7,28	-11,18	24,12	-365,906671
	LanL2DZ	9,70	14,00	-0,11	-8,01	-14,90	24,22	-365,894963
	LanL2MB	14,66	14,39	-0,15	-7,76	-26,18	24,79	-365,878359
	SDD	6,41	13,88	-0,11	-6,64	-8,81	24,03	-365,908854
HF	6-31G (d,p)	22,62	13,56	-0,72	-15,42	-44,26	22,63	-363,592376
	6-311++G (d,p)	21,20	12,69	-0,68	-15,01	-40,89	21,33	-363,566987

 Tablo 2. Su ve benzen çözeltilerinde DMPO/ R_{1,2,3,4} radikal ürünlerinin optimize yapıları için hesaplanır çiftlenim sabitleri, toplam enerjileri ve radikallerin bağlanma enerjileri

 İnce yapı ciftlenim sabitleri (Gauss)

Tablo 2. Dev	am								
	LanL2DZ	23,36	12,50	-0,68	-16,02	-47,60	20,97	-363,52	24320
	LanL2MB	27,27	13,46	-0,77	-15,43	-57,89	22,88	-363,50	02287
	SDD	17,35	12,64	-0,66	-13,76	-32,42	21,20	-363,57	70184
DMPO/'OH		_ `							
(su çözeltisine	<u>de)</u>		4N	$5 \mathrm{H} (H^{\beta})$	6H (H^{γ})	1C	170	'R
Deneysel Ref.	. [4]	14,95	14,95						
DFT/B3LYP	6-31G (d,p)	9,49	7,59	1,41	-4,76	-14,66	$a_{\rm O}$ = -5,91 $a_{\rm H}$ = -0.75	-441,20)6099
	6-311++G (d,p)	8,20	6,90	1,33	-4,60	-11,39	$a_0 = -5,56$ $a_H = -0.74$	-441,16	55416
	LanL2DZ	9,56	6,78	1,27	-4,79	-15,16	$a_0 = -5,60$ $a_0 = -0.81$	-441,15	51369
	LanL2MB	14,33	7,09	1,21	-4,85	-26,53	$a_{\rm O} = -5,89$ $a_{\rm U} = -0.83$	-441,13	32660
	SDD	6,28	6,93	1,33	-4,05	-9,00	$a_{\rm O} = -5,28$ $a_{\rm U} = -0.73$	-441,16	59096
HF	6-31G (d,p)	22,07	7,47	0,44	-12,76	-44,71	$a_{\rm O} = -5,34$ $a_{\rm U} = -1.06$	-438,49	98746
	6-311++G (d,p)	20,69	6,88	0,43	-12,35	-41,29	$a_{\rm O} = -5,15$ $a_{\rm U} = -1,05$	-438,46	56621
	LanL2DZ	22,73	6,75	0,39	-13,18	-48,09	$a_{\rm O} = -5,35$ $a_{\rm U} = -1.07$	-438,41	16543
	LanL2MB	26,64	7,43	0,34	-12,64	-58,49	$a_{\rm O} = -0,54$ $a_{\rm U} = -1,11$	-438,38	87810
	SDD	16,92	6,93	0,44	-11,18	-32,80	$a_{\rm O} = -4,70$ $a_{\rm H} = -1,02$	-438,47	71515
<u>DMPO/'OH</u> (benzen çözel	tisinde)	10.7	4N	$5\mathrm{H}\left(H^{\beta}\right)$	6H (<i>H</i>	(^r)	1C	170	'R
Deneysel Ref.	. [4]	13.7	12.1						
DFT/B3LYP	6-31G (d,p)	9,06	7,31	1,23	-4,42	-14,89	$a_{\rm O} = -0.05$ $a_{\rm H} = 0.83$	-441,20	01213
	6-311++G (d,p)	7,83	6,65	1,15	-4,24	-11,52	$a_{\rm O}$ = -5,01 $a_{\rm H}$ = -0,80	-441,16	50430

