PAPER DETAILS

TITLE: Population dynamics of Aphis tirucallis Hille Ris Lambers, 1954 and Aphis vallei Hille Ris

Lambers & Stroyan, 1959 (Hemiptera: Aphididae) on Euphorbia spp. (Euphorbiaceae) in Van,

Turkey

AUTHORS: Mehmet Salih ÖZGÖKÇE, Ilhan KAYA, Evin POLAT

PAGES: 75-87

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/65125

Orijinal araştırma (Original article)

Population dynamics of *Aphis tirucallis* Hille Ris Lambers, 1954 and *Aphis vallei* Hille Ris Lambers & Stroyan, 1959 (Hemiptera: Aphididae) on *Euphorbia* spp. (Euphorbiaceae) in Van, Turkey¹

Mehmet Salih Özgökçe²* İlhan Kaya² Evin Polat²

Summary

This study was conducted in Van Province in 2006-2007 years. Samplings were performed in three different locations and aphids were directly counted of those collected from branches of *Euphorbia* spp. *Aphis tirucallis* Hille Ris Lambers, 1954 were found on *Euphorbia heteradena* Jaub. et Spach and *Euphorbia seguieriana* Necker subsp. *seguieriana* Necker while *Aphis vallei* Hille Ris Lambers & Stroyan, 1959 was found on *Euphorbia macroclada* Boiss. These are the first reports for the aphids and their host plants in this area. Population changes of the aphids were observed during two years. It was determined that both of aphids created higher population in the year 2007, which had more proper climate conditions.

- Key words: Euphorbia heteradena, Euphorbia macroclada, Euphorbia seguieriana subsp. seguieriana, population dynamic
- Anahtar sözcükler: Euphorbia heteradena, Euphorbia macroclada, Euphorbia seguieriana subsp. seguieriana, populasyon değişimi

Introduction

Aphid fauna of Turkey is 410 species among the 4500 aphid species in the world (Remaudière et al., 2006). Aphids feed by sucking the juice out of plants. While this is harmful, they also transmit diseases to plants, which also can be deadly. They are very widespread and an economically important group

¹ This study was supported by Yuzuncu Yil University Scientific Research Projects Fund (Project No: 2006-ZF-B02).

² Yuzuncu Yil University, Agriculture Faculty, Plant Protection Department, 65080, Van

^{*} Sorumlu yazar (Corresponding author) e-mail: msozgokce@yyu.edu.tr Alınış (Received): 19.02.2010 Kabul ediliş (Accepted): 30.06.2010

of insects in all part of the world. Besides the culture plants, they reach to higher populations on the annual or perennial plants as the primary or secondary hosts, therefore they constitute a significant step in the food cycle of the living organisms.

The annual or perennial *Euphorbia* species which grows in the culture plant areas and other areas are considerable attractive plants for numerous insects because their milky juice, private color, smell, aroma and flower forms in whole vegetation period.

The *Euphorbia* spp. which are observed as flowery and leafy plants in the same or consecutive periods of the whole vegetation period presents a significant nutrition and sheltering facilities for the predators and parasitoids which feed with pollens in their adult stages.

The cosmopolite *Euphorbiaceae* family includes 300 types and 4500 species. They can be in annual or perennial with different forms (herbaceous, shrubby, ligneous), and nearly all of them have milky juice. In Turkey, there are 91 species of *Euphorbia* type. In the study area (Van and its around), there are 12 species of this type (Davis, 1982).

In this study, the population dynamics of two aphid species, *Aphis tirucallis* Hille Ris Lambers, 1954 and *Aphis vallei* Hille Ris Lambers & Stroyan, 1959 were investigated on *Euphorbia heterodena* Jaub. et Spach, *Euphorbia seguieriana* Necker subsp. *seguieriana* Necker and *Euphorbia macroclada* Boiss. which were widespread in and out of the agricultural areas around in Van Province. It was observed that these species and their hosts were found sequentially in the nature in the whole season.

Material and Methods

This study was conducted in 2006-2007 years, in three different locations (Muradiye, Van centre, Gürpınar-Gevaş) in north-south directions of Van and its around. The ecological differences were considered while choosing these locations (Figure 1). In each location, 3 points were selected with different distances. Samples were taken as 5 repetitions on *E. heteradena, E. seguieriana* subsp. *seguieriana* and *E. macroclada* in two week intervals. Each plant cluster growing on the same root system and composed of different numbers of branches were examined according to their branches, leaves, and flowers and notes were taken by counting their total branches and branches infected with aphids. Among the branches infected with aphids, an infected one was cut from a point near the root and was taken to the plastic bag with paper sack in it and was transferred to the ice box to be counted in the laboratory.

