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Abstract— Detection and diagnosis of breast cancer from 

diffusion signals by diffusion-weighted imaging involves in 

estimation of quantitative metrics by signal attenuation models 

fitted to the signals. The process suffers from the implementation 

difficulty of the fitting algorithms and their sensitivity to noise. 

This study aims development of neural networks to facilitate the 

classification of the breast tissues from the signals. 37500 diffusion 

MR signals are synthetically generated for noise-free and noisy 

conditions by signal-to-noise ratio (SNR) for malignant, benign, 

and healthy breast tissues. Forty neural networks employing 

traditional long short-term memory (LSTM) or bidirectional long 

short-term memory (BiLSTM) blocks up to twenty are trained and 

tested for the signals using bootstrapping incorporated accuracy 

analysis. Specificity, sensitivity, and accuracy metrics are 

computed for the higher performance networks. For noise-free 

and noisy signals with SNR ≥ 80, networks may achieve excellent 

sensitivities, specificities, and accuracies (100% at all), but LSTM 

networks require fewer number of memory blocks. For noisy 

signals having SNRs ≤ 40, the networks may deliver high to very 

high sensitivities (74.8-98.3%), specificities (87.4-99.2%), and 

accuracies (83.2-98.9%) better for malignant and healthy tissues 

than benign tissue but BiLSTM ones perform slightly better. 

LTSM networks eliminate the need for any signal decay model 

while outputting remarkably good performances in the 

classification of diffusion signals. BiLSTM networks perform 

slightly better for very noisy conditions. Prospective studies are 

needed to justify the potential benefits in a clinical setup.     

Index Terms—Breast, classification, diffusion signal, long short-

term memory network.  

I. INTRODUCTION

IFFUSION WEIGHTED IMAGING (DWI) makes use of

magnetic resonance (MR) principles to deliver diffusion

signals from a living tissue captured for a set of increasing 

diffusion weighting that indirectly reflects the degree of tissue 

cellularity and the integrity of cell membranes and also the 

microcirculation of blood in the capillary network by 

demonstrating the microscopic Brownian motion of water 

molecules within the tissue [1]. Due to their high cell density 

and limited extracellular space, malignant lesions exhibit 

slowly attenuated diffusion signals for increased diffusion 

weighting. On the contrary, diffusion signals with fast 

attenuation due to less restricted diffusion of water molecules 

are of concern for benign tissues. Besides, healthy tissues may 

exhibit diffusion signals with similar degrees of attenuation by 

benign lesions [2]. For human breast tissue, the diffusion-

weighted imaging protocol that utilizes diffusion weightings 

from 0 to 800 s/mm2 and the evaluation strategy that practices 

the apparent diffusion coefficient metric by a mono-exponential 

signal attenuation model have been promoted as an essential 

part of multiparametric breast magnetic resonance imaging by 

the European Society of Breast Radiology (EUSOBI) [3, 4]. 

The mono-exponential model enables quantitative 

characterization of the breast tissues from the diffusion signals 

to distinguish lesions in the detection and diagnosis of cancer. 

Moreover, it is quite easy to fit the model to diffusion signals to 

estimate the apparent diffusion coefficient metric. However, the 

model has a limited capability in expressing the attenuation in 

the diffusion signal especially for the malignant tissue and 

therefore advanced models have been under development [5]. 

The intravoxel incoherent motion (IVIM) model enumerates the 

attenuation in the diffusion signal using a weighted summation 

of two exponential functions and is reported to accomplish 

better sensitivity when compared to the mono-exponential 

model in distinguishing malignant from benign breast lesions 

[6, 7]. The IVIM model makes use of three metrics: pure 

diffusion coefficient, pseudo-diffusion coefficient, and volume 

fraction for which estimates are obtained by fitting the model to 

the diffusion signal by using an advanced fitting algorithm. 

Implementation difficulties of the available algorithms and their 

sensitivity to noise may lead to metric estimates out of 

physiologically acceptable ranges making adoption of the 

model challenging for clinical practice [8-10]. Besides, the 

diffusion signals may be processed directly without using a 

fitting algorithm or a signal attenuation model by artificial 

neural networks. 

A diffusion MR signal demonstrates an attenuated amplitude 

with reference to a monotonically increasing diffusion 

weighting determined by b-value and can be deliberated as “b-

series” data very similar to time-series data for which the neural 

networks housing long short-term memory (LSTM) blocks 

offer better competence in recognizing long-term dependencies 

and influencing the dependencies into computations as long as 

they need to be taken into account for classification tasks [11]. 
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This study aims the development of LSTM neural network 

models to facilitate the classification of human breast tissue 

from diffusion MR signals for the detection and diagnosis of 

breast cancer. 

