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Abstract 

  

Transfer line is a serial arrangement of machines where buffers are used to separate two consecutive machines. 

This special type of production systems have high production volumes.  In the design and operation of transfer 

lines, throughput analysis is essential. Considering the transient state of the systems, this paper presents theoretical 

analysis for throughput rate of transfer lines. For the short transfer lines, having a unique machine and two 

machines, we derive throughput rate, expected value and variance functions. We use these functions in 

performance evaluation of production systems. Besides, these formulations can be used while analyzing longer 

transfer lines which can easily be decomposed into smaller sub-systems. 

 

Keywords:  buffer, throughput rate, transient state, transfer line. 

 

1.INTRODUCTION 

Transfer lines are basic production systems with 

high production rates. This type of production 

systems consist of a series of machines which are 

separated by buffers. These buffers reduce the 

fluctuations caused by systems imbalances or 

machine failures. The general process of the transfer 

lines can be summarized as: Materials flow from 

outside to the initial buffer, then to the first machine 

if it is empty and productive, then to first in-process 

buffer, then these semi-manufactured parts move 

through the second machine, then to the second in-

process buffer, and so forth, until the last machine 

and the buffer, and finally the manufactured items, 

namely products, leave the system. (Dallery et al. 

1989).  

 

In the design, and managing operations of transfer 

lines, throughput analysis is very crucial. 

Randomness exists in production due to machine 

breakdowns, random processing times, and random 

arrival times. Thus, the number of parts 

manufactured in a transfer line is random (Li et al. 

2009). Performance of transfer lines can be 

evaluated by the expected value of throughput, 

which characterizes the production volume, and 

variance of throughput, characterizing the 

fluctuation or deviation in the production volume 

(Wu and McGinnis, 2012, Xia et al., 2012). In last 

years, a large amount of research has been dedicated 

to throughput analysis and performance evaluation 

techniques of this type of production systems. 

Approximate analytical methods, generally based on 

decomposition methods, is a widely used method for 

analyzing the transfer lines. Examples of studies 

using approximate analytical method, most of which 

use decomposition methods in performance 

evaluation of transfer lines, are Hany and Baki 

(2014), Borisovsky et al. (2012), Xia et al. (2012), 

Colledani et al. (2010), Gershwin and Werner 

(2007), Helber and Jusic (2004), Bonvik et al. 

(2000), Gershwin and Burman (2000), Dallery and 

Le Bihan (1999), Helber (1998), Altiok (1997), 

Papadopoulus and Heavey (1996), Buzacott and 

Shanthikumar (1993), Gershwin (1991), Liu and 

Buzacott (1990), Gershwin (1987). Heuristic 

methods can also be used to measure the 

performance of transfer lines, as used by 

Guschinskaya and Dolgui (2009), Guschinskaya et 

al. (2008), Guschinskaya and Dolgui (2008), and 

Dolgui et al. (2005). Simulation is another technique 

which can be used in modeling transfer lines, using 

required level of information. Masood (2006) used 

this approach. 

 

Another widely used technique in transfer line 

modelling and performance evaluation, exact 

analytical results, are rather hard to derive and 

therefore only available for small systems, i.e. one or 

two machine systems, e.g.  Lie et al. (2006), 

Papadopoulus and Heavey (1996), Govil and Fu 

(1996), Dallery and Gershwin (1992), Ignall and 

Silver (1977).  

 

Dincer and Deler (2000) presents a seminal paper of 

this work. In addition to this seminal work, in this 

study, we present efficient analytical derivations in 

performance evaluation of transfer lines for such 

small systems. We evaluate the performance of these 

systems via the throughput analysis. After deriving 

the distributions of throughput, we derive not only 

the expected value, but also the variance of 

throughput in order to analyze the expectation and 

fluctuation of the production volume.  
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In Section 2, we summarize the basic assumptions 

and notations used in this paper. In Sections 3 and 4, 

we respectively give the analytical (theoretical) 

derivations of the single stage system, which consist 

of a unique machine, and two-machines system 

separated by with one in-process-buffer. Then we 

summarize our conclusions in the last section. 

 

2.BASIC ASSUMPTIONS AND NOTATIONS 

We model the transfer lines as a serial arrangement 

of a finite number of n machines and n-1 in-process 

buffers. Each machine can operate on one unit of 

product at a time, and has an internal storage 

capacity for that unit only. The arrival process is 

assumed to be Poisson, having the rate λ. The 

machines 𝑀𝑗 (j=1,...,n)have mutually independent 

processing times, which are exponentially 

distributed with rate 𝜇𝑗 ,  and have the density 

function𝑓𝑗(𝑡) = 𝜇𝑗𝑒
−𝜇𝑗𝑡.  