Observations were made in the beginning of April, which was the growing period of the plants in the selected areas, and samplings were taken in the middle of May, which was the first observation of aphid populations in the nature. The samplings were taken with two weeks intervals until September in which plants faded and died. In the study Student's t-test and nonparametric Mann-Whitney U test (P<0.05) were applied by using SPSS (version 11.5.0. 2002) statistical software. The analysis of the normally distributed data was conducted by using independent t-test. For the data which did not show normal distribution despite the transformation, non parametric Mann-Whitney U test was applied. In order to test the acceptability of the variables to the normal distribution (normality test), Kolmogorov Smirnov test was used.

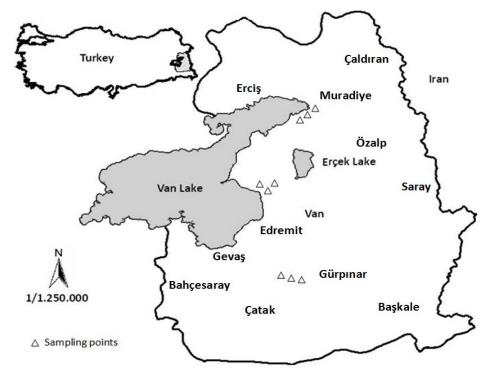


Figure 1. Sampling locations in Van province.

Results and Discussion

Population changes of Aphis tirucallis Hille Ris Lambers, 1954

Aphis tirucallis was defined as darkish brown, grayish black because of the waxy liquor on it, and with short conical and dark color in its apteral individuals (Özdemir, 2004). This monoecious species was reported on *Euphorbia* sp. in 1978 Kalecik/Ankara firstly according to Düzgüneş et al. (1982) as a new species for Turkey fauna (Özdemir, 2004). According to records, its distribution areas in Turkey were indicated as Diyarbakır (Hazro) (Ölmez, 2000), East Anatolia region (Toros et al., 2002), Malatya (Dilek) (Ölmez et al., 2006) on *Euphorbia* sp. Apart from that, no detailed information was found about its distributions and hosts in Turkey.

Remaudiere et al. (1985) reported that it was Mediterranean origin and found in Ethiopia and Sudan and its host plants were *E. helioscopia* L., *E. hirta, E. prostrata* Ait., *E. pubescens* Vahl, *E. splendens* Boj. ex Hook. and *E. tirucalli* L. In addition to these, Düzgüneş et al. (1982) informed the *E. peplos* as host plant referring to Tanasijtshuk et al. Gonzales-Funes & Michelene (1988) determined *A. tirucallis* on *E. helioscopia* and *E. terracina* in Spain, Peninsula. In Anonymous (1993), it was reported that *E. segetalis, E. paralias* and *E. peplus* were host plants of *Aphis tirucallis* in Spain. Gotlin Culjak et al. (2008) declared that it was found on *Prunus amygdalus communis* and *E. helioscopia* in Croatia Gata. Suay-Cano et al. (2002) reported that it was found on *E. terracina* and *E. flavicoma* in Spain, Valencia.

Aphis tirucallis not recorded in Van and its around before. It was found on E. heteradena and E. seguieriana subsp. seguieriana first time in this study. Its population changes were determined in 2006-2007 as mentioned below. In the first observations in the middle of May 2006, it was seen that plant-branch system was developed and first populations of A. tirucallis was found on E. macroclada, while its first populations were on E. seguieriana subsp. seguieriana observed at the end of May (Figure 2). In the following samplings, its population increased very fast on E. heteradena and reached to the maximum value at the beginning of June, then decreased dramatically in the following weeks, and disappeared completely at the end of July. In 2007, similarly, the first populations were observed on the same host in May. It increased in the following sampling periods with a rapid increase, then reached to the highest value of the two years at the beginning of July and disappeared completely at the end of July. It was thought that climatic factors were one of the probable reasons of these changes. It was seen that the rain periods were less in 2006 summer, especially maximum average temperatures were high in August, and depending on them the moisture levels in the air were less than the 2007. The maximum temperature values were detected as 33.8 °C and 33.5 °C in July and August, respectively. These values are too high for the aphids. In 2007, more precipitation was observed in the studied season, temperature was warmer than previous year. The maximum moisture rates of weather were detected as 99% in most times. These factors might have a positive effect on the plant and aphid growth (Figure 3). Thus, the aphid population reached very high values especially at the beginning of July and survived in the nature one month longer when compared with the previous year, 2006.

