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In this paper scattering and diffraction of Gaussian beam by a conductive half-plane is 

studied. To generate Gaussian beam complex point source method is used. To evaluate 

geometrical optics and diffracted fields far-field approximation is used. Obtained 

diffracted and scattered fields plotted and examined numerically by the help of 

MATLAB. 

 

1. Introduction 

Diffraction is a phenomenon that takes place when waves encounter an aperture [1] or obstacle. An obstacle can 

be a wedge [2], disk [3], or a half-plane [4], etc. Examining the diffraction of waves by a half-plane is a 

fundamental task for those who are willing to investigate the scattering process of more complicated geometries 

[5]. The milestone of solving the diffraction of waves by a half-plane was introduced by Sommerfeld in 1896 for 

a perfectly conducting half-plane [6]. In 1927, Raman and Krishnan modified the Sommerfeld formulation and 

experimentally confirmed the results for the diffraction of light by metallic screen [7]. In 1975, Senior studied 

half-plane edge diffraction [8] and then proceeded to diffraction by a resistive half-plane [9]. In 1971, Deschamps 

introduced the Gaussian beam as a bundle of complex rays [10]. Then in 1979, Arthur C. Green et al. introduced 

properties of the shadow cast by a half-screen when illuminated by a Gaussian beam [11]. After these two studies 

of Gaussian beam, researches on beam diffraction by a half-plane, attracted attention as well as the diffraction of 

waves by a half plane. In 1987, Suedan and Jull studied two-dimensional beam diffraction by a half-plane and 

wide slit [12], and they continued their study in 1989, with beam diffraction by half-planes and wedges for 

uniform and asymptotic solutions [13]. In 2015, Umul studied beam diffraction by a resistive half-plane [14], and 

in 2017, diffraction of waves by a conductive half-plane [15], has been studied with more satisfactory results for 

conductive boundary conditions.  

 To the best of our knowledge, beam diffraction by a conductive half-plane has not been studied yet. In this 

study, Gaussian beam diffraction by a conductive half-plane will be investigated and time factor 𝑒𝑗𝜔𝑡, where ω 

is the angular frequency, is considered and suppressed throughout this paper. 

 

2. Theory 

2.1. Scattered Fields by a Conductive Half Plane 

The geometry of experiment is given in Figure 1. A conductive half plane is located at 𝑥 ∈ [0,∞), 𝑦 = 0 𝑎𝑛𝑑 𝑧 ∈

(−∞,∞).  It is illuminated by electrical line source located at (𝜌0, 𝜙0). 𝑄𝑅 and 𝑄𝐸 are the reflection and 

diffraction points respectively. 𝑃 is the observation point. The distance between diffraction point and observer is 

𝜌. 



Çatmakaş CUJSE 20(02): 095-105 (2023) 

 

96 

 

 

 
Figure 1. Geometry of the cylindrical wave diffraction by a conductive half-plane 

 

Conductive half-plane supports only magnetic surface current density [16]. The conductive half-plane’s reflection 

and transmission coefficients can be named as Γ and Τ respectively and introduced as [17]  

 

Γ =
sin𝛽

sin𝛽 + sin𝜃
 , (1) 

and 

 

Τ =
sin𝜃

sin𝛽 + sin 𝜃
 . 

 

(2) 

Where sin𝜃 is equal to 2𝑍0𝑅𝑚 in which 𝑍0 is the impedance of free space, and 𝑅𝑚 is the conductivity parameter 

of the surface. 𝛽 is the reflection angle and it can be defined as, 

 

𝛽 = sin−1 ⌊
𝜌 sin𝜙0 + 𝜌0 sin𝜙0

√𝜌2 + 𝜌0
2 − 2𝜌𝜌0 cos(𝜙 + 𝜙0)

⌋ . (3) 

 

Since the electrical line source lies along the z-axis, electric field is polarized in the z-direction, and this makes 

the problem two-dimensional. The radiated cylindrical wave by the electric line source can be defined as, 

 