Tablo 2. Dev	am							
	LanL2DZ	9,21	6,47	1,05	-4,19	-15,43	$a_0 = -4,97$	-441,146276
	LanL2MB	13,83	6,70	0,96	-4,16	-27,27	$a_{\rm H}$ = -0,80 $a_{\rm O}$ = -5,26 $a_{\rm H}$ = -0.89	-441,127341
	SDD	5,99	6,67	1,16	-3,73	-8,99	$a_{\rm H} = -0.89$ $a_{\rm O} = -4.75$ $a_{\rm H} = -0.80$	-441,164115
HF	6-31G (d,p)	20,28	6,89	0,33	-11,93	-45,78	$a_{\rm O} = -4,91$ $a_{\rm N} = -1.08$	-438,493894
	6-311++G (d,p)	18,99	6,34	0,32	-11,53	-42,27	$a_{\rm O} = -4,71$ $a_{\rm H} = 1.07$	-438,461655
	LanL2DZ	20,76	6,10	0,23	-11,93	-49,42	$a_{\rm O} = -4,81$ $a_{\rm H} = -1.09$	-438,411471
	LanL2MB	24,29	6,70	0,19	-11,49	-60,78	$a_{\rm O} = -5,04$ $a_{\rm H} = -1.12$	-438,382604
	SDD	15,53	6,39	0,33	-10,45	-33,19	$a_{\rm O} = -4,28$ $a_{\rm H} = -1.05$	-438,466570
DMPO/'OC.	H_	-						
(benzen cözeltisinde)								
(benzen çözel	ltisinde)		4N	$5\mathrm{H}\left(H^{\beta}\right)$	6H (<i>H</i>	(^γ)	1C 170	C R ^b
<u>(benzen çözel</u> Denevsel Ref	<u>ttisinde)</u>	13.22	4N 6.96	$5\mathrm{H}\left(H^{\beta}\right)$ 1.89	6H (<i>H</i>	(⁷)	1C 170	\mathbf{C} \mathbf{R}^{b}
<u>(benzen çözel</u> Deneysel Ref DFT/B3LYP	<u>(tisinde)</u> (4] 6-31G (d,p)	13,22 8,58	4N 6,96 8,04	5H (<i>H^β</i>) 1,89 1,76	6H (<i>H</i> -5,43	^(*)) -15,18	1C 170 $a_0 = -10,89$ $a_c = 0.33$	-519,847721
<u>(benzen çözel</u> <u>Deneysel Ref</u> DFT/B3LYP	<u>(tisinde)</u> (4] 6-31G (d,p) 6-311++G (d,p)	_ 13,22 8,58 7,38	4N 6,96 8,04 7,33	$5 H (H^{\beta})$ 1,89 1,76 1,66	6H (<i>H</i> -5,43 -5,27	?") -15,18 -11,70	1C 170 $a_{O} = -10,89$ $a_{C} = 0,33$ $a_{O} = -10,45$ $a_{C} = 0,29$	D 'R ^b -519,847721 -519,800451
<u>(benzen çözel</u> Deneysel Ref DFT/B3LYP	<u>(tisinde)</u> <u>(4]</u> 6-31G (d,p) 6-311++G (d,p) LanL2DZ	13,22 8,58 7,38 8,53	4N 6,96 8,04 7,33 7,30	$5H (H^{\beta}) 1,89 1,76 1,66 1,71$	6H (<i>H</i> -5,43 -5,27 -5,74	?") -15,18 -11,70 -15,74	1C 170 $a_0 = -10,89$ $a_C = 0,33$ $a_0 = -10,45$ $a_C = 0,29$ $a_0 = -10,86$ $a_C = 0,32$	 R^b -519,847721 -519,800451 -519,783926
