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ABSTRACT 
 

Statistical modeling is essential to revealing the relationships between variables. These statistical models can be classified as 

parametric and nonparametric methods in studies using crisp values. However, most of the collected data are inherently fuzzy. 

In this context, the fuzzy expression of methods using precise data is a matter of curiosity for researchers. The methods with 

fuzzy input and output variables have been developed for a long time. The study aims to describe nonparametric local 

polynomial regression models in fuzzy structure to examine the results for cases where the input variable is a crisp number, 

and the output variable is a symmetrical triangular and trapezoidal fuzzy number. According to the results, the bandwidth 

parameter was smaller in models where the degree of the polynomial was taken as one and larger in the case of three. In 

addition, the bandwidth parameter was found to be larger in models using the Epanechnikov kernel. 

 

Keywords: Fuzzy local polynomial regression, Symmetric triangular fuzzy number, Trapezoidal fuzzy number, Generalized 

cross-validation, Mean square error 
 

 

1. INTRODUCTION  
 

Regression analysis is a method that is frequently used to reveal the functional form of the relationship 

between at least two variables and to produce predictions. However, some information that must be 

obtained before the analysis and some assumptions that must be provided divide regression analysis into 

two kinds as parametric and nonparametric. In cases where the assumptions are met and the shape of 

the functional relationship between the variables is known, parametric approaches are adopted; 

otherwise, nonparametric techniques are followed. It is an essential advantage of nonparametric 

methods. It provides a versatile method in investigating the general relationship between two variables 

and can produce estimates without reference to a particular parametric model. Both linear and nonlinear 

relationships can be modeled [1, 2]. There are many studies on parametric and nonparametric regression 

models in the literature. The vast majority of these studies were concerned with crisp data. It is common 

to use variables that do not contain fuzziness, where the information about the dependent and 

independent variables have crisp values. However, not all data in nature are precise. There are also data 

that contain uncertainty, in other words, fuzzy at its core. In order to derive and use such data, it is 

crucial to process and express classical statistical methods with fuzzy information.  
 

There are relatively more studies on fuzzy parametric regression models in the literature [3-15]. The 

interest in parametric methods continues from the past to the present. However, there are few studies 

due to many parameters used in nonparametric regression methods and the relative difficulty of their 

expression and comparison. 

 

Nonparametric regression models mostly focused on smoothing techniques. Kernel smoothing, k-

nearest neighbor smoothing, local polynomial smoothing, and spline smoothing are the most used 

techniques. In the process of expressing nonparametric regression models in a fuzzy structure, different 

approaches have been put forward within the framework of smoothing techniques. 



Yıldız and Memmedli / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 22 (4) – 2021 

 

354 

In their study, Cheng and Lee [16] expressed the fuzzy nonparametric regression method by fuzzifying 

the k-nearest neighbor and kernel regression estimators. Cheng and Lee [17] used radial basis function 

networks in fuzzy regression expression. Wang et al. [18] used kernel smoothing and k-nearest neighbor 

techniques for the fuzzy expression of the local polynomial regression model. Yildiz [19], Memmedli 

and Yildiz [20] and Memmedli et al. [21] stated the formulation that can be used to calculate the cross-

validation (CV), generalized cross-validation criteria (GCV), and the averaged squared error value, 

which is the model performance criterion, for the fuzzy structure in the fuzzy nonparametric local 

polynomial regression approach. Razzaghnia and Danesh [22] performed the selection of the best 

smoothing parameter in the local linear smoothing technique when the input variable is crisp, and the 

output variable is a trapezoidal fuzzy number. Danesh et al. [23] used the adaptive-neuro fuzzy system 

to estimate the fuzzy nonparametric regression function with precise input and fuzzy output. Hesamian 

and Akbari [24] extended the classical bandwidth selection for the population is normal and known or 

unknown fuzzy variance. In addition, different fuzzy distance approaches and cross-validation criteria 

were calculated and compared. Hesamian and Akbari [25] proposed a fuzzy spline method. They 

compared other fuzzy nonlinear regression methods in the literature with the proposed method. The 

results obtained with the proposed method produced better predictions. Hesamian and Akbari [26] 

expressed a fully fuzzy nonparametric regression model with a combination of both parametric and 

nonparametric methods. Naderkhani et al. [27] conducted research on selecting the best smoothing 

parameter for local linear smoothing, k-nearest neighbor smoothing, and kernel smoothing techniques 

from nonparametric methods based on adaptive neuro-fuzzy inference systems. Danesh et al. [28] 

presented a fuzzy inference system for fuzzy regression function prediction. In this study, they were 

made a comparative study for other fuzzy nonparametric regression technics. The results showed that 

the proposed method significantly decrease the boundary effect. 
 

