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Abstract 

 

In the present study, an Ising-type multisegment nanowire (IMN) with ferromagnetic / non-magnetic segment structure is 

investigated by means of the effective-field theory (EFT) with correlations. The effects of the composition (p) and temperature 

(T) on the magnetic hysteresis properties are investigated in detail. The coercive field (HC) and squareness (Mr /MS) of the IMN 

is also derived from hysteresis loops as a function of p and T. In this system, it was found that the p and T have a significant 

effect on the magnetic behavior. When the obtained theoretical results compare with some experimental works of nanowire in 

view of hysteresis behaviors, a very good agreement between them is observed. 
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1. INTRODUCTION 

 

In recent years, multicomponent nanostructures have 

attracted a great interest for their unique physical properties 

[1-4] and potential applications [5, 6]. Generally, there are 

two types morphologies in multicomponent nanostructures: 

radial structures, such as core/shell type, and axial structures, 

namely segmented type. Multicomponent nanostructures 

with core/shell structure such as core/shell nanowire and 

core/shell nanotube have been studied to explain many 

physical characteristics in nanoparticle magnetism [7-12].  

 

Some studies on hard/soft core/shell nanoparticles are 

revealing interesting magnetic properties, such as reversible 

tuning of the blocking temperature [13], improved 

microwave absorption [14], optimized hyperthermia [15], 

and enhanced coercivity [16].  

 

Moreover, segmented nanostructures have mainly focused 

on two segments of nanowires, nanotubes and 

nanowire/nanotube segment. Magnetic segmented 

nanowires have been increasing, because of their 

multifunctional and structural advantages compared to their 

counterparts, single-component nanowires. Magnetic 

segmented nanowires consisting of alternating structures of 

ferromagnetic-ferromagnetic or ferromagnetic-nonmagnetic 

materials, such as Ni/Cu [17, 18], Ni/Au [19], Co/Cu [20-

24], Fe/Cu [25], NiFe/Cu [26], CoNi/Cu [27, 28], 

FeCoNi/Cu [29], FeGa/Cu [30], Co/Pt [31], Ni/Pt [32], Fe/Pt 

[33], NiFe/Pt [34], Co/ Au [35] and NiCoCu/Cu [36, 37] 

have been reported in literature. On the other hand, magnetic 

segmented nanowires show novel and interesting properties 

depending on their morphologies. Therefore, their have been 

also studied to investigate the dependence of geometrical (by 

the segment thicknesses, wire diameter, and aspect ratio), 

angular (by the applied field angle) and compositional on the 

magnetic properties. In this context, composition dependent 

hysteresis properties on nanostructures such as Co/Ni [38, 

39], Co/Cu [40, 41], CoFeCu [42], and NiCoCu [43] have 

been investigated. It should also be noted that the Ising 

model is a well-known and has a venerable tradition in the 

applications to order–disorder systems, such as 

ferromagnetic or ferroelectric systems, binary alloys, lattice 

gases and complex fluid.  

 

The model has been also used to understand the magnetic 

properties of nanostructured systems, due to has an important 

role in the deeper understanding of behaviors in magnetic 

systems. In this concept, the magnetic nanowires have been 

investigated within the various theoretical methods, such as 

effective-field theory (EFT) with correlations [44-46], mean-

field theory (MFT) [47-49], and Monte Carlo 

(MC) simulations [50]. The dynamic magnetic properties of 

Ising nanowire systems are also investigated by using the 

above theoretical methods [51-53].  

 

Although a great amount of the Ising systems have been used 

to investigate the magnetic properties of nanostructured 

systems, there has been only a few works where the Ising 

system is used to investigate magnetic properties of 

segmented nanostructure [46, 54, 55]. In these works, the 

hysteresis properties of the mixed spin (1/2-1) [46, 54] and 

pure spin 1/2 [55] Ising systems were investigated on the 

segmented nanostructure by using the EFT with correlations. 