<u>(benzen çözel</u> <u>Deneysel Ref</u> DFT/B3LYP	<u>(tisinde)</u> <u>(4]</u> 6-31G (d,p) 6-311++G (d,p) LanL2DZ LanL2MB	13,22 8,58 7,38 8,53 13,11	4N 6,96 8,04 7,33 7,30 7,58	$5H (H^{\beta}) 1,89 1,76 1,66 1,71 1,56$	6H (<i>H</i> -5,43 -5,27 -5,74 -5,53	^(?) -15,18 -11,70 -15,74 -27,95	1C 170 $a_0 = -10,89$ $a_C = 0,33$ $a_0 = -10,45$ $a_C = 0,29$ $a_0 = -10,86$ $a_C = 0,32$ $a_0 = -10,09$ $a_C = 0,39$	 R^b -519,847721 -519,800451 -519,783926 -519,760116
<u>(benzen çözel</u> <u>Deneysel Ref</u> DFT/B3LYP	<u>(tisinde)</u> <u>(4]</u> 6-31G (d,p) 6-311++G (d,p) LanL2DZ LanL2MB SDD	- 13,22 8,58 7,38 8,53 13,11 5,60	4N 6,96 8,04 7,33 7,30 7,58 7,40	$5H (H^{\beta}) 1,89 1,76 1,66 1,71 1,56 1,64$	6H (<i>H</i> -5,43 -5,27 -5,74 -5,53 -4,67	 -15,18 -11,70 -15,74 -27,95 -9,05 	1C 170 $a_0 = -10,89$ $a_C = 0,33$ $a_0 = -10,45$ $a_C = 0,29$ $a_0 = -10,86$ $a_C = 0,32$ $a_0 = -10,09$ $a_C = 0,39$ $a_0 = -10,23$ $a_0 = -10,23$	 R^b -519,847721 -519,800451 -519,783926 -519,760116 -519,804189
Unit of Oct	itisinde) (tisinde) (tisinde) (tisinde) (tisinde) (d,p) 6-311++G (d,p) LanL2DZ LanL2MB SDD 6-31G (d,p)	13,22 8,58 7,38 8,53 13,11 5,60 18,79	4N 6,96 8,04 7,33 7,30 7,58 7,40 7,29	$5H (H^{\beta})$ 1,89 1,76 1,66 1,71 1,56 1,64 0,71	6H (<i>H</i> -5,43 -5,27 -5,74 -5,53 -4,67 -12,59	 -15,18 -11,70 -15,74 -27,95 -9,05 -46,47 	1C 170 $a_{O} = -10,89$ $a_{C} = 0,33$ $a_{O} = -10,45$ $a_{C} = 0,29$ $a_{O} = -10,86$ $a_{C} = 0,32$ $a_{O} = -10,09$ $a_{C} = 0,39$ $a_{O} = -10,23$ $a_{C} = 0,29$ $a_{O} = -7,28$ $a_{C} = 0,04$	 R^b -519,847721 -519,800451 -519,783926 -519,760116 -519,804189 -519,579067
<u>Unit 6/ 662</u> (benzen çözel Deneysel Ref DFT/B3LYP	<u>itisinde</u>) (<u>4</u>] 6-31G (d,p) 6-311++G (d,p) LanL2DZ LanL2MB SDD 6-31G (d,p) 6-31G (d,p) 6-311++G (d,p)	13,22 8,58 7,38 8,53 13,11 5,60 18,79 17,57	4N 6,96 8,04 7,33 7,30 7,58 7,40 7,29 6,72	$5H (H^{\beta})$ 1,89 1,76 1,66 1,71 1,56 1,64 0,71 0,68	6H (<i>H</i> -5,43 -5,27 -5,74 -5,53 -4,67 -12,59 -12,21	 ⁽⁷⁾ -15,18 -11,70 -15,74 -27,95 -9,05 -46,47 -42,83 	1C 170 $a_0 = -10,89$ $a_C = 0,33$ $a_0 = -10,45$ $a_C = 0,29$ $a_0 = -10,86$ $a_C = 0,32$ $a_0 = -10,09$ $a_C = 0,39$ $a_0 = -10,23$ $a_C = 0,29$ $a_0 = -7,28$ $a_C = 0,04$ $a_0 = -7,06$ $a_C = 0,03$	 R^b -519,847721 -519,800451 -519,783926 -519,760116 -519,804189 -519,579067 -516,542329

