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Abstract— Brain tumors, capable of yielding fatal outcomes, 

can now be identified through MRI images. However, their 

heterogeneous nature introduces challenges and time-consuming 

aspects to manual detection. This study aims to design the optimal 

architecture, leveraging Convolutional Neural Networks (CNNs), 

for the automated categorization of brain tumor types within 

medical images. CNN architectures frequently face challenges of 

overfitting during the training phase, mainly attributed to the dual 

complexities of limited labeled datasets and complex models within 

the medical domain. The depth and width hyperparameters in 

these architectures perform a vital role, in determining the extent 

of learning parameters engaged in the learning process. These 

parameters, encompassing filter weights, fundamentally shape the 

performance of the model. In this context, it is quite difficult to 

manually determine the optimum depth and width 

hyperparameters due to many combinations. With Bayesian 

optimization and Gaussian process, we identified models with 

optimum architecture from hyperparameter combinations. We 

performed the training process with two different datasets. With 

the test data of dataset 1, we reached 98.01% accuracy and 98% 

F1 score values. With the test data of dataset 2, which has more 

data, 99.62% accuracy and F1 score values were obtained. The 

models we have derived will prove valuable to clinicians for the 

purpose of brain tumor detection. 

 

Index Terms— Deep learning, CNN, Bayesian optimization, 

Brain tumor.  

I. INTRODUCTION 

RAIN TUMORS are fatal, and life span of patients can be 

quite short [1]. Magnetic resonance imaging (MRI) is the 

most well-known and successful tool for detecting and 

classifying brain tumors due to its aptitude for distinguishing 

between structure and tissue depending on contrast levels [2]. 

The detection and classification of brain tumor is often 

determined manually by the clinician; the duration of this 

process is quite long and sometimes can lead to erroneous 

results [3]. Early detection of such tumors can improve the 

effectiveness of the therapeutic process and increases the 

likelihood of long-term survival [4]. The inherent heterogeneity 

within brain tumor cells poses a hurdle in precisely classifying 

the tumor type, consequently hindering treatment planning.  
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The principal objective of this study is to correctly identify 

brain tumor types, thereby facilitating informed decisions 

regarding suitable treatment approaches.  

Artificial intelligence applications are used in many areas 

such as cloud computing [5, 6] and computer-assisted disease 

diagnosis [7].  Convolutional Neural Networks (CNNs), which 

are a part of deep learning, demonstrate exceptional 

performance in end-to-end learning. During the training phase, 

they autonomously generate feature maps from input images 

and subsequently execute classification in the network's final 

stages. The network's parameters undergo updates based on 

error rates during the concluding phase [8]. One of the 

important contrasts between machine learning and deep 

learning models hinges upon the choice of features employed 

for classification. While traditional machine learning relies on 

manually crafted features, deep learning directly uncovers 

features from data, eliminating the need for external 

intervention [9, 10]. As a result, CNN models require an ample 

supply of images to achieve successful training outcomes. 

However, within the domain of healthcare, there's generally a 

shortage of labeled data. This shortage, combined with the 

intricate nature of CNN models, often leads to the occurrence 

of memorization issues during the training phase [11]. 

Identifying the optimal architecture (comprising depth and 

width) along with a suitable hyperparameter combination is a 

crucial challenge when aiming for successful learning within 

CNN models constrained by a limited dataset. 

CNN architectures are typically composed of sequential 

convolutional, max-pooling, and fully connected layers. In the 

Convolution layer, feature maps are generated by applying 

various filters to the raw image. This process is iterated across 

subsequent convolutional layers. In later layers, a higher 

number of filters is commonly employed to yield more intricate 

feature maps. The max-pooling layer reduces the feature map 

dimensions. These two layers collaboratively conduct the 

essential task of feature extraction from raw images within 

CNN architectures [12]. During the training phase, the filter 

weights—located where the learning process occurs—are 

updated using the backpropagation algorithm at the outcome 

layer, based on the error rate [8]. These filter weights are 

initially set randomly. The fully connected layer is often 

designated as the classification layer. Depending on the class 

count, the last layer incorporates either sigmoid or softmax 

functions. Of paramount importance is the determination of the 

optimal count of convolutional layers, along with the quantity 
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and size of filters within each convolutional layer, to foster 

successful learning in CNN architectures. 

Increasing the model's depth and width typically leads to two 

prevalent challenges. One of these issues pertains to the 

vanishing gradient problem, while the other revolves around the 

risk of overfitting the training dataset. The vanishing gradient 

problem can be mitigated through the integration of residual 

connections. Nonetheless, even when employing generalization 

techniques such as batch normalization, data augmentation, and 

dropout, identifying the point at which excessive learning 

initiates remains crucial. This can be discerned by monitoring 

loss/accuracy graphs during the training phase. In shallower 

models with reduced model depth and width, learning is 

hindered, resulting in underfitting and lower performance. A 

major concern to tackle is the process of identifying the most 

suitable depth and width hyperparameters within CNN models. 

Given the often extensive training period these models require, 

attempting all conceivable combinations to obtain results can 

be a time-intensive process. Addressing this, Bayesian 

optimization in conjunction with Gaussian processes offers an 

effective means to efficiently pinpoint the optimal 

hyperparameter combinations. Within this study, we identified 

the optimal CNN architecture to achieve accurate brain tumor 

type detection using two distinct datasets. Employing Bayesian 

optimization, we systematically arrived at optimal 

hyperparameter values by iteratively combining them with 

model accuracy data. The resulting models hold promise in 

aiding clinicians with brain tumor type detection. 

 

The contributions of this study can be listed as follows: 

 A novel and effective CNN model has been developed 

to detect brain tumor types. 

 This study presents an analysis of the efficacy of 

different CNN architectures, encompassing a range of 

widths and depths, in the context of brain tumor type 

detection. 

 The optimal hyperparameter combinations were 

identified using Bayesian optimization in conjunction 

with Gaussian processes. 

 In the context of two separate datasets, it's notable that 

the models' performance sees improvements in 

instances characterized by a larger data volume. 