      The first buffer of the line is assumed to have 

zero capacity. So, new parts arriving to the system 

when the machine is busy are assumed to return into 

their source. The last buffer is considered to have 

infinite capacity. No batching and setup times are 

considered. All machines are reliable. The output 

process is not necessarily stationary. The system is 

assumed to be in a transient state. Thus, steady-state 

distribution for the output may not exist. The 

production line assumes idle and empty initial 

conditions. The arrival and service rate are assumed 

to be different. In this paper, buffers are shown by 

triangles, and machines by rectangles. The notations 

used in this paper are listed in Table 1. 

 

Table 1. Notations 

𝑁𝑗(𝑡) number of parts that have left machine j up to time t, j=1,…,N 

L number of parts leaving the system at an instance in time 

N number of machines in the system 

𝑏𝑗 capacity of buffer j, j=0,…,n 

λ arrival rate 

𝜇𝑗 service rate of machine j, j=1,…,n 

𝑇𝜆
𝑖 arrival time of part i 

𝑇𝜇𝑗
𝑖 service time of part i on machine j, j=1,…,n 

𝑇𝑑
𝑖 departure time of part i 

𝑓𝜆,𝜇𝑗(𝑡) density function with parameters λ and 𝜇𝑗 

𝐹𝜆,𝜇𝑗(𝑡) cumulative distribution function with parameters λ and 𝜇𝑗 

𝐸[𝑁𝑛(𝑡)] expected number of output leaving the system at time t 

𝑉𝑎𝑟[𝑁𝑛(𝑡)] variance of output leaving the system at time t 

 

3.THE SINGLE MACHINE SYSTEM, ATOMIC MODEL 

This system, which is also labeled as atomic model, has a unique machine and two buffers. The system under 

consideration is represented in Figure 1.  

 
 

 

As illustrated in Figure 1, raw materials and parts, 

namely inputs, arrive to the system with rate λ. If the 

machine is empty, inputs enter the machine and are  

processed with rate 𝜇1 = 𝜇. The arrival and 

processing times, 𝑇𝜆
𝑖 and 𝑇𝜇𝑗

𝑖are random. The 

distribution function of the output of the atomic 

model leaving the system at time t is derived as: 

105 
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𝑁1(𝑡) =

{
 
 
 

 
 
 

0, 𝑖𝑓 0 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1

1, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 ≤ 𝑡 < ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)2
𝑖=1

2, 𝑖𝑓 ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)2
𝑖=1 ≤ 𝑡 < ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)3

𝑖=1

……… .

𝑙 − 1, 𝑖𝑓 ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙−1
𝑖=1 ≤ 𝑡 < ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙

𝑖=1

𝑙, 𝑖𝑓 ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1 ≤ 𝑡 < ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙+1

𝑖=1

…………

                                  (1) 

Based on equation (1), we can analyze the 

distribution function of the output for the atomic 

model in two parts as follows: 

Part 1:  𝑃(𝑁1(𝑡) = 0) if 0 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1. Thus, 

𝑃(𝑁1(𝑡) = 0) = 𝑃(𝑇𝜆
1 + 𝑇𝜇1

1 > 𝑡)   (2) 

In equation (2), we have a random variable of 𝑇𝜆
1 +

𝑇𝜇1
1, which is the sum of two independent 

exponentially distributed random variables of 𝑇𝜆
1, 

time passes until the first part arrives, and 𝑇𝜇1
1, time 

passes until the first part is processed in the machine. 

The sum of these two random variables have hypo-

exponential distribution with parameters λ and 𝜇1, 

where 𝜆 ≠ 𝜇1. Based on these, equation (2) is 

rewritten as: 

𝑃(𝑁1(𝑡) = 0) = 𝑃(𝑇𝜆
1 + 𝑇𝜇1

1 > 𝑡) = 1 − 𝑃(𝑇𝜆
1 + 𝑇𝜇1

1 ≤ 𝑡) = 1 − 𝐹𝑇𝜆1+𝑇𝜇1
1(𝑡) 

= 1 − (1 −
𝜇

𝜇−𝜆
𝑒−𝜆𝑡 +

𝜆

𝜇−𝜆
𝑒−𝜇𝑡) =

𝜇

𝜇−𝜆
𝑒−𝜆𝑡 −

𝜆

𝜇−𝜆
𝑒−𝜇𝑡                                                   (3) 

The limiting value of the distribution function given in equation (3) is derived as: 

lim
𝑡→0

𝑃(𝑁1(𝑡) = 0) =
𝜇

𝜇−𝜆
−

𝜆

𝜇−𝜆
= 1, lim

𝑡→∞
𝑃(𝑁1(𝑡) = 0) = 0                                             (4) 

 

Using equation (4), we conclude that 0 ≤ 𝑃(𝑁1(𝑡) = 0) ≤ 1. 