Tablo 2. Dev	am								
	LanL2MB	22,49	7,16	0,52	-12,00	-62,16	$a_0 = -6.81$	-516,44	48730
	SDD	14,29	6,80	0,66	-11,07	-33,51	$a_{\rm C} = 0.09$ $a_{\rm O} = -6.74$ $a_{\rm C} = 0.03$	-516,54	47490
DMPO/'OC($\underline{CH_3}_3$								
<u>(su çözeltisin</u>	de)		4N	$5\mathrm{H}\left(H^{\beta}\right)$	6H (<i>E</i>	I^{γ})	1C	170	·R ^b
Deneysel Ref	. [5]	14,90	16.04	0.63					
DFT/B3LYP	6-31G (d,p)	9.52	9.49	1.59	-5.06	-14.62	$a_0 = -9.22$	-598.5	15661
							$a_{\rm C} = 0.26$		
	6-311++G (d,p)	8.23	8.59	1.52	-4.84	-11.32	$a_0 = -8.83$	-598.4	62116
			0.40				$a_{\rm C} = 0.22$	7 00 (10001
	LanL2DZ	9.53	8.48	1.57	-5.28	-15.14	$a_0 = -9.17$	-598.44	43986
	LonI 2MD	1426	0.01	1.42	5 22	26 50	$a_{\rm C} = 0.25$	509 /	16917
	LanL2WID	14.30	9.01	1.42	-3.22	-20.50	$u_0 = -0.71$	-396.4	10047
	SDD	6.31	8.78	1.48	-4.32	-8.93	$a_{\rm O} = -8.61$	-598.4	65019
	522	0101	01/0	1110		0.70	$a_{\rm C} = 0.24$	0,000	00017
HF	6-31G (d,p)	22.01	8.64	0.64	-13.02	-44.60	$a_0 = -7.03$	-594.6	83150
							$a_{\rm C} = 0.06$		
	6-311++G (d,p)	20.64	7.98	0.62	-12.57	-41.09	$a_0 = -6.84$	-594.64	42418
							$a_{\rm C} = 0.05$		
	LanL2DZ	22.69	7.85	0.62	-13.61	-47.99	$a_0 = -7.01$	-594.5	74120
							$a_{\rm C} = 0.02$		
	LanL2MB	26.60	8.63	0.52	-12.87	-58.38	$a_0 = -6.75$	-594.5	36422
	CDD	16.00	<u> 00</u>	0.61	11 42	22 70	$a_{\rm C} = 0.11$	5016	16022
	SDD	16.90	8.09	0.01	-11.43	-32.70	$a_0 = -0.49$	-394.04	40832
					h		$u_{\rm C} = 0.05$		
" Düzeltilmen	nış bağlanma enerj	ileri para	antez içe	rısınde veril	mıştir. ⁶ 2	200 ve 2	IC için ince	yapı çiftle	enim sabi