 

The structure of this work is as follows: In the Related Works 

section, we provide a summary of previous research on brain 

tumor detection and classification. Section 3 delves into the 

specifics of the dataset features, the Bayesian optimization 

method, and the overall structure of the CNN model. Section 4 

presents the outcomes of our proposed models and compares 

them with findings from other research. In the conclusion, we 

underscore the significance of this study, its broader 

contributions, and potential paths for future research. 

II. RELATED WORKS 

Brain MR images are frequently used in research in a variety 

of fields, including tumor segmentation and tumor type 

classification. The research on brain tumor classification can be 

divided into three categories: tumor detection, tumor type 

classification, and tumor detection and classification. 

The first of these is the studies carried out to detect the 

presence of tumor in brain MR images. The datasets contain 

two classes, tumor and normal. Toğaçar et al. [13] proposed a 

model for identifying brain tumors and the study used a dataset 

of 253 MRI images. The proposed model employs the attention 

module as well as the hypercolumn technique. The attention 

module is used to detect important areas of the image, and the 

hypercolumn technique provides more effective feature 

selection by allowing data from each layer to be used in the final 

layer, according to the study. The proposed model reached a 

96.05 percent accuracy in brain tumor detection.  Using the data 

augmentation technique, the authors [14] augmented the 

unbalanced dataset (155 tumor, 98 normal) to include an equal 

number of data for the tumor (155) and normal (155) classes. In 

the study, features obtained by hypercolumn technique using 

pre-trained AlexNet and VGG16 architectures were reduced by 

the recursive feature elimination (RFE) method and classified 

by SVM. The models that were classified using 200 and 300 

features yielded the best accuracy values in the study, 96.77%. 

Balamurugan and Gnanamanoharan [15] proposed a hybrid 

CNN model for the detection of brain tumors. The dataset used 

in the study comprises 271 tumor images and 98 non-tumor 

images. There are 173 images set aside for training, 50 for 

validation, and 30 for testing. A Laplacian Gaussian filter 

(LOG) was used for data preprocessing in the study, and a 

Fuzzy C Means with Gaussian mixture model (FCM-GMM) 

algorithm was used for brain tumor segmentation. 13 features 

were determined using the VGG-16 architecture as a feature 

extractor, and classification was performed using the proposed 

enhanced LuNET algorithm. The proposed model's 

performance metrics are as follows: accuracy (99.7%), 

sensitivity (98.2%), specificity (98.6%), precision (99.4), F-

Score (98.2), and recall (99.8%). 

The second category includes studies on brain tumor 

classification. The researcher employs various datasets 

containing three or four types of brain tumors. Deepak and 

Ameer [16] undertook a study with the objective of classifying 

three different brain tumor varieties. In the study, GoogleNet 

architecture was used with transfer learning method for the 

purpose of feature extraction from brain MRIs. In addition to 

softmax as a classifier, SVM and KNN algorithms have also 

been tried. In the study, the best accuracy rate of 98% was 

obtained with the KNN algorithm and 80% of the dataset was 

used as the training set. The model was trained using 70%, 50% 

and 25% of the dataset, and classifications were performed with 

SVM. It has been reported that shrinking the training dataset 

does not significantly affect performance. To classify brain 

tumors, Başaran [17] proposed a hybrid model. Gray level co-

occurrence matrix (GLCM) and Local Binary Pattern (LBP) 

algorithms, as well as four CNN models: AlexNet, VGG16, 

EfficientNetB0, and ResNet50, were used to obtain the features. 

Artificial Bee Colony (ABC), Particle Swarm Optimization 

(PSO), and Genetic algorithms (GA) were implemented to 

reduce these properties, and SVM was used to classify them. 
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The highest accuracy obtained in the study was 98.22% with 5-

fold cross validation and an 86%/14% training/test ratio. Ayadi 

et al. [18] presented a model designed for brain tumor 

classification and this model was tested using three datasets. 

The proposed CNN model comprises of 10 convolutional 

layers, a dense layer, and a classifier based on softmax. The 

study's best performance was obtained with the Adagrad 

optimization algorithm and 0.003 learning rate, training for 20 

epochs, and batch size 16. The model was trained and tested 

using the Figshare dataset in the study. The tests were then 

repeated with two different datasets (Radiopaedia and 

REMBRANDT) to provide additional validation. The dataset 

accuracy values are as follows: dataset1 (94.74%), dataset2 

(93.71%), and dataset3 (five sub-datasets: 100%, 97.22%, 

97.02%, 88.86%, and 95.72%). Ait-Amou et al. [19] use 

Bayesian optimization to determine the proposed CNN model’s 

hyperparameters. The study involved an examination of the 

classification of three brain tumor types, namely glioma, 

meningioma, and pituitary. Their base model includes 5 

convolutional blocks, a dense block, and a classification block.  

The input size is 64*64 pixels and softmax activation function 

was used for classification. Bayesian optimization was 

employed to identify the optimal dropout rate, number of dense 

nodes, activation function, batch size, and optimization 

algorithm that yielded the best results in the study. The best 

performance, according to the results, was 98.70%. Alhassan 

and Zainon [20] explored the effect of the activation function 

on brain tumor classification. Feature extraction from brain 

images was accomplished using the Histogram of Oriented 

Gradients (HOG) technique, and a classification model 

employing the Hard Swish-based ReLU activation function was 

introduced for brain tumor classification. Assessment of the 

suggested model's effectiveness was conducted using two 

different architectures (CNN and RNN), a selection of three 

activation functions (sigmoid, tanh, and Hard Swish-based 

ReLU), and four varied training and testing ratios (20:80, 40:60, 

60:40, 80:20). The top accuracy score was obtained by the CNN 

model that utilized the Hard Swish-based ReLU activation 

function, in conjunction with an 80:20 ratio. The approach 

presented by Aurna et al. [21] involves a two-stage process for 

feature selection in brain tumor classification. A total of four 

datasets were used in the study, including three individual 

datasets and one obtained by combining them. The best feature 

extractors were identified among the set of five pre-trained 

models and a new model (Scratched CNN). In the first stage, 

the three best models (EfficientNet-B0, ResNet-50, and 

Scratched CNN) were combined in pairs, and the model pairs 

with the highest accuracy value were determined. In the second 

stage, features were acquired using these pairs of models. 