Part 2: For any number of outputs, excluding 0, the general formula is derived as: 

𝑃(𝑁1(𝑡) = 𝑙) = 𝑃(∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1 ≤ 𝑡 < ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙+1

𝑖=1 )     𝑙 = 1,2, …                      (5) 

 

In equation (5), we have two new random variables of ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1  and ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙+1

𝑖=1 . Since, l  is an 

integer, these can be defined as random variables having Erlang distribution with respective parameters (𝜆 + 𝜇1, 𝑙) 
and (𝜆 + 𝜇1, 𝑙 + 1). We define 𝑆𝑙 as sum of l sequential phases of exponential distributions with parameters (𝜆 +
𝜇1) and define 𝑆𝑙+1 as l+1 sequential phases of exponential distributions with parameters (𝜆 + 𝜇1).  

 

In this second part, regarding equation (5), we have two dependent events: 𝑆𝑙 ≤ 𝑡 and 𝑆𝑙+1 > 𝑡. These events are 

dependent, since the total time which passes until (l+1)th part leaves the system depends exactly on the amount of 

time that passes until the lth part leaves the system. Thus, we can rewrite equation (5) as: 

𝑃(𝑁1(𝑡) = 𝑙) = 𝑃(𝑆𝑙+1 > 𝑡 | 𝑆𝑙 ≤ 𝑡) ∗ 𝑃(𝑆𝑙 ≤ 𝑡) = 𝑃(𝑆𝑙+1 > 𝑡 | 𝑆𝑙 ≤ 𝑡) ∗ 𝐹𝑆𝐿(𝑡)             (6) 

 

In equation (6), the difference between the random variables 𝑆𝑙 and 𝑆𝑙+1 is the arrival and processing time of (l+1)th 

part which are respectively denoted as 𝑇𝜆
𝑙+1 and 𝑇𝜇1

𝑙+1. Let assume z, which is smaller than t, denotes the time 

until lth part leaves the system, then the conditional probability is derived as: 

𝑃(𝑁1(𝑡) = 𝑙) = ∫ ∫ 𝑓𝑇𝜆𝑙+1+𝑇𝜇1
𝑙+1(𝑢)𝑓𝑆𝑙(𝑧)𝑑𝑢𝑑𝑧 =

∞

𝑡−𝑧

𝑡

0
∫ [1 − 𝐹𝑇𝜆𝑙+1+𝑇𝜇1

𝑙+1(𝑡 − 𝑧)] 𝑓𝑆𝑙(𝑧)𝑑𝑧
𝑡

0
    (7) 

 

We now substitute the cumulative distribution and density functions of the random variables 𝑇𝜆
𝑙+1 + 𝑇𝜇1

𝑙+1 and 

𝑆𝑙 in place in equation (7), to obtain: 

𝑃(𝑁1(𝑡) = 𝑙) = ∫ [1 − (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑡−𝑧) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑡−𝑧))]

(𝜆+𝜇1)
𝑙𝑧𝑙−1𝑒−(𝜆+𝜇1)𝑧

(𝑙−1)!
𝑑𝑧

𝑡

0
        (8) 

 

Since we derive the probability distribution functions of the throughput rate, we can now obtain the expected value 

and variance of number of throughputs for an atomic model.  

 

While deriving the expected value and variance functions, we will consider equation (8), and ignore the first case 

given in equation (3) for l=0, since the expected value and variance of these cases are obvious, i.e. 0. Then, the 

expected value of number of outputs for any value of l, excluding 0, is given as: 

𝐸[𝑁1(𝑡)] = ∑𝑙 ∗

∞

𝑙=1

𝑃(𝑁1(𝑡) = 𝑙) = 

                    ∑ 𝑙 ∗ {∫ [1 − (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑡−𝑧) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑡−𝑧))]

(𝜆+𝜇1)
𝑙𝑧𝑙−1𝑒−(𝜆+𝜇1)𝑧

(𝑙−1)!
𝑑𝑧

𝑡

0
}∞

𝑙=1                 (9) 
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Similarly, the variance of number of throughputs for the atomic model is derived as: 