II. MATERIALS AND METHODS 

A. Generation of Diffusion Signals for the Breast   

The study dataset consists of breast diffusion MR signals 

generated synthetically by performing the steps illustrated in 

Fig. 1. The tissue-specific descriptive statistics for the three 

model parameters of the IVIM model namely the pure diffusion 

coefficient (𝐷), the pseudo-diffusion coefficient (𝐷∗), and the 

microvascular volume fraction (𝑓) are entered into excessive 

analyses incorporating Monte Carlo simulation runs to generate 

numerous random 𝐷,  𝐷∗, and 𝑓 triples for the tissue satisfying 

the statistics fed. The triples generated are next used to obtain 

noise-free signals for the tissue by numerically solving the 

equation 𝑠𝑏/𝑠𝑜 = (1 − 𝑓) 𝑒𝑥𝑝(−𝑏𝐷) + 𝑓 𝑒𝑥𝑝[−𝑏(𝐷∗ + 𝐷)] 
for a set of 𝑏-values [12]. Finally, noise is added to the noise-

free signals at the level defined by the signal-to-noise ratio 

(SNR) to obtain the noisy forms of the signals. In the current 

work, the descriptive statistics for three breast tissue types are 

delivered from a recent study stating that on median (lower, 

upper quartiles), 𝐷= 0.85 (0.77, 0.98)×10−3 mm2/s, 𝐷∗= 94.71 

(70.33, 113.23)×10−3 mm2/s, and 𝑓= 10.34 (7.68, 11.88) % for 

the malignant lesion, and 𝐷= 1.35 (1.26, 1.44)×10−3 mm2/s,          

𝐷∗= 107.49 (83.20, 131.19) ×10−3 mm2/s, and 𝑓= 6.83 (4.72, 

10.33) % for the benign lesion whereas 𝐷= 1.96 (1.81, 2.15) 

×10−3 mm2/s, 𝐷∗= 124.28 (113.30, 147.86)×10−3 mm2/s, and           

𝑓= 5.27 (3.60, 5.87) % for the healthy tissue [13]. For each 

tissue type, Monte Carlo simulation runs are performed with 

2500 repetitions and numerical solutions  are computed for ten 

𝑏-values of 0, 30, 70, 100, 150, 200, 300, 400, 500, 800 s/mm2. 

Random Gaussian noise is deliberated at knowledgeable SNRs 

of 80, 40, 20, and 10 where SNR is defined as the ratio of the 

noise-free signal amplitude at 𝑏= 0 s/mm2 to the standard 

deviation of the noise [9]. 

B. Design of LSTM Networks for Breast Tissue Classification 

Long short-term memory (LSTM) networks are a special type 

of recurrent neural network that offers better competence in 

recognizing long-term dependencies and influencing the 

dependencies into computations to analyzing time-series data 

for regression and classification tasks. The networks can be 

implemented using “traditional” LSTM memory blocks that are 

self-connected subnetworks containing multiple internal cells 

each having dedicated inputs, outputs, and memory sharable 

with the other cells in the block [14]. An LSTM memory block 

can be modified to learn bidirectional long-term dependencies 

between time steps of time series data and this new block is 

called bidirectional LSTM (biLSTM) [15].  

In the current study, two network models, one housing a 

traditional LSTM layer and the other consisting of a biLSTM 

layer are established to classify breast tissues from b-series data 

from the diffusion MR signals generated. The models have the 

same layer structure as presented in Fig. 2. The first layer is the 

sequence input layer that accepts the “b-series data” of the 

diffusion signal  of  breast  tissue  to  the  network. The   second 

 
Fig.1: The framework of synthetic diffusion MR signal generation. 

 
layer is the LSTM layer for the first model and the biLSTM 

layer for the second model that learns long-term dependencies 

between b-values and diffusion MR signal attenuation. The 

third layer is the fully connected layer that multiplies the output 

of the LSTM/biLSTM layer by a weight matrix and then adds a 

bias vector to provide three outputs dedicated to the malignant, 

benign and healthy breast tissue types. The next layer is the 

Softmax layer that applies the Softmax function to the outputs 

of the fully connected layer. The outputs of this layer are 

evaluated and classification is made concerning the output that 

provides the largest value. However, during network training, a 

classification layer is appended to the network to compute loss 

for the multi-class classification on the outputs of the Softmax 

layer. During the implementation of the models, neural 

networks with varying numbers of memory blocks up to twenty 

are considered for each model.  