During the feature reduction phase, Principal Component 

Analysis was used. For the classification process, the 

performance of Softmax, SVM, RF, KNN, and AdaBoost 

algorithms was compared, and Softmax produced the best 

results. The proposed model for the combined dataset produced 

the best accuracy performance of 98.96%. Accuracy values for 

other data sets are 99.67 for dataset1, 98.16 for dataset2, and 

99.76 for dataset3, respectively. Mehnatkesh et al. [10] 

conducted a hyperparameter optimization study to classify 

brain tumors. First, the images' empty space was cropped, and 

data augmentation was implemented. The performance of seven 

different state-of-the-art models was then analyzed on the 

dataset, and the ResNet model with the best result was chosen. 

The optimization study yielded 99.02% classification success 

with the ResNet model and the Improved Ant Colony 

Optimization algorithm. Kazemi et al. [22] used the Figshare 

and TCIA datasets in their research to determine the 

classification of brain tumors in MRI scans. In the proposed 

model, AlexNet and VGG16 architectures are trained 

concurrently. SVM, KNN, and Decision Tree methods were 

used to choose the most essential characteristics derived from 

the two architectures. The Softmax classifier was used to 

predict the tumor class. They investigated the suggested 

model's performance in binary and multiclass classification. 

The best accuracy result with Figshare dataset is 99.14% in 

binary class and 98.78% in multi-class. Gomez-Guzman et al. 

[23] compared the performance of seven different CNN models 

for brain tumor classification. A 17-layer CNN model with four 

convolutional layers was proposed. In addition, six pre-trained 

architectures: ResNet50, MobileNetV2, Xception, 

InceptionV3, InceptonRes-NetV3, and EfficientNetB0 were 

used in the study. A dataset of 7023 MRI images with four 

classes: no-tumor, glioma, meningioma, and pituitary was used 

in the study. The best accuracy was 97.12% with the 

InceptionV3 model. Türkoğlu[24] proposed a four-stage hybrid 

system for brain tumor diagnosis. The images are enhanced by 

preprocessing first. Transfer learning method was then applied 

to DenseNet and AlexNet architectures and 4096 and 1000 deep 

features were obtained respectively. The most significant 

features were determined in the third stage through feature 

reduction using the MrMr algorithm on the combined features. 

The SVM algorithm was employed in the final stage to 

ascertain the class to which the tumors belong. The Bayesian 

Optimization Algorithm was implemented to optimize the SVM 

classifier's hyperparameters. The author used the figshare 

dataset, which included 3064 brain MRI images and three 

classes of brain tumors. The proposed model was tested by 

selecting eight different numbers (from 500 to 5000) of 

combined deep features and the best accuracy performance was 

98.04% using 2500 features. In addition, the author conducted 

an extensive experimental study on feature extraction from 

CNN models, feature selection (MrMr), and the optimization of 

SVM hyperparameters using Bayesian optimization for 

classification. The features obtained from the CNN models are 

reduced by the MrMr method and then used as input for the 

machine learning model. The difference in our work is that with 

the Gaussian process-based Bayesian optimization algorithm, 

many hyperparameters in the CNN architecture such as the 

number of convolution layers, number and size of filters, 

learning rate, dropout rate, and optimizer were optimized. We 

optimized directly on the CNN architecture without the need for 

features extracted from CNN models and a two-stage training 

process. 

In the final category, there are studies that both detect and 

classify brain tumors. Mondal and Shrivastava [25] conducted 
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a study involving two separate datasets to identify and 

categorize brain tumors. They introduced a novel activation 

function named Parametric Flatten-p Mish (PFpM) alongside 

the BMRI-Net model. The model accomplished an accuracy of 

99.00% in the detection of brain tumors and 99.57% in the 

classification of tumor type.  Saurav et al. [26] devised a CNN 

model that employs channel-attention blocks to concentrate on 

pertinent areas within the image when classifying tumors. The 

selection of the pertinent feature maps is carried out via 

channel-attention blocks. The suggested model's performance 

was evaluated using four different datasets. The BT-small-2c 

and BT-large-2c datasets were utilized for tumor detection, and 

the other two were used for tumor categorization (BT-large-3c 

and BT-large-4c). According to the datasets, the following 

accuracy values were obtained: BTsmall-2c (96.08%), BT-

large-2c (99.83%), BT-large-3c (97.23%), and BT-large-4c 

(95.71%). Turk et al. [27] proposed a system that detects and 

classifies brain tumors. The study was performed in three 

stages. First, brain tumor detection was performed with 2 

classes (tumor and normal), then brain tumor classification was 

performed with 4 classes (glioma, meningioma, pituitary and 

normal) and finally Class Activation Maps were created. In the 

study, 3441 MR images for the first stage and 3362 MR images 

for the second stage from two different datasets were used. The 

transfer learning method was performed with the ensemble DL 

approach using ResNet50, VGG19, InceptionV3 and 

MobileNet architectures. The highest accuracy rate was 100% 

for brain tumor detection (with InceptionV3, MobileNet and 

ResNet50 architectures) and 96.45% for tumor classification 

(with ResNet50 architecture). Alanazi et al. [28] designed three 

scratch CNN models with 19, 22 and 25 layers to detect brain 

tumor and compared their performance. They obtained the best 

accuracy of 92.67% with the 22-layer CNN model. Then, they 

trained a model that detects the type of brain tumor using the 

22-layer CNN model with a fine-tunning approach using the 

transfer learning. The test accuracy of this model is 95.75%. 

Kang et al. [29] proposed a feature ensemble-based model for 

brain tumor classification and investigated the performance of 

nine different ML classifiers. They used 13 different CNN 

architectures to extract features to be used in classification. The 

three models that provided the best features were determined 

using ML classifiers. DenseNet-169, ShuffleNet V2, and 

MnasNet provided the best features for four-class (glioma, 

meningioma, pituitary and normal) classification. The features 

from these three models were combined and fed into ML 

classifiers to identify brain tumor classes. The best accuracy for 

brain tumor diagnosis was 93.72% with SVM (RBF) for four-

class classification and 98.83% for two-class classification. 