 

𝑉𝑎𝑟[𝑁1(𝑡)] = 𝐸[𝑁1(𝑡)
2] − (𝐸[𝑁1(𝑡)])

2 = 

{∑ 𝑙2 ∗ {∫ [1 − (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑡−𝑧) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑡−𝑧))]

(𝜆+𝜇1)
𝑙𝑧𝑙−1𝑒−(𝜆+𝜇1)𝑧

(𝑙−1)!
𝑑𝑧

𝑡

0
}∞

𝑙=1 } − {{∑ 𝑙 ∗ {∫ [1 − (1 −
𝑡

0
∞
𝑙=1

𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑡−𝑧) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑡−𝑧))]

(𝜆+𝜇1)
𝑙𝑧𝑙−1𝑒−(𝜆+𝜇1)𝑧

(𝑙−1)!
𝑑𝑧}}

2

}                    (10) 

 

3.TWO MACHINES ONE IN PROCESS BUFFER SYSTEM 

This system has two machines processing in turn, 

with one in-process buffer between. The parts 

processed in the first machine pass through this 

buffer before entering the second. If the buffer is 

empty, and the second machine is idle when the 

processed part from the first machine arrives, this 

part directly processed in the second machine 

otherwise it waits for its turn.  

The system under consideration is shown in Figure 

2. 

 
 

In this system, number of sources of variability are 

greater than in the one-machine system, due to the 

greater number of machines and buffers. This leads 

to an existence of two mutually exclusive and 

collectively exhaustive events that describe the 

behavior of the system. The first event occurs when 

the buffer is empty, the second, when the buffer 

contains items. 

Event 1: Denoting the random variables of this 

system as, 𝑇𝜆
𝑖, 𝑇𝜇1

𝑖 and 𝑇𝜇2
𝑖, we can represent the 

first event as 𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖 ≥𝑇𝜇2
𝑖−1. The number of 

output for this first event, using the symbol of  𝑁2
𝑓
, 

is derived as follows: 

 

𝑁2
𝑓(𝑡) =

{
 
 
 

 
 
 

0, 𝑖𝑓 0 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1

1, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1 ≤ 𝑡 < 𝑇𝜇2

2 + ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)2
𝑖=1

2, 𝑖𝑓 𝑇𝜇2
2 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)2

𝑖=1 ≤ 𝑡 < 𝑇𝜇2
3 +∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)3

𝑖=1

……… .

𝑙 − 1, 𝑖𝑓 𝑇𝜇2
𝑙−1 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙−1

𝑖=1 ≤ 𝑡 < 𝑇𝜇2
𝑙 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙

𝑖=1

𝑙, 𝑖𝑓 𝑇𝜇2
𝑙 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙

𝑖=1 ≤ 𝑡 < 𝑇𝜇2
𝑙+1 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙+1

𝑖=1

…………

               (11) 

 

As in the single machine, the distribution functions are analyzed in two parts. 

  

Part 1: 𝑃(𝑁2
𝑓(𝑡) = 0) if 0 ≤ 𝑡 < 𝑇𝜆

1 + 𝑇𝜇1
1 + 𝑇𝜇2

1. Thus, 𝑃(𝑁2
𝑓(𝑡) = 0) = 𝑃(𝑇𝜆

1 + 𝑇𝜇1
1 + 𝑇𝜇2

1 > 𝑡). The new 

random variable 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1, is the sum of three independent exponential random variables. The distribution 

of this new random variable based on the assumption of 𝜆 ≠ 𝜇1 ≠ 𝜇2 is obtained as given in Amari and Misra 

(1997). The coefficients of this random variable is represented as: 

 

𝐴1 =
𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
, 𝐴2 =

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
, 𝐴3 =

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
                                                            (12) 

 

     The reliability and cumulative distribution functions are then derived in Amari and Misra (1997) as: 

 

𝑅𝑇𝜆1+𝑇𝜇1
1+𝑇𝜇2

1(𝑡) = ∑ 𝐴𝑖𝑒
−𝛼𝑖𝑡 =

𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆𝑡 +

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1𝑡 +

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2𝑡3

𝑖=1         (13) 

 

𝐹𝑇𝜆1+𝑇𝜇1
1+𝑇𝜇2

1(𝑡) = 1 − 𝑅𝑇𝜆1+𝑇𝜇1
1+𝑇𝜇2

1(𝑡)                                                                         (14) 
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    Then; 

𝑃(𝑁2
𝑓(𝑡) = 0) = 𝑃(𝑇𝜆

1 + 𝑇𝜇1
1 + 𝑇𝜇2

1 > 0) = 1 − 𝐹𝑇𝜆1+𝑇𝜇1
1+𝑇𝜇2

1(𝑡) = 

𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆𝑡 +

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1𝑡 +

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2𝑡                                                          (15) 

 

As seen in (15), when t goes to 0, the distribution function of the random variable 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1 takes the 

value of 1, whereas it is 0 when t goes to infinity. 