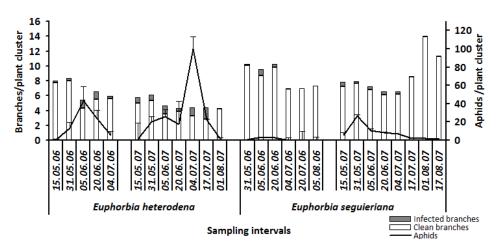


Figure 2. Population densities of *Aphis tirucallis* Hille Ris Lambers, 1954 on *Euphorbia heterodena* Jaub. et Spach and *Euphorbia seguieriana Necker* subsp. *seguieriana Necker* in 2006– 2007.

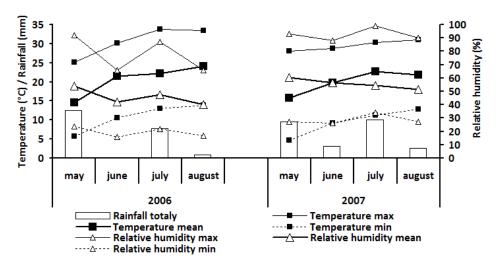


Figure 3. Climatic data of Van province in 2006–2007.

The first populations of *A. tirucallis* on *E. seguieriana* subsp. *seguieriana* were observed at the end of May in 2006 and the populations in the following samplings were detected at low levels. It was observed till the August in that year (it disappeared on *E. heteradena* in those periods).

The aphid's first populations generated earlier in 2007 (in the middle of May) and reached to the highest level at the end of May. In the following samplings, the populations decreased and they were observed at low levels till the end of August. In 2007, higher populations of aphid were observed on this host than the previous year.

Densities of A. tirucallis on E. heteradena and E. seguieriana subsp. seguieriana according to sampling intervals, years and hosts were statistically compared and the results were given in Table 1. The standard errors of the means were calculated as high in some observations. Its reason is due to the excess zero observations and the differences between minimum and maximum values of observations. In addition to, some alternate methods are used for these type data analyses (Lambert, 1992, Böhning, 1998, Yeşilova et al., 2010), it was applied Mann-Whitney U test and Kolmogorov Smirnov test for compare of means. The population density of A. tirucallis on E. heteradena was found high in the 5th sampling of 2007 July and in the mean values of the samples according to years (Table 1; in 5th, 8th rows) (P<0.05). Similarly, its population densities were found higher on E. seguieriana subsp. seguieriana in 2007 in the 4th, 5th, 6th samplings and in mean values of the samples than 2006 (Table 1; 12th, 13th, 14th and 17th rows) (P<0.05). According to different hosts, higher populations of A. tirucallis were found on E. heteradena than E. sequieriana subsp. seguieriana in 2006 in the 3rd, 4th, 5th sampling intervals and mean (Table 1, in columns) (P<0.05). Similarly, in 2007 it had high populations on E. heteradena according to the 3rd, 5th, 6th sampling intervals and mean (Table 1, in columns) (P<0.05).

Population change of Aphis vallei Hille Ris Lambers & Stroyan, 1959

This species was firstly reported in 1964 in Ahlat (Bitlis) by Tuatay & Remaudieri (Remaudieri et. al., 2006). Later, it was determined in Ankara by Çanakçıoğlu (1975) and Özdemir (2004) on *Euphorbia* sp. Özdemir (2004) characterized the morphological definition of this species as black color, dusty in sight, with wide cauda and short cornical, and having a dark stain on the dorsal of the wingless individuals. Its host plant was noted as *Euphorbia peplens* in the East Mediterranean region by Toros et al. (2002).