𝑢𝑖 = 𝑢0
𝑒−𝑗𝑘𝑅𝑖

√𝑘𝑅𝑖
 (4) 

 

where 𝑢𝑖 is the incident electric field intensity. 𝑢0 is the complex amplitude, 𝑘 is the wavenumber and denoted 

by 𝑘 = 2𝜋/𝜆, and 𝑅𝑖 is the distance between observer and line source and 𝑅𝑖 can be expressed as, 

 

𝑅𝑖 = √𝜌
2 + 𝜌0

2 − 2𝜌𝜌0 cos(∅ − ∅0) . (5) 

 

The geometric optic (GO) field is the summation of incident, transmitted and reflected fields. Then GO field can 

be written as 

𝑢𝐺𝑂 = 𝑢𝑖𝐺𝑂 + 𝑢𝑡𝐺𝑂 + 𝑢𝑟𝐺𝑂 , (6) 
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In our case when the conductive half-plane is illuminated by cylindrical wave given in Eq. (4). Then GO field 

can be defined as 

 

𝑢𝐺𝑂 = 𝑢𝑖𝑈(−𝜉𝑖) + Τ𝑢𝑖𝑈(𝜉𝑖) + Γ𝑢𝑟𝑈(−𝜉𝑟) . (7) 

 

Where 𝑈(𝑥) is the unit step function which is equal to one if 𝑥 > 0 and zero, otherwise. 𝜉𝑖 and 𝜉𝑟 are detour 

parameters for incident and reflected fields respectively and can be defined as 

 

𝜉𝑖 = −2√
𝑘𝜌𝜌0

𝜌 + 𝜌0 + 𝑅𝑖
cos

𝜙 − 𝜙0
2

 , (8) 

 

𝜉𝑟 = −2√
𝑘𝜌𝜌0

𝜌 + 𝜌0 + 𝑅𝑟
cos

𝜙 + 𝜙0
2

 , (9) 

 

and 𝑢𝑟 is the reflected wave and can be described as 

 

𝑢𝑟 = 𝑢0
𝑒−𝑗𝑘𝑅𝑟

√𝑘𝑅𝑟
 , (10) 

 

where 𝑅𝑟 is the distance between an image source which located at (𝜌0, 2𝜋 − 𝜙0) and the observation point P. 

𝑅𝑟 can be defined as follows 

𝑅𝑟 = √𝜌
2 + 𝜌0

2 − 2𝜌𝜌0cos (∅ + ∅0) (11) 

 

According to Senior [8,9] the high-frequency asymptotic expression of the edge-diffracted wave by conductive 

half-plane can be written as 

 

𝑢𝑑 =
𝑒−𝑗

𝜋
4

√2𝜋

2 cos
𝜙
2 cos

𝜙0
2

sin𝜃

𝐾(𝜙, 𝜃)𝐾(𝜙0, 𝜃)

cos𝜙 + cos𝜙0

𝑒−𝑗𝑘𝜌0

√𝑘𝜌0

𝑒−𝑗𝑘𝜌

√𝑘𝜌
 (12) 

 

Where the K function is defined to be 

𝐾(𝛾, 𝜃) =
4√sin 𝜃 sin (

𝛾
2)

[1 + √2 cos
(
𝜋
2) − 𝛾 + 𝜃

2 ] [1 + √2 cos
(
3𝜋
2 ) − 𝛾 − 𝜃

2 ]

×

{
  
 

  
 
𝜓𝜋 (

(
3𝜋
2 ) − 𝛾 − 𝜃

2 )𝜓𝜋 (
(
𝜋
2) − 𝛾 + 𝜃

2 )

⌊𝜓𝜋 (
𝜋
2)⌋

2

}
  
 

  
 
2

 

(13) 

 

and  𝜓𝜋 is the Malyughinetz function [18], which can be defined as 
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𝜓𝜋 = 𝑒
−1
8𝜋∫

𝜋 sin 𝑣 − 2√2𝜋 sin (
𝑣
2) + 2𝑣

cos 𝑣

𝑥

0

𝑑𝑣     (14) 

