# PAPER DETAILS

TITLE: On Graphs of Dualities of Bipartite Posets

AUTHORS: Selçuk TOPAL

PAGES: 29-30

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/40314



# **Research Article**

# On Graphs of Dualities of Bipartite Posets

# Selçuk Topal

 $Bitlis\ Eren\ University,\ Faculty\ of\ Science\ and\ Art,\ Department\ of\ Mathematics,\ Bitlis\ -\ Turkey\ s. topal@beu.edu.tr$ 

#### **Abstract**

In this paper we introduce some new graphs obtained from bipartite posets. We show that lower-minimal graph of a bipartite poset is isomorphic to upper-maximal graph of dual of the poset by using set representations of the posets by using set representations of the posets.

Keywords: Poset, Lower-minimal graph, Upper-maximal graph

# 1. Preliminaries

In this section we give some definitions we shall use in this paper. We study with finite posets and finite simple graphs.

Definition 1.1. A partial order (Simovici, Dan A. and Djeraba, Chabane, 2008) is a binary relation  $\leq$  over a set P if it has:

- $a \le a$  for all  $a \in P$  (reflexivity),
- if  $a \le b$  and  $b \le a$  then a = b,  $a, b \in P$  (antisymmetry),
- if  $a \le b$  and  $b \le c$  then  $a \le c$ , a,b,  $c \in P$  (transitivity).

Definition 1.2. (Simovici, Dan A. and Djeraba, Chabane, 2008) Let  $P = (X, \le P)$  be a poset and  $x, y \in X$ . If  $x \le P$  y and  $x \ne y$  then x < P y.

Definition 1.3. (Simovici, Dan A. and Djeraba, Chabane, 2008) Let  $P = (X, \leq P)$  be a poset. An element  $x \in X$  is called a maximal element (respectively, a minimal element) of P if there is no element  $y \in X$  with x < P y in P (resp., y < P x in P). We denote the set of all maximal elements of a poset P by max(P), while min(P) denotes the set of all minimal elements of P.

Definition 1.4. (Steiner, G., and Stewart, L. K., 1987) A bipartite poset is a triple  $P = (X,Y;\leq)$ , where  $\leq$  is a partial order on  $X \cup Y$  and if x < y in P, then  $x \in X$  and  $y \in Y$ .  $X = \max(P)$  and  $Y = \min(P)$ .

Definition 1.5. A dual poset  $P^d$  of a poset P is defined to be  $x \le y$  holds in  $P^d$  if and only if  $y \le x$  holds in P.

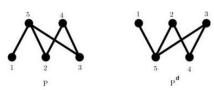


Figure 1. An example for Pd of a poset P

Definition 1.6. (Civan, Y., 2013) Let  $P = (X, \le P)$  be a poset. For a given  $x \in X$ , we define  $min(x) := \{c \in min(P) : c \le P x\}$ .

Definition 1.7. A graph G is an ordered pair of disjoint sets (V,E), where  $E \subseteq V \times V$ . Set V is called the vertex or node set, while set E is the edge set of graph G. A simple graph does not contain self-loops.

Definition 1.8. (Chartrand, G., 1985) Let G = (V, E) and  $G_1 = (V_1, E_1)$  be graphs. G and  $G_1$  are said to be isomorphic ( $G \sim G_1$ ) if there exist a pair of functions  $f: V \longrightarrow V_1$  and  $f: E \longrightarrow E_1$  such that f associates each element in V with exactly one element in  $V_1$  and vice versa; g associates each element in E with exactly one element in E and vice versa, and for each  $V \in V$ , and each  $E \in E$ , if V is an endpoint of the edge E, then E then E is an endpoint of the edge E and E is an endpoint of the edge E.

Definition 1.9. (Skienna. S, 2003) Chromatic number of a graph G,  $\chi(G)$  is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Definition 1.10. (Civan, Y., 2013) Let  $P = (X, \le P)$  be a poset. For a given  $x \in X$ , we define  $max(x) := \{c \in max(P) : x \le P c\}$ .

Definition 1.11. (Civan, Y., 2013) The upper-maximal graph UM(P) = (X, EUM(P)) of P = (X, $\leq$ ) is defined to be the simple graph on X with  $xy \in UM(P)$  if and only if  $x \neq y$  and either max(x)  $\subseteq$  max(y) or max(y)  $\subseteq$  min(x) holds. The graph is called UM-graph.

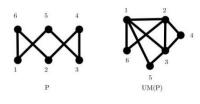


Figure 2. An example for UM-graph of a poset P

Definition 1.12. (Civan, Y., 2013) The lower-minimal graph LM(P) = (X, ELM(P)) of P = (X, $\leq$ ) is defined to be the simple graph on X with xy  $\in$  LM(P) if and only if x  $\neq$  y and

either  $min(x) \subseteq min(y)$  or  $min(y) \subseteq min(x)$  holds. The graph is called LM-graph.