Numerous studies in the literature have explored brain tumor 

detection. Transfer learning methods have been employed, 

typically yielding successful results in scenarios with limited 

datasets. However, current state-of-the-art CNN models tend to 

be intricate, as they are primarily tailored to vast datasets like 

ImageNet. In the context of medical images with limited 

labeled data [30], these models often grapple with issues such 

as overfitting or memorization during training. Despite the 

application of techniques like batch normalization, data 

augmentation, L2 regularization, and dropout to mitigate these 

challenges, they often fall short of being entirely effective. 

While the approach of utilizing CNN models for feature 

extraction followed by machine learning classification has 

become prevalent, it necessitates a two-stage training process 

Glioma 

     

Meningioma 

     

No-tumor 

     

Pituitary 

     

Fig. 1. Examples of three types of tumors and normal brain MR images 
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and can be demanding to implement more complexity. The key 

to success often lies in a well-designed CNN architecture, 

particularly in optimizing hyperparameters such as depth and 

width to suit the specific dataset. In this study, we addressed 

this challenge by determining the optimal depth and width 

hyperparameters for CNN architectures using Bayesian 

optimization. 

III. MATERIALS AND METHOD 

A. Dataset 

Two datasets were used in this study. Dataset-1 [31], a 

publicly accessible brain tumor dataset, has a total of 3264 brain 

MRIs. The dataset-1 has four classes: glioma, meningioma, 

pituitary and healthy (no tumor). This dataset contains 926 

gliomas, 937 meningiomas, 901 pituitary, and 500 healthy 

images. Dataset-2 [32] represents a publicly available dataset 

containing brain tumors and has a total of 7023 brain MRIs. 

This dataset was created by merging three separate datasets 

(Figshare, SARTAJ, and Br35H). The dataset consists of four 

distinct classes. These are MR images of healthy, meningioma, 

pituitary, and glioma patients' brains. There are 2000 images of 

healthy people, 1621 gliomas, 1645 meningiomas, and 1757 

pituitary tumors. The dataset divisions for training, validation, 

and testing are presented in Table 1. Fig. 1 shows examples of 

three types of tumors and normal brain MRI images from 

dataset 2. 

 
TABLE I 

TRAIN, VALIDATION AND TEST PART OF DATASETS 
 Train Validation Test 

Dataset 11 2351 261 652 

Dataset 22 5141 571 1311 

1Sartaj dataset https://www.kaggle.com/sartajbhuvaji/brain-tumor-classifcation-mri 
2Massoud dataset https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-

dataset?select=Training 

B. Bayesian optimization 

The optimization approach involves iteratively generating 

neural networks with defined hyperparameters, executing the 

training process, and determining the optimum hyperparameter 

set among these constructed networks. The Sequential model-

based optimization (SMBO) approach, that is Bayesian 

optimization, was utilized in this study to estimate 

hyperparameters and network design [33, 34]. 

Bayesian optimization is a technique based on probabilistic 

modeling, used to find the peaks or lowest points of objective 

functions that are costly to assess. It can be used when the goal 

function has no closed-form expression but observations of this 

function can be acquired at sampling values [35, 36]. An 

acquisition function is used within the context of Bayesian 

optimization to effectively select the next sampling location. It 

automates the balance between exploration and exploitation. 

Exploration takes place when there's uncertainty in the 

objective function, whereas exploitation centers on utilizing x 

values where the objective function is anticipated to be at its 

peak [35]. The primary goal of this optimization method is to 

reduce the count of evaluations for the objective function, 

making it advantageous. The Bayes theorem is employed to 

compute the posterior probability of an event, taking into 

account both the prior probability and the likelihood probability 

of the event. In cases where the objective function is uncertain, 

the Bayesian model provides an elegant approach to defining 

attributes of the objective function with the aid of informative 

priors, such as approximate locations of the maximum or its 

smoothness [33, 36]. 

In this research, we utilized the Gaussian Process (GP) 

method and gathered the initial Di(xi, yi) data. Through the 

input X, we conducted training on the dataset to acquire the 

function output y. At any given point x, the value of fx is treated 

as a stochastic variable. The random variables fxi and fxj, 

corresponding to distinct xi and xj points, exhibit correlation. 

To represent these random variables, we employed a Gaussian  

distribution (f(x) ~ N(μ(x), σ²)). Given that we conducted 

optimization for several hyperparameters, we employed the 

Gaussian Process (GP) as presented in Equation 1. The 

fundamental aspect of a GP is its function distribution, and this 

is completely characterized by the mean and covariance 

functions.  The kernel function in Equation 2 was applied to a 

Fig. 2. Bayesian optimization-based proposed model structure 
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set of hyperparameters with m dimensions. It quantifies the 

similarity between two distinct predictions. We employed the 

maximum likelihood estimate (MLE) approach, as described in 

Equation 3 [37], for hyperparameter selection. In this method, 

we evaluate the likelihood of the observations f(x1:n) with 

respect to the prior distribution, P(f(x1:n)| 𝜑), which follows a 

multivariate normal density. Here, 𝜑 represents the 

hyperparameter vector. Afterward, we estimate 𝜑 using the 

maximum a posteriori (MAP) estimation, which corresponds to 

the value of 𝜑 that maximizes the posterior distribution [37]. 

𝑓𝑥 ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (1) 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
1

2
 ‖𝑥𝑖 − 𝑥𝑗‖

2
) (2) 

𝜑∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜑𝑃(𝜑|𝑓(𝑥1:𝑛))  

=  𝑎𝑟𝑔𝑚𝑎𝑥𝜑 𝑃(𝑓(𝑥1:𝑛)|𝜑)𝑃(𝜑) 

(3) 

𝐸𝐼(𝑥)

=  {
(𝜇(𝑥) − 𝑓(𝑥+))Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)  𝑖𝑓 𝜎(𝑥) > 0 

0                                                              𝑖𝑓  𝜎(𝑥) = 0
 

                                       𝑍 =  
𝜇(𝑥)−𝑓(𝑥+)

𝜎(𝑥)
 

(4) 

 

Within Bayesian optimization, a critical step revolves around 

the criteria used to determine the upcoming collection of 

hyperparameters derived from the surrogate function. The 

Expected Improvement, provided in Equation 4, stands out as 

the most commonly adopted criterion [35]. By considering the 

expected value of the improvement function concerning the 

Gaussian process's predictive distribution, we achieve a 

harmonious equilibrium between exploration and exploitation. 