C. Training and Testing of Neural Networks 

The neural networks implemented are trained using the same 

training parameters: 300 epochs, a batch size of 125, an initial 

learning rate of 5×10−4, a gradient threshold of 1, and an 

adaptive moment estimation optimizer with the cross-entropy 

loss [16]. Bootstrapping incorporated accuracy analyses are 

performed to train and then to test the networks [17]. For this 

purpose, the diffusion MR signals generated are assigned as the 

original dataset, and twenty bootstrapped datasets, each 

consisting of random resamples from the original dataset with 

the same number of signals for each tissue type in the original 

dataset, are formed.  

A network is first trained using the original dataset and on the 

outputs of the network, an “apparent” accuracy, 𝐴𝑐𝑐𝑎𝑝𝑝 is 

computed. The network is next trained with the bootstrapped 

datasets and the outputs of the network for the datasets are 

processed to compute “bootstrap-sample” accuracies, 𝐴𝑐𝑐𝑏𝑠. 

Besides, after completion of a training,  the network is tested 

using the original dataset and the outputs are explored to 

compute “original-sample” accuracies, 𝐴𝑐𝑐𝑜𝑠. The differences 

between 𝐴𝑐𝑐𝑏𝑠 and 𝐴𝑐𝑐𝑜𝑠 pairs are computed and then averaged 

to calculate an overall optimism value. By subtracting the 

overall optimism from 𝐴𝑐𝑐𝑎𝑝𝑝, the “corrected” accuracy, 

𝐴𝑐𝑐𝑐  is determined for each network. The network having an 

𝐴𝑐𝑐𝑜𝑠 closest to 𝐴𝑐𝑐𝑐  is deemed the best network. 

 

 
Fig.2: The LSTM/biLSTM network model to classify breast tissues                 

from the diffusion MR signals of the tissues.  
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                                         (a)                  (b)      

                       
   (c)                     (d)                   (e) 

Fig.3: Diffusion MR signals generated using IVIM parameters for the malignant (𝐷 = 0.84×10−3 mm2/s, 𝐷∗ = 84.42×10−3 mm2/s,  and 𝑓 = 8.99%),                                               

benign (𝐷 = 1.45×10−3 mm2/s, 𝐷∗ = 133.08×10−3 mm2/s,  and 𝑓 = 10.55%), and healthy tissue (𝐷 = 1.77×10−3 mm2/s, 𝐷∗ = 110.17×10−3 mm2/s and 𝑓 = 3.41%) 
considering b-values of 0, 30, 70, 100, 150, 200, 300, 400, 500, 800 s/mm2. (a) Noise-free signals, and (b-e) noisy versions of the signals produced for the noise 

levels expressed by the SNRs of 80, 40, 20, and 10. 
 

D. Assessment of the Neural Network Performance 

The performance of the best neural network is assessed using 

the sensitivity (𝑆𝑒), specificity (𝑆𝑝), and accuracy (𝐴𝑐𝑐) 

metrics estimated from the outputs of the network for the 

original dataset using  

𝑆𝑒𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
            (1a) 

𝑆𝑝𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
           (1b) 

𝐴𝑐𝑐𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖+𝑇𝑁𝑖 + 𝐹𝑃𝑖 
          (1c) 

Here: 𝑇𝑃 – is true-positive, 

  𝐹𝑃 – is false-positive, 

  𝑇𝑁 – is true-negative, 

  𝐹𝑁 – is false-negative classifications by the neural 

network for the i-th tissue class.  

 

Overall values for the metrics are calculated by summing the 

performance for a class and dividing the result by three. The 

metrics are considered very high, high, moderate, low, and very 

low if their values were 95%-100%, 85%-94.9%, 75%-84.9%, 

65%-74.9%, and 0%-64.9%, respectively. The neural networks 

are numerically implemented and analyzed using our in-house 

computer software tools developed using MATLAB (v8.2; 

Natick, MA) on a desktop PC (Intel i7-1065G7 3.90GHz 

processor, 16GB memory, and 64-bit operating system). 

III. RESULTS 

A total of 37500 diffusion MR signals (7500 noise-free and 

30000 noisy) are synthetically generated for malignant, benign, 

and healthy tissues of the human breast. Fig.3 illustrates sample 

signals for each breast tissue type for noise-free and noisy 

conditions expressed using the SNR. Signal attenuation is 

characterized very well using the IVIM model for the noise-free 

signals but the model has difficulty describing the attenuation 

for the noisy signals. Meanwhile, available fitting algorithms 

probably output  misleading estimates for the 𝐷, 𝐷∗ and 𝑓 

metrics especially for lower SNRs resulting in incorrect 

classifications.  