There is limited information about the worldwide distribution of this species. Ghosh & Nieto Nafria (1994) reported that it was found in the Spain Peninsula Andalusian Mountains on an altitude of 500-1500 without mentioning its host plant. Gonzales-Funes & Michelene (1988) determined *A. vallei* on *Euphorbia characias,* in Spain Peninsula. It was reported that its host plant was *Euphorbia* sp. in Spain (Anonymous, 1993). There is no previous record of this species in Van and its around. During this study, *A. vallei* was determined only on *E. macroclada* in high populations and its population change in 2006-2007 is presented below.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Aphis tirucallis	ucallis					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2006				2007			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sampling intervals	rows n 1 2			n 1	2 3	4 5	9	7 8	mean
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 10 1.0±0.56a*A**			5 1.6±1.03aA					
1 1		2 35 13.5±6.34aA			40 20.	2±17.46aA				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15.33aA		35	H				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Euphorbia heterodena	44	7±9.34a		25	ŧ	7.4±7.86aA			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 20	5.5±4.37bA		45		100.3±25.32	aA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9			9			22.2±13.24A		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7			9			1.7±1	1.01A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				13.2±5.52bA	160					43.7±9.23aA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8			15 5.4±2.85aA					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40			45 26	8±9.64aA				
		33	1.13aB		30	8±3.35s				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Euphorbia seauieriana	39	0.1±0.08bB		25		.3±3.55aA			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	subsn. seguierigna	13 30	0 0+0 000		35		6 9+2 76aF			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14 40	0:0	0.00b	35					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15			15			1.8±1		
17 212 1.340.36bB 226 18 25 $3.741.76a$ $451.840.840$ $451.841.82b$ 19 33 $31.0413.68a$ 45 $1.841.82b$ 19 35 $31.0413.68a$ 45 $7.344.93b$ 20 35 $39.3427.30a$ 45 $7.344.93b$ 21 35 $36.745.95b$ $96421.35a$ 22 30 $6.442.17a$ 30 $96421.35a$ 23 40 $0.540.37b$ 45 $7.344.93b$ 23 40 $0.540.37b$ 45 $7.344.93b$ 24 $6.342.6a$ $35.745.95b$ 9642.74 9642.74 26 9642.74 9642.74 9642.74 9642.74 26 9642.74 9642.74 9642.74 9642.74		16			25				1.1±1.	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17 212		1.3±0.35bB	225					9.7±2.15aB
18 25 3.7.4.7.6a Aphis vallei 19 33 31.0±13.68a 45 18±1.82b 45 18±1.82b 19 33 31.0±13.68a 45 1.8±1.82b 5.3±4.93b 20 35 39.3±27.30a 15 5.3±4.93b 5.5.7±5.95b 21 35 30 15 7.3±4.93b 5.7±5.95b 21 35 30 35.7±5.95b 11.4±5.26a 22 30 0.5±0.37b 45 96±21.36a 23 40 0.5±0.37b 45 96±21.36a 23 40 0.5±0.37b 36 11.4±5.26a 24 5.3±3.62a 45 96±21.3ca 96±21.3ca 26 30 5.3±3.62a 36 96±21.4a 9.6±2.74 26 53±3.62a 45 36 96±21.26a 9.6±2.74 13.2±30 26 16 16 20.4±9.19a 9.6±2.74 13.2±30 15.1±64b 9.6±2.74 13.2±30										
18 25 3.7.4.1.76a 45 1.8.4.182b 19 33 31.0.413.68a 45 1.8.4.182b 20 35 39.3.427.30a 15 7.3.44.93b 21 35 0 35.7.45.96b 36.745.96b 21 35 0 11.445.26a 20.449.19a 22 30 45 45 20.449.19a 23 40 0.540.37b 45 20.449.19a 24 5.3±3.62a 45 20.449.19a 9.642.74 28 6.482.74 30 11.445.26a 20.449.19a 27 30 5.3±3.62a 45 20.449.19a 9.642.74 28 5.3±3.62a 35 5.445 20.449.19a 9.642.74 13.2430 26 150 15.145 20 15.142 20.445 13.2430				Aphis v	allei					
10 33 31.0±13.68a 45 7.3±4.93b 20 36 39.3±27.30a 15 7.3±4.93b 21 36 39.3±27.30a 15 36.7±6.95b 21 36 0.5±0.37b 30 11.4±5.26a 22 30 0.5±0.37b 45 96±21.35a 23 40 5.3±3.62a 45 96±21.35a 24 5.3±3.62a 45 96±21.35a 96±21.35a 24 5.3±3.62a 45 96±21.35a 96±21.35a 24 5.3±3.62a 45 96±21.35a 96±27.4 26 5.3±3.62a 45 30 96±27.4 96±27.4 26 5.3±3.62a 45 36±27.4 96±27.4 96±27.4 26 56 15.1±5.44b 200 96±27.4 96±27.4		25			45 1.8±1.82b					
20 35 39.3427.30a 15 36.745.96b 21 35 9.642.17a 30 11.445.26a 22 30 45 96421.35a 23 0.54037b 45 96421.35a 23 0.54037b 45 96421.35a 24 5.343.62a 45 96421.35a 24 33 33 96421.35a 24 33 33 96421.43a 26 33 33 96421.43a 26 33 35 96421.43a 9642.74 26 33 35 9642.74 9642.74 26 36 15.145.44b 290 9642.74		33				3±4.93b				
21 35 6.4±2.17a 30 11.4±5.26a 22 30 0.5±0.37b 45 96±21.35a 23 40 0.5±0.37b 45 96±21.35a 24 30 45 96±21.35a 9.6±2.74 24 30 35 13.2±30 9.6±2.74 26 96 9.6±2.74 9.6±2.74 9.6±2.74 26 9.6 9.6±2.74 9.6±2.74 9.6±2.74 26 9.6 9.6±2.74 9.6±2.74 9.6±2.74		35	±27.30a			35.7±5.95t				
22 30 0.540.37b 45 96£21.35a 23 40 5.3±3.62a 45 20.4±9.19a 24 5.3±3.62a 45 20.4±9.19a 24 30 35 13.2±30 26 15.1±6.44b 290 13.2±30	Euphorbia macroclada	35	6.4±2.17a		30		1.4±5.26a			
40 5.3±3.62a 45 20.4±9.19a 30 2.04±9.19a 35 13.2±30 13.2\pm200 13.2\pm2000 13.2\pm2000 13.2\pm20000000 13.2\pm200000000000000000000000000000000000		22 30	0.5±0.37b		45		96±21.35a			
30 9.642.74 35 13.2430 198 15.145.44b 290 13.2430		23 40		3.62a	45					
35 13.2±30 15.1±5.44b 290		24			30				±2.74	
15.14.5.14.4 290		25			35					
		26 198		15.1±5.44b	290					25.1±4.17a