During exploration, our emphasis is on pinpointing locations 

characterized by substantial surrogate variance. Conversely, 

during exploitation, we direct our attention to points with 

elevated surrogate means [37]. 

C. Proposed Method 

In this study, we initially identified a fundamental block 

comprising convolutional, batch normalization, and max 

pooling layers. Following this foundational block, we 

introduced a max pooling layer after every 2 convolutional and 

batch normalization layers and elucidated the growth block 

structure for each model proposal. Fig. 2 shows the general 

structure of the proposed method. 

Following activation functions in the convolutional layers, 

the batch normalization layer aids in achieving quicker 

convergence towards optimal values for the models, while also 

preventing overfitting during the training phase. In deep 

learning models, as the number of convolutional layers 

increases—leading to greater depth—it is anticipated that more 

intricate feature maps will be acquired. In light of this, we 

devised a block structure that incorporates max pooling after 

every two successive convolutional layers. By amplifying the 

count of these blocks, we effectively enhance the depth within 

the models. Increasing the depth of a model often gives rise to 

two primary challenges. The first involves the vanishing 

gradient, while the second pertains to the potential overfitting 

of the training dataset. The vanishing gradient dilemma can be 

alleviated via the use of residual connections. However, even 

with generalization techniques like batch normalization in 

place, recognizing the juncture at which undue learning takes 

hold remains pivotal. This can be deduced by closely observing 

the loss/accuracy graphs during the training phase. In this study, 

we employ Bayesian optimization to identify the most suitable 

model depth-width and optimal hyperparameters from a range 

of possibilities. 

IV. EXPERIMENT AND RESULTS 

CNN architectures automate the extraction and classification 

of features directly from input images, bypassing the need for 

manual feature extraction as required by traditional machine 

learning algorithms. Within CNN architectures, the training 

process involves the movement of each image through the 

network, and learning takes place as filter weights are updated 

using the backpropagation algorithm based on error rates at the 

output layer. Alongside this, various hyperparameters are 

defined for each training stage.  

The determination of optimal hyperparameters, which 

maximize classification performance, stands as a significant 

concern. Hyperparameter value ranges are presented in Table 2. 

These ranges were established for the brain tumors dataset 

following numerous trial-and-error iterations. 

 
TABLE II 

 HYPERPARAMETERS AND VALUES 

Hyperparameters  Values 

Convolutional layer size 5, 7, 9, 11 

Kernel size 3x3, 5x5 

Filters size min value :=16, max value :=256, 

step :=16 

Dropout-rate 0.0, 0.2, 0.3, 0.4, 0.5, 0.6 

Optimizer Adam, SGD with Nesterov 

Learning rate 0.001, 0.0001 

 

CNN architectures commonly achieve favorable outcomes 

through the implementation of deep networks, allowing for 

detailed feature extraction. Nevertheless, in cases where the 

available labeled data is scarce, the training phase frequently 

encounters challenges related to memorization, thereby 

detrimentally impacting overall performance. Consequently, 

despite the models exhibiting high training success, their 

performance on unseen test datasets remains notably 

suboptimal. 

As can be seen in Table 3, models with four different depths 

and filter numbers are reported on dataset 1. Out of the various 

configurations, the 9-conv-layer CNN architecture coupled 

with the hyperparameter settings in Model 3, determined 

through Bayesian optimization, yielded the most optimal results 

for dataset 1. When working with a constrained dataset size, 

elevating the model's depth can result in reduced performance 

on the test dataset, primarily due to the risk of memorization 

during the training phase. In Dataset 1, Model 3 exhibited the 
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most impressive performance, achieving a test accuracy of 

98.01%. 
TABLE III 

 MODEL STRUCTURES BASED ON BAYESIAN OPTIMIZATION FOR 

DATASET 1 

 

The optimal model configuration for dataset 2 is illustrated 

in Fig. 3. In this dataset, the 9-conv-layer convolutional 

architecture demonstrated exceptional performance, achieving 

a test accuracy of 99.62%. Beyond Bayesian optimization, the 

notable success of this architecture can be attributed to the 

substantial increase in the volume of data. In CNN 

architectures, it's generally expected that the number of filters 

will be higher in the later layers to facilitate more intricate 

feature extraction. An intriguing observation we made using 

Bayesian optimization in both datasets is the decline in filter 

counts in the last layers. This reduction can be attributed to 

Bayesian optimization addressing instances of overfitting 

during the training phase, often associated with excessive filter 

numbers. 

 

 
Fig. 3. Optimum model structure for dataset 2 

 

 
(a) 

 
(b) 

Fig. 4. Training and Validation accuracy/loss values for (a) dataset 1   (b) 

dataset 2 

 

Fig. 4 depicts the training and validation loss/accuracy plots 

for both dataset 1 and dataset 2. From these graphs, it's evident 

that the models achieving optimal outcomes do not exhibit signs 

of memorization during the training phase. In cases of 

memorization, the training accuracy consistently improves 

while the validation accuracy tends to decline after reaching a 

certain epoch value. Similarly, during memorization, the 

training loss demonstrates a continuous decline in the loss 

graph, while the validation loss tends to rise after a specific 

epoch value. Across both graphs, a consistent trend of 

increase/decrease is observed in the training and loss graphs, 

Layers CNN 

Model 1 

CNN 

Model 2 

CNN 

Model 3 

CNN 

Model 4 

Conv-1 3x3, 16  3x3, 48 3x3, 112 3x3, 112 

Conv-2 5x5, 16 3x3, 48 5x5, 112  3x3, 112 

Conv-3 3x3, 176 5x5, 128 3x3, 112 3x3, 112 

Conv-4 5x5, 256 3x3, 80 5x5, 112 5x5, 112 

Conv-5 5x5, 208 3x3, 128 3x3, 240 3x3, 240 

Conv-6 - 5x5, 256 3x3, 240 5x5, 240 

Conv-7 - 5x5, 48 5x5, 240 3x3, 16 

Conv-8 - - 5x5, 144 5x5, 16 

Conv-9 - - 5x5, 48 5x5, 112 

Conv-10 - - - 5x5, 48 

Conv-11 - - - 3x3, 16 

Dropout-
rate-1 

0,6 0,6 0,4 0 

Dense-1 256 256 208 64 

Dropout-
rate-2 

0 0 0 0 

Dense-2 256 256 64 256 

Optimizer SGD with 
Nesterov 

SGD with 
Nesterov 

SGD with 
Nesterov 

SGD with 
Nesterov 

Learning-

rate 

0.001 0.0001 0.0001 0.001 

Accuracy 

Score (%) 

95.40 96.47 98.01 96.78 

axa,b  :  a stands for kernel size and b stands for filter size in convolutional 

layers 
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with instances of overlap at various points. Upon examining 

Fig. 4b, it becomes evident that due to the increased volume of 

data in dataset 2, the training and validation curves exhibit a 

noticeable overlap during the training phase. 