Metot	Temel set	MAE	RMSD
a(N) değerleri i	çin		
DFT-B3LYP	6-31G (d,p)	5,1850	5,2167
	6-311++G (d,p)	6,4700	6,4999
	LanL2DZ	5,1350	5,1659
	LanL2MB	0,4400	0,5444
	SDD	8,3817	8,4112
Hartree-Fock	6-31G (d,p)	7,2183	7,2919
	6-311++G (d,p)	5,8483	5,9228
	LanL2DZ	7,8850	7,9891
	LanL2MB	11,7233	11,8290
	SDD	2,1200	2,2168
Tüm hesaplama	alar için, $a(N)$, $a(H^{\beta})$ ve $a(H^{\gamma})$)	
DFT-B3LYP	6-31G (d,p)	4,4664	4,9666
	6-311++G (d,p)	5,2943	5,9251
	LanL2DZ	4,7378	5,3563
	LanL2MB	2,6086	3,9418
	SDD	6,1071	6,8675
Hartree-Fock	6-31G (d,p)	5,5700	6,2481
	6-311++G (d,p)	5,2350	5,9072
	LanL2DZ	6,1757	6,9290
	LanL2MB	7,5236	8,7366
		2 (2(1	1 (759

Tablo 3. Optimize DMPO/'R_{1,2,3,4} radikal ürünleri için teorik ve deneysel izotropik ince yapı çiftlenim sabitleri kullanılarak bulunan MAE ve RMSD değerleri

Tablo 4. DFT(B3LYP)/LanL2MB setlerinde hesaplanmış azot atomunun P_z orbitali ile CH bağının P_z orbital düzlemine izdüşümü arasındaki θ açısı ve azot radikalinin β protonuna bağlı izotropik ince yapı çiftlenim sabitleri

DMPO/'R	Çözücü	$ heta\left(^{o} ight)$	$a(5H^{\beta})$	
.Н	su	44,89	15,15	
.Н	benzen	43,51	14,39	
.OH	su	47,06	7,09	
.OH	benzen	49,70	6,70	
OC_2H_5	benzen	40,23	7,58	
•OC(CH ₃) ₃	su	44,02	9,01	

M. Karakaya vd.

		Mulliken atomik spin yoğunluğu		Mulliken atomik yükü		NPA atomik yükü	
DMPO/'R	Çözücü	4N	170	4N	170	4N	170
Ή	su	0,5023	0,4560	0,1445	-0,4797	0,1171	0,2491
Ή	benzen	0,4734	0,4858	0,1321	-0,4347	0,1133	0,2579
.OH	su	0,4759	0,4864	0,1155	-0,4519	0,0966	0,2572
.OH	benzen	0,4548	0,5061	0,1020	-0,4189	0,0942	0,2629
OC_2H_5	benzen	0,4403	0,5223	0,1146	-0,4056	0,0927	0,2744
'OC(CH ₃) ₃	su	0,4757	0,4876	0,1137	-0,4520	0,0982	0,2602

 Tablo 5. Radikallerin DFT(B3LYP)/LanL2MB setinde hesaplanan Mulliken atomik spin yoğunlukları, Mulliken atomik yükleri ve NPA atomik yükleri

Tablo 6. NBO Bazlı Fock Matris yapısının 2. Derece Pertürbasyon Teorisi analiz sonuçları								
3	Çözücü	Verici NBO	Alıcı NBO	Kararlılık	Enerji farkı ^b			
				enerjisi	(a.u.)			
				(kkal/mol) ^a				
.Н	su	n(17O)	σ*(1C-4N)	7,79	0,48			
			σ*(4N-8C)	8,24	0,47			
Ή	benzen	n(17O)	σ*(1C-4N)	8,00	0,47			
			σ*(4N-8C)	8,42	0,46			
.OH	su	n(17O)	σ*(1C-4N)	7,71	0,47			
			σ*(4N-8C)	8,26	0,47			
.OH	benzen	n(17O)	σ*(1C-4N)	7,76	0,47			
			σ*(4N-8C)	8,36	0,47			
OC_2H_5	benzen	n(17O)	σ*(1C-4N)	7,96	0,48			
			σ*(4N-8C)	8,35	0,46			
'OC(CH ₃) ₃	su	n(17O)	σ*(1C-4N)	7,92	0,47			
			σ*(4N-8C)	8,23	0,47			