 

The uniform diffracted wave can be written as  

 

𝑢𝑑 =
cos

𝜙
2 𝐾(𝜙, 𝜃)𝐾(𝜙0, 𝜃)

sin𝜃 sin
𝜙0
2

× {sin
𝜙 − 𝜙0
2

√
2𝑅𝑖

𝜌 + 𝜌0 + 𝑅𝑖

𝑒−𝑗𝑘𝑅𝑖

√𝑘𝑅𝑖
𝑠𝑖𝑔𝑛(𝜉𝑖)𝐹[|𝜉𝑖|]

− sin
𝜙 + 𝜙0
2

√
2𝑅𝑟

𝜌 + 𝜌0 + 𝑅𝑟

𝑒−𝑗𝑘𝑅𝑟

√𝑘𝑅𝑟
𝑠𝑖𝑔𝑛(𝜉𝑟)𝐹[|𝜉𝑟|]} 

    (15) 

 

where sign(x) is signum function and defined as  

 

𝑠𝑖𝑔𝑛(𝑥) = {

1,    𝑖𝑓 𝑥 > 0
0,    𝑖𝑓 𝑥 = 0
−1, 𝑖𝑓 𝑥 < 0 ,

     (16) 

 

And 𝐹[𝑥] is the Fresnel function [19] given by 

 

𝐹[𝑥] =
𝑒−𝑗

𝜋
4

√𝜋
∫ 𝑒−𝑗𝑣

2
𝑑𝑣

∞

𝑥

     (17) 

 

In our study, it is accepted that 𝑘𝜌 ≫ 1 and this makes the observer at far field region [16]. And also, it is accepted 

that 𝜌 is adequately greater than 𝜌0. So in the far field, equations (5,8,9,11) can be simplified and approximated 

by, 

 

𝑅𝑖 ≈ 𝜌 − 𝜌0 cos(𝜙 − 𝜙0) ,     (18) 

 

𝑅𝑟 ≈ 𝜌 − 𝜌0 cos(𝜙 + 𝜙0) ,     (19) 

  

 

𝜉𝑖 ≈ −√2𝑘𝜌0 cos
𝜙 − 𝜙0
2

 ,     (20) 

  

 

and 

𝜉𝑟 ≈ −√2𝑘𝜌0 cos
𝜙 + 𝜙0
2

     (21) 

 

so the uniform diffracted fields of Senior becomes 
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𝑢𝑑 ≈
cos

𝜙
2 𝐾(𝜙, 𝜃)𝐾(𝜙0, 𝜃)

sin(𝜃) sin
𝜙0
2

× {sin
𝜙 − 𝜙0
2

𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0) 𝑠𝑖𝑔𝑛(𝜉𝑖)𝐹[|𝜉𝑖|]

− sin
𝜙 + 𝜙0
2

𝑒𝑗𝑘𝜌0 cos(𝜙+𝜙0)𝑠𝑖𝑔𝑛(𝜉𝑟)𝐹[|𝜉𝑟|]}
𝑒−𝑗𝑘𝜌

√𝑘𝜌
 

    (22) 

 

in far-field approximation The GO waves can be written as 

 

𝑢𝐺𝑂 ≈ 𝑢0 [
𝑒−𝑗𝑘𝑅𝑖

√𝑘𝑅𝑖
𝑈(−𝜉𝑖) + Τ

𝑒−𝑗𝑘𝑅𝑖

√𝑘𝑅𝑖
(𝜉𝑖) − Γ

𝑒−𝑗𝑘𝑅𝑟

√𝑘𝑅𝑟
𝑈(−𝜉𝑟)] ,     (23) 

 

which yields 

𝑢𝐺𝑂 ≈ 𝑢0
𝑒−𝑗𝑘𝜌

√𝑘𝜌
[𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0)𝑈(−𝜉𝑖) +

sin 𝜃

sin𝛽 + sin𝜃
𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0)𝑈(𝜉𝑖)

−
sin𝛽

sin𝛽 + sin𝜃
𝑒𝑗𝑘𝜌0 cos(𝜙+𝜙0)𝑈(−𝜉𝑟)] . 