 

A
ct

u
al

 v
al

u
es

 

 
 Predicted values 

 (a) 

A
ct

u
al

 v
al

u
es

 

 
 Predicted values 

 (b) 
Fig. 5. Confusion matrix of  (a) dataset 1 and (b) dataset 2 

 

Fig. 5 presents the confusion matrix results generated by the 

best models on dataset 1 and dataset 2.  Upon inspection of 

Figure 5a, it becomes evident that out of the total 185 glioma 

disease images, 177 were accurately predicted. Consequently, 

the True Positive count stands at 177. Furthermore, there were 

instances where 4 images, originally categorized as gliomas, 

were wrongly identified as meningiomas, while another 4 were 

classified as No tumor. These misclassifications amount to a 

total of 8 images, which constitute the False Negative instances. 

Moreover, examining the column corresponding to glioma, we 

find that 2 meningioma images were erroneously labeled as 

gliomas. These 2 instances contribute to the False Positive 

values within the column. Upon reviewing Fig. 5b, it's evident 

that all glioma images were accurately classified. Furthermore, 

upon closer inspection of the Meningioma category, it was 

revealed that 2 images that were supposed to be classified as 

meningioma were instead wrongly predicted as No tumor. 

Additionally, within the Meningioma column, 2 Pituitary 

images were erroneously labeled as Meningioma. 

 
TABLE IV  

PERFORMANCE METRICS OF PROPOSED MODEL FOR DATASET 1 

Classes Precision Recall F1-Score ICSI Support 

Glioma 0.9888 0.9568 0.9725 0.9456 185 

Meningioma 0.9684 0.9840 0.9761 0.9524 187 

No-tumor 0.9612 0.99 0.9754 0.9512 100 

Pituitary 0.9944 0.9944 0.9944 0.9888 180 

 

Accuracy 0.9801  652 

Macro avg 0.9782 0.9813 0.9796 652 

Weighted 

avg 
0.9803 0.9801 0.98 652 

 
TABLE V  

PERFORMANCE METRICS OF PROPOSED MODEL FOR DATASET 2 

Classes Precision Recall F1-Score ICSI Support 

Glioma 0.9967 1.00 0.9983 0.9967 300 

Meningioma 0.9935 0.9935 0.9935 0.987 306 

No-tumor 0.9951 1.00 0.9975 0.9951 405 

Pituitary 1.00 0.99 0.995 0.99 300 

 

Accuracy 0.9962  1311 

Macro avg 0.9963 0.9959 0.9961 1311 

Weighted 

avg 
0.9962 0.9962 0.9962 1311 

 
TABLE VI  

PERFORMANCE METRICS OF PROPOSED MODELS FOR DATASET 1 

AND DATASET 2 
 MCC Kappa CSI 

Proposed Model 

(Dataset 1) 
0.9731 0.9730 0.9595 

Proposed Model 

(Dataset 2) 
0.9949 0.9949 0.9922 

 

Performance metric results, derived from the confusion 

matrix data, are presented in Table 4, Table 5 and Table 6. 

Within medical image-based diagnostic systems, the 

computation of precision and recall values holds paramount 

importance. Precision denotes the proportion of True Positives 

to all Positives (TP/(TP+FP)), whereas recall measures the 

model's accurate recognition of True Positives (TP /(TP+FN)). 

The F1 score, representing the harmonic average of precision 

and recall, offers a comprehensive evaluation. It's worth noting 

that precision and recall values can exhibit disparities, 

particularly in scenarios of class imbalances within the dataset. 
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The performance metrics for each class in dataset 1 and dataset 

2 are given in Table 4 and Table 5. The precision, recall, and 

F1-score values in Table 4 and Table 5 were calculated as 

described in the reference [38]. In addition, it was also verified 

with the scikit-learn library. Machine learning makes use of the 

Matthews Correlation Coefficient (MCC) as a statistical gauge 

to assess the accuracy of binary and multiclass classifications. 

The MCC assesses the model's overall performance by taking 

into account not just the accuracy of predictions but also the 

possibility of random agreement, which is particularly relevant 

in scenarios involving multiple classes. A higher MCC score 

signifies superior model performance across all classes, 

whereas a lower score indicates a weaker alignment between 

predictions and actual labels. When it comes to multiclass 

classification, the Kappa score enhances the evaluation of 

classification performance by taking chance agreement into 

consideration, making it especially advantageous in scenarios 

where classification models need assessment and there are 

multiple classes or imbalances in the dataset. In the context of 

classification assessment, the Individual Classification Success 

Index (ICSI) serves as a class-specific symmetric metric. 

Averaging the Individual Classification Success Index (ICSI) 

scores for all individual classes yields the Classification 

Success Index (CSI), offering a holistic assessment of the 

classification performance. A CSI value close to 1 indicates that 

the classification performance is very good [39]. MCC, Kappa, 

and Classification Success Index values for Dataset 1 and 

Dataset 2 are given in Table 6. In our study, the performance 

metrics showcased successful outcomes. 

 
TABLE VII  

COMPARISON OF THE RECOMMENDED MODEL WITH EXISTING 

STUDIES 

Study Year Accuracy 

(%) 

F1-Score 

(%) 

Mehnatkesh et al. [10]3 2023 98.69 98.46 

Deepak&Ameer [16]3 2019 97.17 97.2 

Turkoglu [24]3 2021 98.04 97.95* 

Alanazi et al. [28]1 2022 95.75 95.72* 

Saurav et al. [26]1 2022 95.71 95.98 

Kang et al.[29]1 2021 93.72 - 

Ayadi et al. [18]2 2021 98.49 98.3* 

Aurna et al. [21]2 2022 98.96 99 

Gomez-Guzman et al. [23]2 2023 97.12 97.28* 

Proposed Model Dataset-11 98.01 98 

 Dataset-22 99.62 99.62 

1Sartaj dataset https://www.kaggle.com/sartajbhuvaji/brain-tumor-classifcation-mri 
2Massoud dataset https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-

dataset?select=Training 
3Figshare dataset https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 

* F1-score is calculated from the confusion matrix or precision-recall values. 