 

Part 2: For any number of output, except 0, based on equation (11), we can represent the probability values of the 

first event as: 

 

𝑃(𝑁2
𝑓(𝑡) = 𝑙) = 𝑃(𝑇𝜇2

𝑙 + ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1 ≤ 𝑡 < 𝑇𝜇2

𝑙+1 +∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙+1
𝑖=1 )                (16) 

 

The random variables on the left side of equation (16), ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1  and 𝑇𝜇2

𝑙have Erlang distribution with 

parameters (𝜆 + 𝜇1, 𝑙) , and exponential distribution with parameter 𝜇2 , respectively. Similarly, the random 

variable in the right side of (16) contains the (l+1)th  level of the same random variables of the same distributions.  

 

We can rewrite equation (16) in terms of conditional probabilities as: 

 

𝑃(𝑁2
𝑓(𝑡) = 𝑙) = 𝑃(𝑇𝜇2

𝑙+1 + ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙+1
𝑖=1 > 𝑡 |𝑇𝜇2

𝑙 + ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1 ≤ 𝑡) ∗ 𝑃(𝑇𝜇2

𝑙 +∑ (𝑇𝜆
𝑖 +𝑙

𝑖=1

𝑇𝜇1
𝑖) ≤ 𝑡)       (17)  

 

Assuming that the time passes until l+1th part has left the system is z, which is smaller than t, we can rewrite the 

conditional probability given in equation (17) as: 

 

𝑃(𝑁2
𝑓(𝑡) = 𝑙) = 𝑃(𝑇𝜆

𝑙+1 + 𝑇𝜇1
𝑙+1 + 𝑇𝜇2

𝑙+1 − 𝑇𝜇2
𝑙 > 𝑡 − 𝑧)𝐹

𝑇𝜇2
𝑙+∑ (𝑇𝜆

𝑖+𝑇𝜇1
𝑖)𝑙

𝑖=1
(𝑧) = 

∫ (1 − 𝐹
𝑇𝜆
𝑙+1+𝑇𝜇1

𝑙+1+𝑇𝜇2
𝑙+1−𝑇𝜇2

𝑙 (𝑡 − 𝑧))
𝑡

0
∗ 𝑓

𝑇𝜇2
𝑙+∑ (𝑇𝜆

𝑖+𝑇𝜇1
𝑖)𝑙

𝑖=1
(𝑧)𝑑𝑧                                            (18) 

 

Denoting the random variables as 𝑍 = 𝑇𝜇2
𝑙 + ∑ (𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖)𝑙

𝑖=1 , 𝑋 = ∑ (𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖)𝑙
𝑖=1 , 𝑌 = 𝑇𝜇2

𝑙, where 𝑍 = 𝑋 +

𝑌, we use convolution to find the density function of the random variable Z , 𝑓𝑍(𝑧)as: 

 

𝑓𝑍(𝑧) = ∫ 𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑧 − 𝑥)𝑑𝑥 = ∫
(𝜆+𝜇1)

𝑙𝑥𝑙−1𝑒−(𝜆+𝜇1)𝑥

(𝑙−1)!

𝑧

0

𝑧

0
𝜇2𝑒

−𝜇2(𝑧−𝑥)𝑑𝑥                            (19) 

 

In order to find the distribution function of the random variable 𝑇𝜆
𝑙+1 + 𝑇𝜇1

𝑙+1 + 𝑇𝜇2
𝑙+1 − 𝑇𝜇2

𝑙 , we also use the 

convolution theorem of differences. Denoting the random variables as 𝑊 = 𝑇𝜆
𝑙+1 + 𝑇𝜇1

𝑙+1 + 𝑇𝜇2
𝑙+1 − 𝑇𝜇2

𝑙 , 𝑈 =

𝑇𝜆
𝑙+1 + 𝑇𝜇1

𝑙+1 + 𝑇𝜇2
𝑙+1, 𝑉 = 𝑇𝜇2

𝑙  where 𝑊 = 𝑈 − 𝑉, we have: 