Table 1. Population densities of Aphis tirucallis and Aphis vallei on Euphorbia spp. in 2006-2007

* Means with the different small letters in the same row are significantly different each others according to Mann-Whitney U test at 5% level. ** Means with the different capital letters in the same column are significantly different each others according to Mann-Whitney U test at 5% level. n: Number of branches sampled.

In 2006, *A. vallei* generated its first populations on *E. macroclada* at the end of May, then increased regularly and reached to the maximum value in the middle of June. In the following samplings, the population decreased rapidly and disappeared in August. In 2007, it was observed earlier, in the midst of May and increased till the first days of July and the population reached to the higher values than the previous year. In the following weeks, the population decreased, and disappeared completely in the last days of August. When the population intensity of the *A. vallei* was compared according to two years, it was found higher in 2006 in the first three samplings and it was found higher in 2007 in the fifth sampling (Table 1; 18th, 19th, 20th, 22nd rows). When the yearly means are considered, its higher value was detected in 2007 (Table 1; 26th row) (P<0.05). The biological cycle and population intensity of *A. vallei* is resembling to *A. tirucallis* population, especially on *E. heterodena* host plant. The climate conditions were more proper especially in the year 2007; therefore its survival period in the nature was longer than *A. tirucallis* populations.

The numbers of branches growing in the same root system in every plant cluster of the *Euphorbia* species and the number of infected branches with aphids were tested for two years according to the sampling intervals and results were given in Tables 2 and 3. Accordingly, the numbers of branches which were grown from a plant cluster of the *E. heteradena* were almost similar for two years samplings, except in 3rd sampling (first days of June), it was higher in the year 2006 (P<0.05). In this sampling time, the population of *A. tirucallis* was reached its highest population levell also (Figure 2). The mean numbers of branches were found higher in 2006 (P<0.05) (Table 2). The numbers of infected branches with aphids were on this plant were compared according to the years, only the fifth sampling was found high in 2007 (P<0.05) (Table 3). This period was also the time in which highest aphid population intensity of the two years was observed in this study (Figure 4).

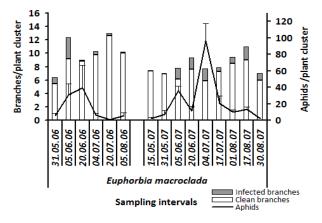


Figure 4. Population densities of *Aphis vallei* Hille Ris Lambers & Stroyan 1959 on *Euphorbia macroclada* Boiss. in 2006–2007.