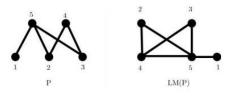


Figure 3. An example for LM-graph of a poset P

# 2. Set Representations of Graphs of Bipartite Posets

We want to obtain lower-minimal graph and uppermaximal graph of dual poset of a bipartite poset by using representations in Definition 1.3 and Definition 1.4 in order to analyze graph theotretical relations between the graphs.

Definition 2.1 Let  $P = (X,Y; \le)$  be a bipartite poset. Set terms are elements of P under interpretation of  $[[\ ]]$  such that  $[[y]] = \{x1,x2,x3,...,xn\}$  where  $y \in Y, x1,x2,x3,...,xn \in X$  and y < x1, y < x2,...,y < xn.

Definition 2.2 Let  $P = (X,Y; \le)$  be a bipartite poset. Upper set terms are elements of P under interpretation of [[ ]] such that  $[[y]]^U = \{x1, x2, x3, ..., xn\}$  where  $y \in Y$ ,  $x1, x2, x3, ..., xn \in X$  and y>x1, y>x2, ..., y>xn.

# 3. Proofs

Proposition 2.1. LM-graph of every bipartite poset is representable by set terms of the poset as Definition 2.1.

Proof. Let  $P = (X,Y;\leq)$  be a bipartite poset. One can obtain  $[[y]] = \{x1,x2,x3,...,xn\}$  for all  $y \in Y$  and  $x1,x2,x3,...,xn \in X$  by taking  $Y = \min(P)$ ,  $X = \max(P)$  and y < x1, y < x2,...,y < xn. Under the circumtances, ELM(XUY) is obtained by taking  $xiy \in ELM(XUY)$  and  $min(xi) \subseteq min(y)$  for all  $y \in Y$  and  $1 \le i < n$ . On the other hand, it is true that  $xixj \in ELM(XUY)$  since  $min(xi) \subseteq min(xj)$  or  $min(xj) \subseteq min(xi)$  for y < xi, y < xj for  $1 \le i$ ,  $j \le n$ . Therefore, the lower-minimal graph is LM(P) = (XUY, ELM(XUY)).

Lemma 2.2. Let  $P = (X,Y; \leq)$  be a bipartite poset with min(P)=X, max(P)=Y and [[xi]] are set terms of P where  $1 \leq i \leq n$  and  $yj \in Y$  such that  $1 \leq j \leq m$ . Then all [[yj]] which hold the condition " if  $yj \in [[xi]]$  then  $xi \in [[yj]]$ " are set terms of  $P^d$  for all  $xi \in X$ ,  $1 \leq i \leq n$  and for all  $yj \in Y$ ,  $1 \leq j \leq m$ .

Proof. Let  $P = (X,Y; \le)$  be a bipartite poset with min(P) = X, max(P) = Y and [[xi]] are set terms of P where  $1 \le i \le n$  and  $yj \in Y$  such that  $1 \le j \le m$ . It is obvious that  $P^d = (X, Y, \le)$  is a bipartite poset with max(P) = X and min(P) = Y. If xi < yj in P than xi > yj in  $P^d$  from Definition 2.1. Therefore, every [[yj]] is a set term in  $P^d$  for all  $yj \in P^d$ .

Theorem 2.3. If  $P = (X,Y; \le)$  is a bipartite poset with min(P)=X, max(P)=Y and [[xi]] are set terms of P where  $1 \le i \le n$  then  $[[xi]]^U$  are upper set terms of  $P^d$  where  $1 \le i \le n$ .

Proof. Let  $P = (X,Y; \leq)$  be a bipartite poset with min(P) = X, max(P) = Y and [[xi]] are set terms of P where  $1 \leq i \leq n$ . Then there exist xi < y1, x < y2, ..., xi < yj,  $1 \leq j \leq m$  in P. xi > y1, xi > y2, ..., xi > yj in  $P^d$  from Definition 1.5. We conclude  $[[xi]]^U$  are upper set terms for  $P^d$  where  $1 \leq i \leq n$  from Definition 2.2.

Corollary 2.4. If P is bipartite poset then  $LM(P) \sim UM(P^d)$  and  $UM(P) \sim LM(P^d)$ .

Proof. It is easy to see from Definition 1.8 and Theorem 2.3.

Corollary 2.5. If P is bipartite poset then  $\chi(LM(P)) = \chi(UM(P^d))$  and  $\chi(LM(P^d)) = \chi(UM(P))$ .

Proof. It is easy to see from Corollary 2.4.

# References

Civan, Y., 2013, Upper Maximal Graphs of Posets, Order, 30(2), pp. 677-688.

Chartrand, G., 1985, Isomorphic Graphs, Introductory Graph Theory, New York, Dover, pp.32-40

Gratzer, G., 1998, Lattice Theory: Faoundation, Springer Scinece and Bussiness Media; pp. 5-6.

Simovici, Dan A. and Djeraba, Chabane, 2008, Partially Ordered Sets, Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics, Springer, 616 p.

Skiena, S., 2003, Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambrodge University Press, pp. 306-316.

Steiner, G., and Stewart, L. K., 1987, A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders, Order, 3(4), pp. 359-367.