    (23) 

 

2.2. Beam Diffraction 

To evaluate Gaussian beam diffraction from conductive half-plane, cylindrical wave radiating electric line source 

needs to be converted to Gaussian beam source. For this propose, complex point source method [15] is going to 

be used. In this method, the location of the line source is going to be defined in the complex coordinates as shown 

in Figure 2. The beam half waist is equal to 𝑏, intersection angle of the x axis and main axis of the beam is equal 

to 𝛼. In complex coordinates, reflection angle is denoted by 𝛽𝑐 and defined as 

 

𝛽𝑐 = sin
−1 ⌊

𝜌 sin𝜙0 + 𝜌0 sin𝜙0 + 𝑗𝑏 sin𝛼

√𝜌2 + 𝜌0
2 − 𝑏2 − 2𝜌𝜌0 cos(𝜙 + 𝜙0) − 𝑗2𝜌𝑏 cos(𝜙 + 𝛼) + 𝑗2𝜌0𝑏 cos(𝜙0 − 𝛼)

⌋ ,    (24) 

 

angle of incidence is denoted by 𝜙𝑐𝑖 and defined as 

𝜙𝑐𝑖 = tan
−1
𝜌 sin𝜙0 + 𝑗𝑏 sin𝛼

𝜌 cos𝜙0 + 𝑗𝑏 cos𝛼
      

  
 

    (25) 

and distance between complex source and diffraction point is 𝜌𝑐𝑖 and defined as 

𝜌𝑐𝑖 = √𝜌0
2 − 𝑏2 + 2𝑗𝑏𝜌0 cos(∅0 − 𝛼) .     (26) 
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Figure 2. Geometry of the electric line source in complex coordinates 

 

The distances between the observer and source 𝑅𝑖, and the distance between the image source and observer 𝑅𝑟 

in complex coordinates are defined as 

𝑅𝑖 = √𝜌
2 + 𝜌0

2 − 𝑏2 − 2𝜌𝜌0 cos(∅ − ∅0) − 𝑗2𝜌 cos(𝜙 − 𝛼) + 𝑗2𝜌 cos(𝜙0 − 𝛼)     (27) 

 

and 

𝑅𝑟 = √𝜌
2 + 𝜌0

2 − 𝑏2 − 2𝜌𝜌0 cos(∅ + ∅0) − 𝑗2𝜌 cos(𝜙 + 𝛼) + 𝑗2𝜌 cos(𝜙0 + 𝛼).     (28) 

 

By far field approximation 𝑅𝑖 and 𝑅𝑟 becomes 

𝑅𝑖 ≈ 𝜌 − 𝜌0 cos(𝜙 − 𝜙0) − 𝑗𝑏 cos(𝜙 − 𝛼)     (29) 

 

and 

𝑅𝑟 ≈ 𝜌 − 𝜌0 cos(𝜙 + 𝜙0) − 𝑗𝑏 cos(𝜙 + 𝛼)     (30) 

 

respectively, and the GO waves can be introduced in the complex coordinates.  

 

𝑢𝐺𝑂 ≈ 𝑢0
𝑒−𝑗𝑘𝜌

√𝑘𝜌
[𝑒−𝑘𝑏 cos(𝜙−𝛼)𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0)𝑈(−𝑠𝑖)

+
sin𝜃

sin𝛽𝑐 + sin𝜃
𝑒−𝑘𝑏 cos(𝜙−𝛼)𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0)𝑈(𝑠𝑖)

−
sin𝛽𝑐

sin𝛽𝑐  + sin𝜃
𝑒−𝑘𝑏 cos(𝜙+𝛼)𝑒𝑗𝑘𝜌0 cos(𝜙+𝜙0)𝑈(−𝑠𝑟)] , 

    (31) 

 

sin𝛽 at reflection and transmission coefficients given in Eq.(1) and Eq.(2) is replaced with sin𝛽𝑐 which is the 

sine function of the same angle in complex coordinates. The function 𝑠𝑖,𝑟 is defined by 
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𝑠𝑖,𝑟 = 𝑅𝑒(𝜉𝑖,𝑟) − 𝐼𝑚(𝜉𝑖,𝑟)     (32) 

 

where 𝑅𝑒(𝑧) and 𝐼𝑚(𝑧) takes only real and imaginary parts of z respectively. The detour parameters in complex 

coordinates defined by. 