 

𝐹𝑊(𝑡 − 𝑧) = ∫ 𝐹𝑈(𝑡 − 𝑧 + 𝑣)𝑓𝑉(𝑣)𝑑𝑣
∞

0

= 

∫ (1 −
𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2(𝑡−𝑧+𝑣))

∞

0
𝜇2𝑒

−𝜇2𝑣𝑑𝑣      (20) 

 

Substituting equations (19) and (20) in place, we can rewrite equation (18) as: 

 

𝑃(𝑁2
𝑓(𝑡) = 𝑙) = ∫ (1 − 𝐹𝑊(𝑡 − 𝑧))𝑓𝑍(𝑧)𝑑𝑧 = ∫ (1 − ∫ (1 −

𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆(𝑡−𝑧+𝑣) +

∞

0

𝑡

0

𝑡

0

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2(𝑡−𝑧+𝑣)) 𝜇2𝑒

−𝜇2𝑣𝑑𝑣) (∫
(𝜆+𝜇1)

𝑙𝑥𝑙−1𝑒−(𝜆+𝜇1)𝑥

(𝑙−1)!

𝑧

0
𝜇2𝑒

−𝜇2(𝑧−𝑥)𝑑𝑥) 𝑑𝑧                                                                   

(21) 
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Event 2: The number of output for this event, using the symbol of  𝑁2
𝑠, is derived as follows: 

 

𝑁2
𝑠(𝑡) =

{
 
 
 

 
 
 

0, 𝑖𝑓 0 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1

1, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 + 𝑇𝜇2
1 ≤ 𝑡 < 𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)2
𝑖=1

2, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)2

𝑖=1 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)3

𝑖=1

……… .

𝑙 − 1, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)𝑙−1

𝑖=1 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1

𝑙, 𝑖𝑓 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1 ≤ 𝑡 < 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)𝑙+1

𝑖=1

…………

                 (22) 

 

For any number of output except 0, we have the following: 

 

𝑃(𝑁2
𝑠(𝑡) = 𝑙) = 𝑃(𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)𝑙
𝑖=1 ≤ 𝑡 < 𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)𝑙+1
𝑖=1 )                   (23) 

 

The random variables, (𝑇𝜆
1 + 𝑇𝜇1

1) and ∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1 , in the left side of the inequality (23) have Hypo-exponential 

distribution with parameters (𝜆, 𝜇1) and Erlang distribution with parameters (𝜇2, 𝑙) respectively. The right side of 

the inequality of the distributions of the random variables are the same where ∑ (𝑇𝜇2
𝑖)𝑙+1

𝑖=1  has the parameter of 

(𝜇2, 𝑙 + 1). We rewrite this inequality in terms of conditional probabilities as: 

 

𝑃(𝑁2
𝑠(𝑡) = 𝑙) = 𝑃(𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)𝑙+1
𝑖=1 > 𝑡|𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)𝑙
𝑖=1 ≤ 𝑡) ∗ 𝑃(𝑇𝜆

1 + 𝑇𝜇1
1 + ∑ (𝑇𝜇2

𝑖)𝑙
𝑖=1 ≤

𝑡)            (24) 

 

We similarly assume that the time passes until (l+1) th part leaves the system is z, which is smaller than t. Then, 

we rewrite equation (24) as: 

 

𝑃(𝑁2
𝑠(𝑡) = 𝑙) = 𝑃(𝑇𝜇2

𝑙+1 > 𝑡 − 𝑧) ∗ 𝐹
𝑇𝜆
1+𝑇𝜇1

1+∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1
(𝑧) = ∫ (1 − 𝐹𝑇𝜇2

𝑙+1(𝑡 − 𝑧)) ∗
𝑡

0

𝑓
𝑇𝜆
1+𝑇𝜇1

1+∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1
(𝑧)𝑑𝑧        (25) 

 

In order to obtain the density function of the random variable 𝑇𝜆
1 + 𝑇𝜇1

1 + ∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1 , we similarly use 

convolution formula. Denoting 𝑇𝜆
1 + 𝑇𝜇1

1 +∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1  as Z, 𝑇𝜆
1 + 𝑇𝜇1

1as X, and ∑ (𝑇𝜇2
𝑖)𝑙

𝑖=1  as Y, 𝑓𝑍(𝑧) is derived 

as: 

 