						Branches per a plant cluster	a plant c	luster							
				2006							2007				
Sampling intervals	rows n	1 2	3	4	5	6 mean	-	-	2 3	4	5	9	7	8 mean	an
	1 10 8.0 ₂	8.0±0.84a*					5	5.8±1.16a							
	2 35	8.4±0.95a					40	9	6.1±1.09a						
	3 45		5.4±0.50a				35		4.7±0.39b	9b					
Euphorbia heterodena	4 44		6.6	6.5±0.71a			25			4.3±0.70a					
	5 20			5.6	5.9±0.79a		45				4.4±0.43a				
	9						9					4.4±1.03			
	7						9						4.2±0.95		
	8 154					6.6±0.36a	160							4.9±0.34b	0.34b
		10.2±1.27a						7.9±1.44a							
	10 40	9.6±1.26a					45	œ	8.0±1.08b						
	11 33		10.2±1.04a				30		7.2±0.62b	2b					
Euphorbia seguieriana	12 39		7.0	7.0±0.73a			25			6.6±0.67a					
subsp. seguieriana	13 30			9.9	6.9±0.64a		35				6.5±0.62a				
	14 40					7.3±0.76a	35					8.6±1.66a			
	15						15						14.0±4.33		
	16						25						1	11.3±2.77	
	17 212					8.5±0.41a	225							8.4±0.57a	0.57a
	18 25 5.6	5.6±0.83a						7.5±0.82a							
	19 33	12.4±1.58a					45	7.	7.0±0.81b						
	20 35		9.0±1.11a				15		7.8±0.98a	8a					
	21 35		10.	10.3±1.07a			30			9.3±0.96a					
Euphorbia macroclada	22 30			12	12.6±2.18a		45				7.7±1.04b				
	23 40				10.2	10.2±1.16a	45					7.7±0.76a			
	24						30					0,	9.4±1.19		
	25												÷	11±1.07	
	20 198					10.3±0.58a	290							8.3±0.34b	J.34b

Table 2. Branches numbers per a plant cluster according to years and sampling intervals

* Means with the different letters in the same row are significantly different each others according to t-student test at 5% level. n: Number of branches sampled.

							Infected b	pranches p	Infected branches per a plant cluster	ster						
					2006								2007			
Sampling intervals	rows n	1	2	3	4	5	9	mean	n 1	2	3	4	5	9	7	8 mean
	1 10	0.3±0.15a*							5 0.8±0.58a	a						
	2 35		0.3±0.16a						40	0.7±0.24a						
	3 45			1.1±0.23a					35		1.1±0.29a					
Euphorbia heterodena	4 44				1±0.27a				25		0	0.4±0.13a				
(Aphis tirucallis)	5 20					0.3±0.18b			45			÷	1.0±0.27a			
	9								5				1	1.6±0.93		
	7								5					0.1	0.1±0.03	
	8 154						0	0.7±0.11a	160							0.9±0.13a
	9 30	0.1±0.06a							15 0.6±0.34a	8						
	10 40		0.9±0.25a						45	0.3±0.08a						
	11 33			0.5±0.17a					30		0.4±0.11a					
Euphorbia seguieriana	12 39				0.1±0.08b				25		0	0.5±0.19a				
subsp. seguieriana	13 30					0.0±0.00b			35			0.0	0.31±0.09a			
(Aphis tirucallis)	14 40					0	0.0±0.00b		35				0.1	0.1±0.07a		
	15								15					0.1	0.1±0.07	
	16								25							0.1±0.04
	17 212						0	0.2±0.06b	225							0.3±0.04a
	18 25	0.6±0.34a							45 0.1±0.11b	٩						
	19 33		3.2±1.03a						45	0.1±0.06b						
	20 35			0.2±0.13b					15		1.7±0.33a					
Euphorbia macroclada	21 35	21 35			0.5±0.14a				30			1.7±0.58a				
(Aphis vallei)	22 30					0.3±0.21b			45			÷-	1.8±0.33a			
	23 40					0	0.2±0.09a		45					0.6±0.22a		
	24								30						1.0±0.33	
	25								35						2.0H	2.0±0.49
	26 198						0	0.9±0.20b	290							1.0±0.12a

Table 3. Infected branch numbers per a plant cluster according to years and sampling intervals

* Means with the different letters in the same row are significantly different each others according to Mann-Whitney U test at 5% level. n: Number of branches sampled.

84

The numbers of branches of *E. seguieriana* subsp. *seguieriana* were found high in the 2nd and 3rd sampling intervals in 2006 (Table 2). There were not significant differences in the other sampling intervals and mean values of two years (P<0.05). The differences in the infected branches (Table 3) were not significant in the first three samplings, but in the following samplings and yearly means, higher values were obtained for 2007 (P<0.05). For *E. macroclada,* the numbers of branches (Table 2) according to the yearly means were found higher between the 2nd and 5th sampling intervals in 2006. The number of infected branches (Table 3) in the first two samplings were found higher in 2006, where higher results were obtained in 2007 in the 3rd and 5th samplings and yearly means (P<0.05).