^a Hiper konjugatif etkileşme enerjileri

^b.NBO orbitalleri ile verici-alıcı atom arasındaki enerji farklılıkları

Tüm sonuçlar DFT(B3LYP)/LanL2MB metodu kullanılarak hesaplanmıştır

Doğal Orbital Analizi (NBO), kuantum kimyasındaki moleküler sistemlerde, konjuge etkileşimleri veya yük transferini yorumlamak için kullanılan etkin bir metottur[17]. Lewis tipi dolu orbitaller ile Lewis tipi olmayan boş orbitaller arasındaki etkileşmeler, hiper konjugasyon veya moleküler içi ve moleküler arası delokalizasyonun çözümlenmesi olarak yorumlanabilir[18]. Lewis tipi dolu orbitaller (bağ yapmış veya yalın çift) ile Lewis tipi olamayan boş orbitaller (bağ yapmış veya Rydberg) arasındaki elektron yoğunluğunun delokalizasyonu, kararlı bir verici-alıcı etkileşmesine karşılık gelir. NBO metodunda kararlılık enerji değeri, alıcı elektron ile verici elektron arasındaki yoğun etkileşmeyi belirtir. Molekül içi etkileşmeleri anlamak için DMPO spin katkı bileşiklerinin tümündeki enerjiler, 2. Derece Pertürbasyon Teorisi kullanılarak bulundu. Kararlılık enerji değeri, değişken bir alıcı yörünge doluluk oranına, alıcı-verici yörünge enerjisine ve NBO Fock-Matris elemanına bağlıdır. Tablo 6'da DFT(B3LYP)/LanL2MB setinde Fock Matris 2. Dereceden Pertürbasyon Teorisi Analizi kullanılarak elde edilmiş alıcı-verici etkileşimlerinin farklı tipleri ve enerjiler verilmiştir. Tablodan da anlaşılacağı üzere çift bağlı 170 atomunun *n* elektronlarından,

1C-4N ile 8C-4N anti orbitallerine (σ^*) doğru molekül içi yük transferi nedeniyle güçlü molekül içi hiper konjuge etkileşmeler elde edilmiştir. En güçlü hiper konjuge etkileşmesi, çift bağlı 17O atomu ile $\sigma^*(8C-4N)$ orbitali arasındadır ve kararlılık enerjisi 8,42 kkal.mol⁻¹ dir.

4. Tartışma ve Sonuç

Bu çalışmada, su ve benzen seviyelerinde çözeltilerinde 5,5-dimetil-1-pirolin N-oksit (DMPO)'nun bazı radikal ürünlerinin temel hal optimize yapıları 6-31G (d,p), 6-311++G (d,p), LanL2DZ, LanL2MB ve SDD setli DFT (B3LYP, B3PW91 ve PBEPBE) ve Hartree Fock (HF) metotları kullanılarak hesaplandı. Radikaller olarak sırasıyla 'H, 'OH, 'OC₂H₅ ve 'OC(CH₃)₃ kullanıldı. Tüm radikal ürünlerinin hesaplanan izotropik ince yapı çiftlenim sabitlerinin deneysel veriler ile uyumu göz önüne alındığında, en uygun setin DFT(B3LYP)/LanL2MB olduğu tespit edildi. Bu nedenle çalışmamızda oluşturulan tablosal verilerin çoğunda bu set kullanıldı. Geometrik parametreler (bağ uzunluğu, bağ açısı ve torsiyon açısı) ve tuzaklanan tüm radikallerin bağlanma enerjileri tablolar halinde verildi. Azot radikalinin β protonuna bağlı izotropik ince yapı çiftlenim sabitinin, azota bağlı oksijen çekirdeğindeki spin yoğunluğundan etkilendiği görüldü. DMPO tuzak molekülüne, en sıkı bağlı radikalin 'H olduğu tespit edildi. Tüm radikal ürünleri için, antibağ orbitalleri $\sigma^*(1C-4N)$, $\sigma^*(8C-4N)$ ile çift bağlı 17O atomunun *n* elektronları arasında molekül içi yük transferi ile güçlü molekül içi hiper konjuge etkileşmeler elde edildi.