In pure spin 1/2 system, geometry-dependent magnetic 

properties of Ising-Type segmented nanowire were studied. 
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Therefore, in the present study, the effects of composition 

and temperature on the magnetic hysteresis behaviors of a 

pure spin 1/2 segmented nanostructure with ferromagnetic / 

non-magnetic segments are discussed by means of the EFT 

with correlations. 

 

2. MODEL AND FORMULATION 

 

The Hamiltonian of the IMN with ferromagnetic (FM) / non-

magnetic (NM) segment is given by 

FM NM FM NM
H H H H


   . In here, 

FM NM
H


 (inter-

segment interactions), 
FM

H  (FM segment interactions) 

and 
NM

H  (NM segment interactions) following as, 

FM NM Int k k k i i i

kk ii

H J S S   
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where <...> denote the summations over all pairs of 

neighboring spins at the shell surface, between FM and NM 

segments and between shell surface and core, respectively. h 

is external magnetic field. The surface shell is coupled to the 

next shell in the core with an exchange interaction JW. JS is 

the exchange interaction between two nearest-neighbor 

atoms at the surface shell. The parameter  i , j ,k
      

is a site occupancy number that is 1 or zero, depending on 

whether the site is occupied or not. Since only the NM 

segment is diluted in the present system,   takes unity with 

a probability p when the site   is occupied by a magnetic 

atom and takes 0 with a probability (1−p) when the site   

on the NM segment is occupied by a NM atom.  

 

Within the framework of the EFT [56], which includes spin–

spin correlations resulting from the usage of the van der 

Waerden identities [57],  we can obtain the longitudinal 

magnetization mS1 and mS2 at the surface shell and the 

longitudinal magnetization mC1 and mC2 at the core. The 

coupled equations are given by: 

 

 

2

S1 S1

C1

S2

S1 x 0

m cosh(A) 2m sinh(A)

cosh(B) 2m sinh(B)

p cosh(C) 2m sinh(C) 1 p
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      (2d) 

Here, the coefficients A, B, C and D are SJ  , DJ  , IntJ   

and WJ  , respectively. Moreover, / x    is the 

differential operator [56]. The (x h)F   function is defined 

as follow: 

 1 1

2 2
F(x h) tanh[ (x h)] .      (3) 

Here, , T is the absolute temperature and kB is 

the Boltzmann constant. By using the definitions of the order 

parameters in Eqs. (2a)-(2d), the total
 
magnetizations mT of 

per site can be defined as 

  S1 S2C1 C2
T

m pm

7 7p

p 6m m
m

 




 .  

The next section is devoted to these calculations in order to 

obtain the hysteresis behaviors of the IMN. 

 

3. NUMERICAL RESULTS AND DISCUSSIONS 

 

In numerical calculations, within Ising model framework, 

EFT with correlation are used to examine the magnetic 

hysteresis behaviors of IMN with ferromagnetic / non-

magnetic segment structure. We investigate the effects of the 

composition and temperature on the hysteresis behaviors of 

the system.  

 

3.1. The influence of the temperature on the hysteresis 

behaviors  

 

In order to investigate temperature dependence of the 

magnetic hysteresis in the IMN system, a series of hysteresis 

loops for two regimes ,T < TC (T=0.1, 0.3, 0.5, 0.7 and 0.9) 

and T ≥ TC (T=1.1, 1.3 and 1.5), are plotted by using fixed 

parameters JW=JInt=JD=JS=1 and p= 0.1,. 2(a). When the 

B1 k T 
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temperature increases, the area enclosing the single 

hysteresis loop decreases. if the temperature increases 

stronger, the single hysteresis loop disappears in the case of 

T ≥ TC, which confirms the disappearance of ferromagnetic 

properties at vanishing temperature. In this case, the Curie 

temperature is TC=1.1. These results are consistent with 

nanostructure systems within the theoretical [58-61] and 

experimental [62-64] framework. Magnetic properties of the 

IMN such as HC, and Mr /MS ratio have been also studied at 

various temperatures between 0.1 and 1.5. From Figs. 2(b) 

and 2(c),  the results show that the HC, as well as the Mr /MS, 

decreases with the increasing temperature.  