These *Euphorbia* species were not recorded before as host plants of *A. tirucallis* and *A. vallei*. In the presented study, these host plants are new records for the mentioned aphids. Furthermore, these aphids are new records for Van Province also.

It is obviously seen that climatic factors have significant effects on aphid population densities and on plants also. In this study, it was found that, the maximum temperature values had destructive effects on the aphid population rather than the average temperatures in the summer season. Thus, the temperature values of 33.8 °C in July and 33.5 °C in August (2006) are too high for the many aphids. Temperature is an important factor for rapid increase in the aphid population (Trdan & Mileroj, 1999). Temperature ranging from 7.7 to 25.2 is favourable for aphid growth (Chander, 1996), while the optimum temperature for aphid growth is 23.44 °C (Miller & Smith, 1998). In 2007, the temperatures were lower, and the maximum proportional moisture levels were about %99 and %90, and the total rainfalls in summer was higher. Therefore, these factors increased the vegetative growth of the plants and provided more proper climatic conditions for the aphids and the hosts.

Euphorbia species are the undesired plants in the agricultural areas and grasslands because of crop losses and negativities in the animal nutrition. But they have a significant place in the food chain of the ecosystem since they are hosts for numerous beneficial insect species. Especially, their blossom flowers during all vegetation season are very important food source for many pollen feeder beneficial insects. At the samplings, it was observed that highest proportions (29%) of the species determined on these plants were belonging to Hymenoptera which includes numerous pollinators and useful parasitoids (Özgökçe et al., 2008). Besides, so many predators and parasitoids of the Coleoptera (27%), Diptera (26%), Heteroptera (8%) and Neuroptera (2%) were also detected (Özgökçe et al., 2008). In the biological control, it is an important step for the success to provide the sustainability of the natural enemies by growing highly blooming flowery plants in around the agricultural areas. Since

Euphorbia spp. exists naturally in these areas, therefore it constitutes a significant factor to provide the persistence of the natural biological food cycle between the useful and harmful species.

Özet

Van (Türkiye) ve çevresinde *Euphorbia* spp. (Euphorbiaceae) üstünde Aphis tirucallis Hille Ris Lambers, 1954 ve Aphis vallei Hille Ris Lambers & Stroyan, 1959 (Hemiptera: Aphididae)'nin populasyon değişimi

Çalışma 2006-2007 yıllarında Van ilinde yürütülmüştür. Örneklemeler üç farklı lokasyonda yürütülmüş ve yaprakbitleri *Euphorbia* spp.'nin dalları ile birlikte alınarak doğrudan sayılmıştır. Çalışmada *Aphis tirucallis* Hille Ris Lambers, 1954'in *Euphorbia heterodena* Jaub. et Spach ve *Euphorbia seguieriana* Necker subsp. *seguieriana* Necker üstünde, *Aphis vallei* Hille Ris Lambers & Stroyan 1959'nin de *Euphorbia macroclada* Boiss. üstünde beslenmesi hem yaprakbitlerinin bölge için ve hem de konukçu bitkilerin bu türler için besin bitkileri olması yönünden ilk kayıtlar olma niteliği taşımaktadır. Ayrıca yaprakbitklerinin iki yıllık populasyon değişimleri izlenmiştir. Her iki yaprakbiti türünün iklim faktörlerinin daha uygun olduğu 2007 yılında daha yüksek bir populasyon oluşturduğu saptanmıştır.

Acknowledgments

We thanks to Dr. Işıl Özdemir (Ministry of Agricultural and Rural Affairs, Plant Protection Central Research Institute, Ankara-Turkey) who identified our specimens and YYÜ Scientific Research Projects Fund for support this work.