A total of forty neural networks are developed to perform 

tissue classification from diffusion MR signals. Twenty 

networks are relying on an LSTM model, while the remaining 

networks are based on a BiLSTM model. The networks are 

implemented with the same layer structure but with different 

numbers of memory blocks up to twenty in the LSTM/biLSTM 

layer. By bootstrapping incorporated accuracy analysis, twenty-

one training and testing tasks are performed for each network 

and a total of 840 training and testing tasks are handled at all. 

Plots for the “corrected” accuracies for the networks for the 

noise-free and the noisy conditions are seen in Fig. 4. The 

LSTM and BiLSTM network models reveal very similar 

moderate to very high accuracies that improve when SNR 

increases. The accuracy also improves when a larger number of 

memory blocks is utilized in the models for a specific SNR. The 

accuracy reaches its maximum value of 100% for the noise-free 

signals and the noisy signals with an SNR of 80 for both 

models. Lower accuracies are of concern for the models for the 

noisy signals with SNR ≤ 40. When SNR is reduced to 40, the 

LSTM and BiLSTM models provide high to very high 

accuracies (range: 88.1-98.2% and 88.6-98.9%, mean: 97.1% 

and 97.2%). For SNR of 20, high accuracies are delivered by 

the models (range: 86.1-92.4% and 86.2-92.6%, mean: 91.7% 

and 91.5%). When SNR is further reduced to 10, the models 

offer moderate to high accuracies (range: 79.3-83.4% and 80.5-

83.2%, mean: 82.9% and 82.8%). Higher accuracies are 

achieved for the models when they are implemented using three 

or more memory blocks in their LSTM/biLSTM layer. Change 

in the number of memory blocks results in fewer accuracy 

variations for the LTSM model while that may cause large 

fluctuations in the accuracy for the biLSTM model. 
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(a) 

 

(b) 

Fig.4: “Corrected” accuracy for the number of memory blocks for the (a) 

LSTM and (b) biLSTM network models. 
  

The attributes and the classification performances of the best 

networks by the network model and the noise level are listed in 

Table I. Corresponding bar graphs for the accuracy and the 

number of memory blocks of the networks are seen Fig. 5. Use 

of the LSTM model leads to networks with three memory 

blocks, while the biLSTM model induces networks with nine 

and fourteen memory blocks to classify the noise-free and the 

noisy signals with SNR of 80 of the malignant, benign and 

healthy breast tissues. The overall performances of the 

networks are excellent at all (𝑆𝑒= 100.0%, 𝑆𝑝= 100.0%, and 

𝐴𝑐𝑐= 100.0%). For SNR of 40, the models both convey 

networks with fifteen memory blocks that perform very good, 

however, a reasonably better overall performance is offered by 

the BiLSTM model based network (𝑆𝑒= 98.3%, 𝑆𝑝= 99.2%, 

and 𝐴𝑐𝑐= 98.9%) compared to the LSTM model based network 

(𝑆𝑒= 97.2%, 𝑆𝑝= 98.6%, and 𝐴𝑐𝑐= 98.2%). For SNR of 20, the 

biLSTM model induces a  network with ten memory blocks 

(𝑆𝑒= 88.9%,   𝑆𝑝= 94.5%,   and   𝐴𝑐𝑐= 92.7%)   that  performs  

 
(a) 

 
(b) 

Fig.5: Best networks by the LSTM and BiLSTM network models. (a) Number 
of memory blocks and (b) overall classification accuracy. 

 

slightly better than the network with eight memory blocks by 

the LSTM model (𝑆𝑒= 88.6.2%, 𝑆𝑝= 94.3%, and 𝐴𝑐𝑐= 92.4%). 

For SNR of 10, the biLSTM model introduces a network with 

four memory blocks that performs good (𝑆𝑒= 74.8%, 𝑆𝑝= 

87.4%, and 𝐴𝑐𝑐= 83.2%), however, a slightly better perfor-

mance is achieved by the LSTM model by a network with five 

memory blocks (𝑆𝑒= 75.1%, 𝑆𝑝= 87.6%, and 𝐴𝑐𝑐= 83.4%). 

Regardless of the model that it relies on, a network may 

achieve excellent sensitivities, specificities, and accuracies in 

the classification of the malignant, benign and healthy breast 

tissues for SNRs ≥ 80 and noise-free cases. On the other hand, 

for SNRs ≤ 40, an LSTM network delivers very high to high 

sensitivities, specificities, and accuracies better for malignant 

and healthy tissues than benign tissue; however, a biLSTM 

network performs slightly better than the LSTM one. 
 