𝑓𝑍(𝑧) = ∫ 𝑓𝑋(𝑥)𝑓𝑌(𝑧 − 𝑥)𝑑𝑥
𝑧

0
= ∫

𝜆𝜇1

𝜇1−𝜆

𝑧

0
(𝑒−𝜆𝑥 − 𝑒−𝜇1𝑥)

𝜇2
𝑙 (𝑧−𝑥)𝑙−1𝑒−𝜇2(𝑧−𝑥)

(𝑙−1)!
𝑑𝑥                  (26) 

 

Besides, the random variable 𝑇𝜇2
𝑙+1 in equation (24) has exponential distribution with cumulative distribution 

function 𝐹𝑇𝜇2
𝑙+1(𝑡) = 1 − 𝑒−𝜇2𝑡. Substituting these functions in equation (26), we have: 

𝑃(𝑁2
𝑠(𝑡) = 𝑙) = ∫ 𝑒−𝜇2(𝑡−𝑧) (∫

𝜆𝜇1

𝜇1−𝜆

𝑧

0
(𝑒−𝜆𝑥 − 𝑒−𝜇1𝑥)

𝜇2
𝑙 (𝑧−𝑥)𝑙−1𝑒−𝜇2(𝑧−𝑥)

(𝑙−1)!
𝑑𝑥)

𝑡

0
𝑑𝑧              (27) 

 

So far, we have calculated all required probabilities in order to calculate 𝑃(𝑁2(𝑡) = 𝑙) where 𝑙 = 0,1,2, … We now 

investigate the occurrence probabilities of the two events represented under Event 1 and Event 2. If the condition 

of 𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖 ≥𝑇𝜇2
𝑖−1 is satisfied then the first event occurs with the corresponding probability of: 

 

𝑃(𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖  ≥ 𝑇𝜇2
𝑖−1) = 𝑃(𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖 − 𝑇𝜇2

𝑖−1 ≥ 0) = 1 − ∫ (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

∞

0

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦)) 𝜇2𝑒

−𝜇2𝑦𝑑𝑦       (28) 

 

Clearly, the probability of occurrence of the second event, 𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖<𝑇𝜇2
𝑖−1 is simply the complementary 

probability of the first event. Thus: 

 

𝑃(𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖 < 𝑇𝜇2
𝑖−1) = 𝑃(𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖 − 𝑇𝜇2

𝑖−1 < 0) = ∫ (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦))

∞

0
𝜇2𝑒

−𝜇2𝑦𝑑𝑦 

(29) 
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We finally derive the expected value and variance of number of output in two-machines-one in-process buffer 

system as: 

 

𝐸[𝑁2(𝑡)] = ∑ 𝑙 ∗∞
𝑙=1 𝑃(𝑁2(𝑡) = 𝑙) = ∑ 𝑙 ∗ [𝑃(𝑁2

𝑓(𝑡) = 𝑙)𝑃(𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖  ≥ 𝑇𝜇2
𝑖−1) + 𝑃(𝑁2

𝑠(𝑡) = 𝑙) (1 −∞
𝑙=1

𝑃(𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖  ≥ 𝑇𝜇2
𝑖−1))] = ∑ 𝑙 ∗ {[∫ (1 − ∫ (1 −

𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1(𝑡−𝑧+𝑣) +

∞

0

𝑡

0
∞
𝑙=1

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2(𝑡−𝑧+𝑣)) 𝜇2𝑒

−𝜇2𝑣𝑑𝑣) (∫
(𝜆+𝜇1)

𝑙𝑥𝑙−1𝑒−(𝜆+𝜇1)𝑥

(𝑙−1)!

𝑧

0
𝜇2𝑒

−𝜇2(𝑧−𝑥)𝑑𝑥)𝑑𝑧] ∗ [1 − ∫ (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

∞

0

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦)) 𝜇2𝑒

−𝜇2𝑦𝑑𝑦] + [∫ 𝑒−𝜇2(𝑡−𝑧) (∫
𝜆𝜇1

𝜇1−𝜆

𝑧

0
(𝑒−𝜆𝑥 − 𝑒−𝜇1𝑥)

𝜇2
𝑙 (𝑧−𝑥)𝑙−1𝑒−𝜇2(𝑧−𝑥)

(𝑙−1)!
𝑑𝑥)

𝑡

0
𝑑𝑧] ∗ [∫ (1 −

∞

0

𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦)) 𝜇2𝑒

−𝜇2𝑦𝑑𝑦]}                                                                                (30) 

 

𝑉𝑎𝑟[𝑁2(𝑡)] = 𝐸[𝑁2(𝑡)
2] − 𝐸[𝑁2(𝑡)]