References

- Anonymous, 1993. Catálogo comentado de las especies de áfidos halladas en Almería hasta 1991, con indicación de aquellos que puedan resultar perjudiciales a las plantas cultivadas. Boletin del Instituto de Estudios Almerienses. Ciencias, ISSN 1133-1488, No: 11-12, 35-65.
- Böhning, D., 1998. Zero-Inflated poisson models and C.A.MAN: A Tutorial collection of evidence, Biometrical Journal, 40 (7): 833-843.
- Chander, S., 1996. Aphid infestation on wheat in relation to climatic factors and predators. Annals Plant Protection Sciences, 4: 148–50
- Çanakçıoğlu, H., 1975. The Aphidoidea of Turkey. İstanbul Üniversitesi Orman Fakültesi Yayınları, Cilt: XXII, İstanbul Üniv. Yayın No: 1751, İstanbul.
- Davis, P. H., 1982. Flora of Turkey. Edinburgh at the University Press 22, Edinburgh, vol. 7: 566 pp.
- Düzgüneş, Z., S. Toros, N. Kılınçer & B. Kovancı, 1982. Ankara ilinde saptanan afit predatörü Leucopis türleri (Dip.: Chamaemyiidae). **Türkiye Bitki Koruma Dergisi, 6**: 91-98.
- Ghosh, A. K. & J. M. Nieto Nafria, 1994. Stratigraphic distribution of Aphidfauna (Hom.) in Eastern Andalusian Mountains (South Spain). **Orsis, 9**: 85-96.

- Gotlin Čuljak, T., R. Bažok, & D. Grubišić, 2008. Fauna Lisnih Uši (Hemiptera: Aphidoidea) Nekih BiljnihVrsta U Hrvatskoj. Fragmenta Phytomedica et Herbologica, 30, No: 1-2.
- Gonzales-Funes, P. & J.M. Michelene, 1988. Pugons (Homoptera, Aphidoidea) de la Provincia d'Alacant II. Aphididae. **Miscellania Zoologica 12**.
- Lambert, D., 1992. Zero-Inflated Poisson Regression, with an Application to Defects in Mnaufacturin, **Technometrics**, **34** (1): 1-13.
- Miller, R.M. & A.W. Smith, 1998. The Greenbug Aphid and Its Control. Fact sheet extension horticulture and crop sciences. Ohio State University Extension Fact Sheet. 2021, Coffey Rd., Columbus, Ohio 43210–1086.
- Olmez, S., 2000. Diyarbakır İlinde Aphidoidea (Homoptera) Türleri ve Bunların Parazitoit ve Predatörlerinin Saptanması, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Basılmamış Yüksek Lisans Tezi, Adana, 109 s.
- Olmez Bayhan, S., M. R. Ulusoy & E. Bayhan, 2006. Aphids and their predators in Malatya region and around, Turkey. Journal of Biological Sciences, 6 (5): 954-957.
- Ozdemir, I., 2004. Ankara İlinde Otsu Bitkilerde Aphidoidea Türleri Üzerinde Taksonomik Araştırmalar. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Basılmamış Doktora tezi, Ankara, 188 pp.
- Özgökçe, M. S., İ. Kaya, E. Polat & U. Özkan, 2008. Van ve Çevresinde Çayır ve Mera Alanlarında Sorun Olan *Euphorbia* spp. Üzerinde Bulunan Yararlı ve Zararlı Böcek Türlerinin Saptanması. Y.Y.Ü. BAPB tarafından desteklenen Araştırma Projesi Sonuç Raporu, (in Turkish), 46 pp.
- Remaudière, G., A. Autrique, V. F. Eastop, P. Stary & G. Aymonin, 1985. Contribution to the Ecology of African Aphids. F.A.O. Plant Protection Bulletin 64 pp (in Fren.).
- Remaudiere, G., S. Toros & I. Özdemir, 2006. New contribution to the Aphid fauna of Turkey (Hemiptera, Aphidoidea). Revue Française d'Entomologie (N.S.), 28 (2): 75-96.
- SPSS, 2002. SPSS for Windows, Rel. 11.5.0. 2002. Chicago: SPSS Inc.
- Suay-Cano, V. A., A. Tinaut & Y. J. Selfa, 2002. Las Hormigas (Hymenoptera, Formicidae) Asociadas Apulgones (Hemiptera, Aphididae) En Laprovinciade Valencia. Graellsia, 58 (1): 21-37.
- Toros, S., N. Uygun, R. Ulusoy, S. Satar & I. Özdemir, 2002. Doğu Akdeniz Bölgesi Aphidoidea Türleri. T.C. Tarım ve Köy İşleri Bakanlığı, Tarımsal Araştırmalar Genel Müdürlüğü, 108 s.
- Trdan, S. & L. Mileroj, 1999. The cereal aphid (*Sitobion avenae* T.) wheat pest. **Sodobno-Kmetijstvo, 32**: 119–28.
- Yeşilova, A., M. B. Kaydan & Y. Kaya, 2010. Modeling Insect-Egg Data with Excess Zeros using Zero-Inflated Regression Models. **Hacettepe Journal of Mathematics and Statistics, 39** (2): 273-282.