 

 

 

TABLE I 

THE ATTRIBUTES AND PERFORMANCES OF THE BEST NEURAL NETWORKS 

 Noise-Free                     Noisy : SNR80 Noisy : SNR40 Noisy : SNR20 Noisy : SNR10 
 LSTM  biLSTM LSTM  biLSTM LSTM  biLSTM LSTM  biLSTM LSTM  biLSTM 

Number of Memory Blocks 3 9 3 14 15 15 8 10 5 4 

Acc (%) Overall 100 100 100 100 98.2 98.9 92.4 92.7 83.4 83.2 

 Malignant 

Benign 

Healthy  

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

98.5 

97.3 

98.8 

99.1 

98.3 

99.1 

93.9 

88.6 

94.7 

94.1 

89.0 

94.9 

86.8 

75.3 

88.1 

86.7 

75.0 

87.9 

Se (%) Overall 100 100 100 100 97.2 98.3 88.6 88.9 75.1 74.8 

   Malignant 

Benign 

Healthy  

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

97.2 

96.3 

98.2 

98.5 

97.9 

98.4 

91.5 

83.4 

90.9 

90.3 

84.6 

91.9 

78.4 

63.5 

83.4 

75.8 

63.9 

84.6 

Sp (%) Overall 100 100 100 100 98.6 99.2 94.3 94.5 87.6 87.4 

 Malignant 

Benign 
Healthy  

100 

100 
100 

100 

100 
100 

100 

100 
100 

100 

100 
100 

99.1 

97.7 
99.0 

99.5 

98.5 
99.5 

95.2 

91.2 
96.5 

96.0 

91.1 
96.3 

91.1 

81.2 
90.4 

92.1 

80.5 
89.5 
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IV. DISCUSSIONS 

Long short-term memory (LSTM) networks offer 

competence in recognizing long-term dependencies and 

influencing the dependencies into computations in classifying 

time-series data and their use has been gaining increased 

interest in medicine predominantly for detection of medical 

events from electronic health records, classification of diseases 

from physiological signals and segmentation of lesions from 

medical images [18-22]. Besides, an LSTM network has been 

proposed to distinguish malignant and benign breast tissues 

using the features extracted by a fine-tuned VGGNet from 

dynamic contrast-enhanced MR signals pondered as “contrast-

enhanced time-series data” [23]. The current study inspires 

LSTM networks for classifying human breast tissues from 

diffusion MR signals that can be deliberated as “b-series data”. 

Many LSTM networks relying on the traditional LSTM model 

and the bidirectional LTSM (biLSTM) model are developed to 

classify the malignant, benign, and healthy tissues from noise-

free and noisy signals expressed with signal-to-noise ratio 

(SNR). Results show that regardless of the model it relies on, 

an LSTM network may achieve excellent sensitivities, 

specificities, and accuracies in classifying the tissues from 

noise-free signals and also from noisy signals with SNRs ≥ 80. 

These performances are supplied by fewer number of memory 

blocks when the network is implemented using the traditional 

LSTM model. For noisy signals having SNRs ≤ 40, a network 

may deliver high to very high sensitivities, specificities, and 

accuracies better for the malignant and healthy tissues than the 

benign tissue regardless of the model it relies on. However, a 

biLSTM model based network would perform slightly better 

than a traditional LSTM model based one by supplying an 

effectively increased amount of data to the network. 

There are some limitations of the current study. The diffusion 

MR signals for the malignant, benign and healthy breast tissues 

are generated by processing the descriptive statistics of the 

IVIM model parameters reported from a single-center study 

[13] and therefore may not be generalized well.  Noisy versions 

of the signals are produced considering Gaussian noise and 

acknowledgeable range and definition for SNR that might 

imitate the noise in practice in a limited way. The networks 

developed house either LSTMs or biLSTMs populated in a 

single layer and the adoption of additional layers may improve 

the performances of the networks. Moreover, the networks are 

trained using a “cross-entropy” loss and better trainings can be 

accomplished using more sophisticated measures such as “AUC 

loss” [24] that may further improve the classification 

performances. The networks are trained using bootstrap 

incorporated accuracy analysis and the use of alternative 

methods such as k-fold cross validation may lead to different 

performances by the networks [25]. 

In conclusion, LTSM networks eliminate the need for any 

signal decay model while outputting remarkably good 

performances in the classification of diffusion MR signals of 

the human breast tissue. BiLSTM networks perform slightly 

better for very noisy conditions. Prospective studies are needed 

to justify the potential benefits in a clinical setup.  
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