𝜉𝑖 ≈ −√2𝑘𝜌𝑐 cos
𝜙 − 𝜙𝑐
2

 ,     (33) 

 

and 

𝜉𝑟 ≈ −√2𝑘𝜌𝑐 cos
𝜙 + 𝜙𝑐
2

 .     (34) 

 

The diffracted beam field can be expressed by summation of the incident and reflected diffracted fields as 

𝑢𝑑 = 𝑢𝑖𝑑 + 𝑢𝑟𝑑       (35) 

 

we can get the uniform expressions of the diffracted fields with the help of given equations (19a) and (19b) in 

[20], which are given in a combined form of, 

𝑢𝑖𝑑 ,𝑟𝑑= 𝑢𝑖,𝑟 𝑠𝑖𝑔𝑛(𝑠𝑖,𝑟)𝐹[|𝑠𝑖,𝑟| + 𝑠𝑖𝑔𝑛(𝑠𝑖,𝑟)𝛾𝑖,𝑟].      (35) 

 

The uniform expressions of incident diffracted and reflected diffracted fields could be defined respectively, 

 

𝑢𝑖𝑑 ≈
2 cos (

𝛽𝑐
2 ) cos (

𝜙
2)𝐾(𝜙, 𝜃)𝐾(𝛽𝑐 , 𝜃)

sin(𝜃) sin(𝛽𝑐)

𝑒−𝑗𝑘𝜌

√𝑘𝜌

× {sin
𝜙 − 𝜙𝑐𝑖
2

𝑒𝑗𝑘𝜌0 cos(𝜙−𝜙0)𝑒−𝑘𝑏 cos(𝜙−𝛼) 𝑠𝑖𝑔𝑛(𝑠𝑖)𝐹[|𝑠𝑖| + 𝑠𝑖𝑔𝑛(𝑠𝑖)𝛾𝑖]} 

    (37) 

and 

 

𝑢𝑟𝑑 ≈ −
2 cos (

𝛽𝑐
2 ) cos (

𝜙
2)𝐾

(𝜙, 𝜃)𝐾(𝛽𝑐 , 𝜃)

sin(𝜃) sin(𝛽𝑐)

𝑒−𝑗𝑘𝜌

√𝑘𝜌

× {sin
𝜙 + 𝜙𝑐𝑖
2

𝑒𝑗𝑘𝜌0 cos(𝜙+𝜙0)𝑒−𝑘𝑏 cos(𝜙+𝛼) 𝑠𝑖𝑔𝑛(𝑠𝑟)𝐹[|𝑠𝑟| + 𝑠𝑖𝑔𝑛(𝑠𝑟)𝛾𝑟]}, 

    (38) 

 

and 𝛾𝑖,𝑟 can be introduced as, 

𝛾𝑖,𝑟 = √2𝐼𝑚(𝜉𝑖,𝑟)𝑒
𝑗
𝜋
4  .     (39) 

 

The total incident scattered field can be defined as 

𝑢𝑖𝑠 = 𝑢𝑖𝐺𝑂 + 𝑢𝑡𝐺𝑂 + 𝑢𝑖𝑑       (40) 
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and total reflected scattered field can be defined as 

𝑢𝑟𝑠 = 𝑢𝑟𝐺𝑂 + 𝑢𝑟𝑑       (41) 

  

3. Numerical Results  

In this part, behavior of the GO, diffracted and scattered fields are examined numerically by MATLAB software. 