Kaynaklar

- [1] Morton J.R., 1964. Electron spin resonance spectra of oriented radicals, *Chemical Reviews*, 64 (4): 453-471.
- [2] Feller D., Davidson E.R., 1984. Ab initio configuration interaction calculations of the hyperfine structure in small radicals, *Journal of Chemical Physics*, 80: 1006–1018.
- [3] Makarova K., Łastawska K., Wagner D., Wawer I., 2014. ESR study of spin trapping in Fenton media in the presence of taxifolin, *Journal of Molecular Structure*, 1067: 27–36.
- [4] Buettner G.R., 1987. Spin trapping: ESR parameters of spin adducts, *Free Radical Biology & Medicine*, 3(4): 259–303.
- [5] Dikalov S.I., Mason R.P., 2001. Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals. Reassignment to alkoxy radical adducts, *Free Radical Biology & Medicine*, 30: 187–197.
- [6] Makarova, K., Rokhina, E.V., Golovina, E.A., Van As, H., Virkutyte J., 2012. Combination of Neural Networks and DFT Calculations for the Comprehensive Analysis of FDMPO Radical Adducts from Fast Isotropic Electron Spin Resonance Spectra, *The Journal of Physical Chemistry A*, 116(1): 443–451.
- [7] Ucun F., Aydın S.G.,2014. Calculated optimized structures and hyperfine coupling constants of some radical adducts of α-phenyl-*N*-tert-buthyl nitrone in water and benzene solutions, *Journal of Organometallic Chemistry*, 759: 27–32.
- [8] Miertus S., Scrocco E., Tomasi J., 1981. Electrostatic interaction of a solute with a continuum A direct utilization of AB initio molecular potentials for the prevision of solvent effects, *Chemical Physics* 55(1): 117–129.
- [9] Cammi R., Tomasi J., 1995. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges, *Journal of Computational Chemistry*, 16(12): 1449–1458.
- [10] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R.,

M. Karakaya vd.

Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., 2003. GAUSSIAN 03, Revision C.02, Gaussian Inc., Pittsburgh, PA.

[11] Frisch A., Nielsen A.B., Holder A.J., 2001. Gauss View User Manual, Gaussian Inc., Pittsburg, PA.

- [12] Boys S.F., Bernardi F., 1970. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, *Molecular Physics*, 19(4): 553-566.
- [13] Glandening E.D., Reed A.E., Carpenter J.E., Wienhold F., 1992. NBO Version 3.1, Gaussian Inc., Pittsburgh, PA.
- [14] Carpenter J. E., Weinhold F., 1988. Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure, *Journal of Molecular*. *Structure (Theochem)* 46: 41-62.
- [15] Reed A.E., Weinstock R. B., Weinhold F., 1985. Natural population analysis, *Journal of Chemical*. *Physics*, 83: 735-46.
- [16] Ludwig P., Layloff T., Adams R.N., 1964. Solvent Effects on Hyperfine Coupling Constants in Electron Paramagnetic Resonance Spectra, *Journal of the American Chemical Society*, 86(21): 4568-4573.
- [17] Snehalatha M., Ravikumar C., Joe I.H., Sekar N., Jayakumar V.S., 2009. Spectroscopic analysis and DFT calculations of a food additive Carmoisine, *Spectrochimica Acta Part A*, 72(3): 654-662.
- [18] Choo J., Kim S., Joo H., Kwon Y., 2002. Molecular structures of (trifluoromethyl) iodine dihalides CF₃IX₂ (X=F, Cl): Ab initio and DFT calculations, *Journal of. Molecular Structure (Theochem)*, 587: 1-8.

Fatih Ucun e posta: fatihucun@sdu.edu.tr Mustafa Karakaya e posta: mkarakaya@sinop.edu.tr