2 = ∑ 𝑙 ∗ [𝑃(𝑁2
𝑓(𝑡) = 𝑙)𝑃(𝑇𝜆

𝑖 + 𝑇𝜇1
𝑖  ≥ 𝑇𝜇2

𝑖−1) + 𝑃(𝑁2
𝑠(𝑡) = 𝑙) (1 −∞

𝑙=1

𝑃(𝑇𝜆
𝑖 + 𝑇𝜇1

𝑖  ≥ 𝑇𝜇2
𝑖−1))] = ∑ 𝑙2 ∗ {[∫ (1 − ∫ (1 −

𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1(𝑡−𝑧+𝑣) +

∞

0

𝑡

0
∞
𝑙=1

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2(𝑡−𝑧+𝑣)) 𝜇2𝑒

−𝜇2𝑣𝑑𝑣) (∫
(𝜆+𝜇1)

𝑙𝑥𝑙−1𝑒−(𝜆+𝜇1)𝑥

(𝑙−1)!

𝑧

0
𝜇2𝑒

−𝜇2(𝑧−𝑥)𝑑𝑥)𝑑𝑧] ∗ [1 − ∫ (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

∞

0

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦)) 𝜇2𝑒

−𝜇2𝑦𝑑𝑦] + [∫ 𝑒−𝜇2(𝑡−𝑧) (∫
𝜆𝜇1

𝜇1−𝜆

𝑧

0
(𝑒−𝜆𝑥 − 𝑒−𝜇1𝑥)

𝜇2
𝑙 (𝑧−𝑥)𝑙−1𝑒−𝜇2(𝑧−𝑥)

(𝑙−1)!
𝑑𝑥)

𝑡

0
𝑑𝑧] ∗ [∫ (1 −

∞

0

𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦)) 𝜇2𝑒

−𝜇2𝑦𝑑𝑦]} − {∑ 𝑙 ∗ {[∫ (1 − ∫ (1 −
𝜇1

𝜇1−𝜆

𝜇2

𝜇2−𝜆
𝑒−𝜆(𝑡−𝑧+𝑣) +

∞

0

𝑡

0
∞
𝑙=1

𝜆

𝜆−𝜇1

𝜇2

𝜇2−𝜇1
𝑒−𝜇1(𝑡−𝑧+𝑣) +

𝜆

𝜆−𝜇2

𝜇1

𝜇1−𝜇2
𝑒−𝜇2(𝑡−𝑧+𝑣)) 𝜇2𝑒

−𝜇2𝑣𝑑𝑣) (∫
(𝜆+𝜇1)

𝑙𝑥𝑙−1𝑒−(𝜆+𝜇1)𝑥

(𝑙−1)!

𝑧

0
𝜇2𝑒

−𝜇2(𝑧−𝑥)𝑑𝑥) 𝑑𝑧] ∗ [1 −

∫ (1 −
𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦))

∞

0
𝜇2𝑒

−𝜇2𝑦𝑑𝑦] + [∫ 𝑒−𝜇2(𝑡−𝑧) (∫
𝜆𝜇1

𝜇1−𝜆

𝑧

0
(𝑒−𝜆𝑥 −

𝑡

0

𝑒−𝜇1𝑥)
𝜇2
𝑙 (𝑧−𝑥)𝑙−1𝑒−𝜇2(𝑧−𝑥)

(𝑙−1)!
𝑑𝑥) 𝑑𝑧] ∗ [∫ (1 −

𝜇1

𝜇1−𝜆
𝑒−𝜆(𝑥+𝑦) +

𝜆

𝜇1−𝜆
𝑒−𝜇1(𝑥+𝑦))

∞

0
𝜇2𝑒

−𝜇2𝑦𝑑𝑦]}}
2

                                                                               

(31) 

 

4.CONCLUSIONS 

In this paper, the throughput analysis of short 

transfer lines was examined using an exact analytical 

approach. We derived the distribution, expected 

value, and variance functions of throughput for the 

single machine (an atomic model) system, and the 

two machines system with one in-process buffer. 

These results allow the evaluation of the 

performance of short transfer lines, in other words, 

manufacturing systems. It is difficult to evaluate the 

exact analytical methods, thus, for longer transfer 

lines, it is not possible to obtain the closed form 

expressions for these performance evaluation 

functions, such as expected value and variance. 

Nevertheless, using decomposition methods, it is 

possible to decompose long systems into smaller 

subsystems; taking this approach, the results derived 

in this paper can be used to analyze the throughput 

of these longer systems. 
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