In Table 7, you can find a comparison between our model 

and prior studies.  Some studies [10, 16 and 24] used the 

Figshare dataset in their study, which involved a three-class 

classification task (Glioma, Meningioma, and Pituitary). In 

contrast, other studies used datasets that incorporated normal 

brain MRI images (four-class classification). When we 

compare our proposed model with other studies, it becomes 

evident that our model performs better. Transfer learning and 

ensemble learning methods have been widely used in existing 

studies. In addition, CNN models are used for feature 

extraction, and the resulting feature dataset is trained on a 

machine-learning algorithm for classification. Aurna et al. [21] 

used the two-stage method of feature extraction.  They obtained 

an accuracy of 98.96% on Dataset 2. Apart from these, there are 

studies that propose modified CNN models. Ayadi et al. [18] 

proposed a customized CNN model with 10 convolutional 

layers. They tried to find the best optimizer and learning rate 

manually. Gomez-Guzman et al. [23] proposed a 17-layer CNN 

model with four convolution layers. However, they found the 

best result using the InceptionV3 model with transfer learning. 

Their accuracy on Dataset 2 is 97.12%. In Table 7, our proposed 

model also gives better results when compared with the studies 

in Dataset 1. In our proposed CNN model, we directly optimize 

the depth, width, and other hyperparameters in the CNN 

architecture using Gaussian process-based Bayesian 

optimization. 

V. CONCLUSION 

Brain tumors, a deadly type of cancer impacting both 

genders, have historically been diagnosed through risky biopsy 

procedures. Yet, the safer alternative of magnetic resonance 

imaging (MRI) has become more common in recent times. The 

main objective of this study is to differentiate brain tumor types 

from the MRI image, thereby guiding suitable treatment 

approaches. CNNs excel in autonomously extracting and 

classifying features from medical images, yielding favorable 

outcomes. Nevertheless, to ensure proficient learning within 

CNN architectures, a generous dataset is imperative. The focal 

issue revolves around pinpointing the most suitable depth and 

width hyperparameters that can facilitate optimal learning with 

the available limited data. Given the extended duration of the 

training phase and the considerable time investment required to 

explore all possible combinations, we adopted the Bayesian 

Optimization technique. This approach streamlined the process 

of identifying the optimal hyperparameter combinations. This 

study's focus was on determining the ideal hyperparameter 

configurations across two separate datasets. In Dataset 1, we 

reached an accuracy of 98.01% and an F1 score of 98%. In 

Dataset 2, our endeavors led to an impressive accuracy of 

99.62%, also reflected in the F1 score. The model we have 

developed presents a valuable tool for clinicians, aiding in the 

precise identification of brain tumor types. As we look ahead, 

upcoming studies will explore diverse sets of hyperparameters 

and alternate datasets. 

REFERENCES 

[1] Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 

2019. CA: a cancer journal for clinicians, 69(1), 7-34. 

[2] Bhatele, K. R., & Bhadauria, S. S. (2020). Brain structural disorders 
detection and classification approaches: a review. Artificial Intelligence 

Review, 53(5), 3349-3401. 

402



BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 11, No. 4, October 2023  

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

[3] Nazir, M., Shakil, S., & Khurshid, K. (2021). Role of deep learning in 

brain tumor detection and classification (2015 to 2020): A 
review. Computerized Medical Imaging and Graphics, 91, 101940. 

[4] Sharif, M. I., Li, J. P., Naz, J., & Rashid, I. (2020). A comprehensive 

review on multi-organs tumor detection based on machine 
learning. Pattern Recognition Letters, 131, 30-37. 

[5] Kaya, M. and Çetin-Kaya, Y. (2021). Seamless computation offloading 

for mobile applications using an online learning algorithm. Computing, 
vol. 103, no.5, pp. 771-799. 

[6] Miao, Y., Wu, G., Li, M., Ghoneim, A., Al-Rakhami, M., & Hossain, M. 

S. (2020). Intelligent task prediction and computation offloading based on 
mobile-edge cloud computing. Future Generation Computer Systems, 

102, 925-931. 

[7] Rashed, A. E. E., Elmorsy, A. M., & Atwa, A. E. M. (2023). Comparative 
evaluation of automated machine learning techniques for breast cancer 

diagnosis. Biomedical Signal Processing and Control, 86, 105016. 

[8] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 
521(7553), 436-444. 

[9] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-

Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M. and Farhan, 
L., (2021). Review of deep learning: Concepts, CNN architectures, 

challenges, applications, future directions. Journal of big Data, 8(1), 

pp.1-74. 
[10] Mehnatkesh, H., Jalali, S. M. J., Khosravi, A., & Nahavandi, S. (2023). 

An intelligent driven deep residual learning framework for brain tumor 

classification using MRI images. Expert Systems with Applications, 213, 
119087. 

[11] Liu, Z., Tong, L., Chen, L., Jiang, Z., Zhou, F., Zhang, Q., ... & Zhou, H. 
(2023). Deep learning based brain tumor segmentation: a survey. 

Complex & intelligent systems, 9(1), 1001-1026.  

[12] Krizhevsky, A., Sutskever I. and Hinton G. E. (2012). ImageNet 
classification with deep convolutional neural networks," Proc - Neural 

Information Processing System Conference, pp. 1-9. 

[13] Toğaçar, M., Ergen, B., & Cömert, Z. (2020). BrainMRNet: Brain tumor 
detection using magnetic resonance images with a novel convolutional 

neural network model. Medical hypotheses, 134, 109531. 

[14] Toğaçar, M., Cömert, Z., & Ergen, B. (2020). Classification of brain MRI 
using hyper column technique with convolutional neural network and 

feature selection method. Expert Systems with Applications, 149, 113274. 