 
 

Figure 1. (Color online) Schematic representation of Ising-

type multisegment nanowire. The spheres and circles 

indicate ferromagnetic and non-magnetic atoms, 

respectively. Moreover, the blue and red colors that shows 

the location of the surface shell and core magnetic atoms. 

 
 

Figure 2. (Color online) Magnetic hysteresis loops of Ising-

type multisegment nanowire and the temperature 

dependence of the coercive field (HC) and squareness (Mr 

/MS) for the fixed values of JW=JInt=JD=JS=1 and p= 0.1. (a) 

The hysteresis loops for T values ranging from 0.1 to 1.5 (b) 

The temperature dependence of the coercive field (HC). (c) 

The temperature dependence of the squareness (Mr /MS). 

 

3.2. The influence of the composition on the hysteresis 

behaviors  

 

Figure 3 shows the compositional dependence of hysteresis 

behavior within selected six typical p values, namely , 

0.3, 0.5, 0.7, 0.9 and 1.0, in the cases of JW=JInt=JD=JS=1 

and = 0.1. The system only shows a single hysteresis loop 

behavior. As seen in Figs. 3(a)-(c), with the increase of p, the 

single hysteresis loop becomes smaller. From Figs. 3(d)-(f), 

when the  values of p is higher than 0.5 values, the single 

hysteresis loop becomes larger. From Fig. 3(g), the HC shows 

there is a small reduction from 0.83 to 0.59 with increasing 

p values, in addition to this, with higher p values it reaches 

up to values of around 1.4. Moreover, Mr /Ms, increases with 

the increasing p values (Fig. 3(h)). Experimentally, in Co/Ni 

multisegment nanowire [38, 39] has been also seen as similar 

HC behavior. 

 

Figure 3. (Color online) The composition dependence of the 

hysteresis loops, the coercive field (HC) and squareness (Mr 

/MS) for the fixed value of JW=JInt=JD=JS=1 and = 0.1. (a) 

In p MT-h curve. (b) In p MT-h curve. (c) In p 

MT-h curve. (d) In p MT-h curve. (e) In p 

MT-h curve. (f) In p MT-h curve. (g) The 

composition dependence of the coercive field (HC). (h) The 

composition dependence of the squareness (Mr /MS). 
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3.3. Soft/hard magnetic behaviors 

 

In this study, it was also investigated the soft and hard 

magnetic behaviors of the multisegment Ising nanowire in 

(p, T) plane, and it was plotted in Fig. 4 for the fixed values 

of JW=JInt=JD=JS=1. It can be seen from Fig. 6 that hard 

magnetic behaviors may occur in both low and high p with a 

low T. For high T values, the hard magnetic behaviors start 

turns to the soft. After certain values of T, system shows 

paramagnetic behavior.  

 

 
Figure 4. (Color online) The phase diagram in (p, T) plane 

of the Ising-type multisegment nanowire for the fixed values 

of JW=JInt=JD=JS=1. 

 

4. SUMMARY AND CONCLUSİONS 
 

In this paper, the hysteresis behaviors of a Ising-type 

multisegment nanowire with ferromagnetic/non-magnetic 

segment structure is studied by using the framework 

effective-field theory with correlations. The effect of the 

temperature and composition on the hysteresis behavior via 

concerning the MT-h curves, HC and Mr /MS features are 

investigated.  

 

It was found that when the temperature increases, the area 

enclosing the single hysteresis loop decreases, and then keep 

increasing temperature,  the hysteresis loops disappear at the 

critical temperature.  

 

Moreover, the hard magnetic behavior is observed in low p 

values. Obtaining theoretical results have qualitatively 

compatible with some experimental works of segmented 

nanowire.  
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