For numerical calculations, 𝜌0 is taken 2𝜆 where 𝜆 is wavelength, 𝜌 is taken 20𝜆 to satisfy far-field 

approximation. The angle of incidence 𝜙0 is taken 60°, the beam half waist 𝑏 is taken 𝜆/2, the intersection angle 

𝛼 is taken 30°, and sin𝜃 is going to be taken 4. On plots, the observation angle 𝜙 varies from 0° to 360° . 

 

 Figure 3. shows the variation of incident GO, diffracted and scattered fields according to observation angle. 

The incident geometric optic field is cut around 247° as a result of multiplication with 𝑈(−𝑠𝑖). The incident 

diffracted field has shadow boundary around 247°. If the conductive half plane were illuminated by plane 

wave[15]  the shadow boundary would be located at 𝜋 + 𝜙0 which is 240°. The 7° shift is the result of complex 

location of the source, as expected result. When incident scattered field is taken into account, it is seen that the 

field is continuous among all angles of observation. Incident scattered field is summation of incident GO, 

transmitted GO, and incident diffraction fields, and the continuity is provided by incident diffracted field. 

 

 Figure 4. shows the variation of reflected GO, diffracted, and scattered fields according to observation angle. 

The reflected GO field is cut around 112.9°. This cut is also resulted from multiplier 𝑈(−𝑠𝑟). The reflected 

diffracted field has shadow boundary around 112.9 which is also shifted 7.1° when it is compared to plane wave 

illuminated conductive half-plane [15]. As it can be seen in the figure the reflected scattered field has continuity 

all around the observer angles, and it’s the validation of the calculations and far-field approximation. 

             Figure 3. Incident GO diffracted and scattered fields. 
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     Figure 4. Reflected GO, diffracted and scattered fields. 

 

 In Figure 5. Incident reflected and total diffracted fields are shown. Total diffracted field is harmonious with 

incident and reflected diffracted fields. When the observation angle is equal to 0°, 180°, and 360°, total fields go 

to zero which is very well expected result when Senior’s solution taken into account. Left hand side of the total 

diffracted field is mostly influenced by reflected diffracted fields while right hand side mostly effected by incident 

diffracted fields. The shadow boundaries of total diffracted field is observed ad 113.5° and 246°5 respectively. 

The reason of shadow boundaries differing slightly from previously given results is interference of the reflected 

and incident diffracted fields. 

 

              Figure 5. Incident reflected and total diffracted fields. 
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4. Comparisons with Resistive Half Plane 

In Figure 5. reflected GO, diffracted, and scattered fields of resistive and conductive half planes are plotted by 

MATLAB, respectively. For simulations, parameters are taken as given in section 3, except for 𝜌 , which is taken 

9𝜆 instead of 20𝜆 to obtain the same results presented in [14]. For comparisons, the resistive half plane is chosen 

because resistive and conductive half planes are electromagnetic duals of each other. The one’s reflection 

coefficient is the other’s transmission coefficient. Both reflected geometric optical fields took their maximum 

value at 112.9°, as same as reflected diffracted fields. Moreover, reflected scattered field took its maximum value 

at 98.5°, just as in [14]. The results show that the geometry of the experiment is set and simulated correctly when 

compared to the results in the literature. The only difference in the plots is intensity levels, resulting from the 

different reflection coefficients of the surfaces.  

Figure 6. Comparison of, Reflected GO, diffracted and scattered fields from Resistive and 

Conductive Half Planes 

 

5. Conclusions 

In this study, the diffraction and scattering process of a Gaussian beam by a conductive half plane is studied. To 

accomplish this process, the solution of Senior is considered. For the mathematical modelling of the Gaussian 

beam, the complex point source method is used. With the aid of [20], uniform expressions of the diffracted fields 

are obtained. Numerical results for GO, diffracted and scattered waves are calculated and plotted by means of 

MATLAB. The shadow boundary shifts which caused by complex source are observed. Also, the changes on 

incident and reflected diffracted fields are observed according to conductive of the surface. 
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