[15] Balamurugan, T., & Gnanamanoharan, E. (2023). Brain tumor 
segmentation and classification using hybrid deep CNN with 

LuNetClassifier. Neural Computing and Applications, 35(6), 4739-4753. 

[16] Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep 
CNN features via transfer learning. Computers in biology and medicine, 

111, 103345. 

[17] Başaran, E. (2022). A new brain tumor diagnostic model: Selection of 
textural feature extraction algorithms and convolution neural network 

features with optimization algorithms. Computers in Biology and 

Medicine, 148, 105857. 
[18] Ayadi, W., Elhamzi, W., Charfi, I., & Atri, M. (2021). Deep CNN for 

brain tumor classification. Neural processing letters, 53, 671-700. 

[19] Ait Amou, M., Xia, K., Kamhi, S., & Mouhafid, M. (2022). A Novel MRI 
Diagnosis Method for Brain Tumor Classification Based on CNN and 

Bayesian Optimization. In Healthcare (Vol. 10, No. 3, p. 494). MDPI. 

[20] Alhassan, A. M., & Zainon, W. M. N. W. (2021). Brain tumor 
classification in magnetic resonance image using hard swish-based RELU 

activation function-convolutional neural network. Neural Computing and 

Applications, 33, 9075-9087. 
[21] Aurna, N. F., Yousuf, M. A., Taher, K. A., Azad, A. K. M., & Moni, M. 

A. (2022). A classification of MRI brain tumor based on two stage feature 

level ensemble of deep CNN models. Computers in biology and medicine, 
146, 105539. 

[22] Kazemi, A., Shiri, M. E., & Sheikhahmadi, A. (2022). Classifying tumor 

brain images using parallel deep learning algorithms. Computers in 
Biology and Medicine, 148, 105775. 

[23] Gómez-Guzmán, M.A., Jiménez-Beristain, L., García-Guerrero, E.E., 

López-Bonilla, O.R., Tamayo-Pérez, U.J., Esqueda-Elizondo, J.J., 
Palomino-Vizcaino, K. & Inzunza-González, E. (2023). Classifying brain 

tumors on magnetic resonance imaging by using convolutional neural 

networks. Electronics, 12, 955. 
[24] Türkoğlu, M. (2021). Brain Tumor Detection using a combination of 

Bayesian optimization based SVM classifier and fine-tuned based deep 

features. Avrupa Bilim ve Teknoloji Dergisi, (27), 251-258. 

[25] Mondal, A., & Shrivastava, V. K. (2022). A novel Parametric Flatten-p 

Mish activation function based deep CNN model for brain tumor 
classification. Computers in Biology and Medicine, 150, 106183. 

[26] Saurav, S., Sharma, A., Saini, R., & Singh, S. (2023). An attention-guided 

convolutional neural network for automated classification of brain tumor 
from MRI. Neural Computing and Applications, 35(3), 2541-2560. 

[27] Turk, O., Ozhan, D., Acar, E., Akinci, T. C., & Yilmaz, M. (2022). 

Automatic detection of brain tumors with the aid of ensemble deep 
learning architectures and class activation map indicators by employing 

magnetic resonance images. Zeitschrift für Medizinische Physik. 

https://doi.org/10.1016/j.zemedi.2022.11.010 
[28] Alanazi, M.F.; Ali, M.U.; Hussain, S.J.; Zafar, A.; Mohatram, M.; Irfan, 

M.; Albarrak, A.M. (2022). Brain tumor/mass classification ramework 

using magnetic-resonance-imaging-based isolated and developed transfer 
deep-learning model. Sensors, 22, 372 

[29] Kang, J., Ullah, Z., & Gwak, J. (2021). Mri-based brain tumor 

classification using ensemble of deep features and machine learning 
classifiers. Sensors, 21(6), 2222. 

[30] Nergiz, M. (2023). Classification of Precancerous Colorectal Lesions via 

ConvNeXt on Histopathological Images. Balkan Journal of Electrical and 
Computer Engineering, 11(2), 129-137. 

[31] Sartaj Bhuvaji, Brain tumor classifcation (MRI). 

https://www.kaggle.com/sartajbhuvaji/brain-tumor-classifcation-mri, 
2020. (Accessed 1 Jan 2023). 

[32] Masoud Nickparvar, Brain Tumor MRI Dataset. 

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-
dataset?select=Training (Accessed 5 Jan 2023). 

[33] Fernandes, V., Junior, G. B., de Paiva, A. C., Silva, A. C., & Gattass, M. 
(2021). Bayesian convolutional neural network estimation for pediatric 

pneumonia detection and diagnosis. Computer Methods and Programs in 

Biomedicine, 208, 106259. 
[34] Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The 

Bayesian optimization algorithm. In Proceedings of the genetic and 

evolutionary computation conference GECCO-99 (Vol. 1, No. 1999). 
[35] Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian 

optimization of expensive cost functions, with application to active user 

modeling and hierarchical reinforcement learning. arXiv preprint 
arXiv:1012.2599. 

[36] Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for 

hyper-parameter optimization. Advances in neural information 
processing systems, 24. 

[37] Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint 

arXiv:1807.02811. 
[38] Kaya, M., Ulutürk, S., Çetin Kaya, Y., Altıntaş, O., & Turan, B. (2023). 

Optimization of Several Deep CNN Models for Waste Classification. 

Ahmet ZENGIN, Sakarya University, Türkiye, azengin@ sakarya. edu. 
tr, 6(2), 91. 

[39] Koukoulas, S., & Blackburn, G. A. (2001). Introducing new indices for 

accuracy evaluation of classified images representing semi-natural 
woodland environments. Photogrammetric Engineering and Remote 

Sensing, 67(4), 499-510. 

 

BIOGRAPHIES 

MAHİR KAYA, He graduated from the 

Industrial Engineering Department of 

İstanbul Technical University in 2000. 

He received his M.S and Ph.D. degrees 

in 2010 and 2016, respectively from the 

Department of Information Systems at 

Middle East Technical University. His 

research field is machine learning, deep 

learning, mobile cloud computing,  

and optimization. Currently, he works as an Assistant Professor 

in the Department of Computer Engineering at Tokat 

Gaziosmanpaşa University.  

403