The aim of this study is to express the method in a fuzzy structure for the local polynomial approach, 

which is one of the nonparametric regression methods when an input variable is a crisp number, and an 

output variable is a fuzzy number. For the cases where the output variable is a symmetric triangular fuzzy 

number and a trapezoidal fuzzy number, the results are revealed by a simulation study. In the literature, 

there are many studies on the expression of parametric regression in the fuzzy structure. However, the 

existence of a small number of studies on fuzzy nonparametric methods and their openness to development 

have been the main motivation source. In cases where assumptions about parametric models are not 

provided, nonparametric methods are used. In this sense, the study will contribute to the literature by 

applying the nonparametric local polynomial regression method on different fuzzy number types. 

 

This paper is organized as follows. Section two gives brief information about some definitions of various 

technical expressions. In section three, the methodology is expressed in a broader framework, and 

section four gives simulation study results. The last section gives the conclusions of the study. 

 

2. DEFINITIONS 
 

In this part of the study will be explained the concept of fuzzy numbers and the definitions of symmetric 

triangular fuzzy numbers, trapezoidal fuzzy numbers, and Diamond distance. 

 

Definition 1 – Fuzzy Number:  

𝑋 is a classical set (universe) and 𝜇𝐴(𝑥): 𝑋 → [0,1] represents the membership function, 𝐴 is defined as 

the set of the following pairs as in Equation (1). 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)), 𝑥 ∈ 𝑋} (1) 

If the maximum membership value of the fuzzy set A is equal to one, the normality condition is met (for 

∃𝑥 ∈ 𝑋, if  𝜇𝐴(𝑥) = 1). For ∀𝑥1 ∈ 𝑋, ∀𝑥2 ∈ 𝑋 and 𝜆 ∈ [0,1], 𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥
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min(𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)) the fuzzy set is defined as convex if and only if each α-cut is a convex set. A 

normal and convex fuzzy set A of the set of real numbers ℜ is called a fuzzy number [29].      
   

Definition 2- LR Fuzzy Number: 
 

The LR representation of the membership function 𝜇𝑀(𝑥) for a fuzzy number 𝑀 is defined by the 

Equation (2). 

𝜇𝑀(𝑥) = {
𝐿[(𝑚 − 𝑥)/𝛼], 𝑥 < 𝑚, 𝛼 > 0
    1,                      𝑥 = 𝑚

𝑅[(𝑥 −𝑚)/𝛽], 𝑥 > 𝑚, 𝛽 > 0
 (2) 

The 𝐿(𝑥) and 𝑅(𝑥) functions satify the following conditions for ℜ+ → [0,1]. 

i. 𝐿(𝑥) = 𝐿(−𝑥), 𝑅(𝑥) = 𝑅(−𝑥) 
ii. 𝐿(0) = 1, 𝑅(0) = 1 

iii. 𝐿 and 𝑅 does not increase in the range [0,∞] (for 𝑥 ≥ 0, 𝐿(𝑥) and 𝑅(𝑥) are definitely 

decreases.) 

The 𝐿𝑅 fuzzy number is written as 𝑀 = (𝑚, 𝛼, 𝛽)𝐿𝑅 [29].  

 

Definition 3- Symmetric Triangular Fuzzy Number: 

When 𝐴 = (𝑎1, 𝑎2, 𝑎3) is a fuzzy number, 𝑎1 is the lower limit of fuzzy number, 𝑎2 is the center of 

fuzzy number and 𝑎3 is the upper limit of fuzzy number, and if it is defined as Equation (3), it is named 

triangular fuzzy number.   

𝜇𝐴(𝑥) =

{
 
 

 
 

  0,          𝑥 < 𝑎1
𝑥 − 𝑎1

𝑎2 − 𝑎1
, 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3 − 𝑥

𝑎3 − 𝑎2
, 𝑎2 ≤ 𝑥 ≤ 𝑎3

  0,          𝑥 > 𝑎3

 (3) 

If 𝑎2 − 𝑎1 = 𝑎3− 𝑎2, A is named as symmetric triangular fuzzy number [30]. 

 

Definition 4- Trapezoidal Fuzzy Number: 
 

𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is a trapezoidal fuzzy number, and it contains many points in its structure whose 

membership degree is equal to 1. The trapezoidal fuzzy number is expressed with a membership function 

in Equation (4). 

𝜇𝐴(𝑥) =

{
 
 

 
 

 0,       𝑥 < 𝑎1

     
𝑥−𝑎1

𝑎2−𝑎1
,      𝑎1 ≤ 𝑥 ≤ 𝑎2

             1,     𝑎2 ≤ 𝑥 ≤ 𝑎3

  
𝑎4−𝑥

𝑎4−𝑎3
,    𝑎3 ≤ 𝑥 ≤ 𝑎4

    0,     𝑥 > 𝑎4

  (4) 

A trapezoidal fuzzy number turns into a triangular fuzzy number if 𝑎2 = 𝑎3 [30]. 
 

Definition 5- Diamond Distance:  
 

The two LR fuzzy numbers like 𝐴 = (𝑙𝐴,𝑐𝐴,𝑢𝐴,)𝐿𝑅 and 𝐵 = (𝑙𝐵,𝑐𝐵,𝑢𝐵,)𝐿𝑅, the distance between these 

numbers is defined by Equation (5) using Diamond distance. It is a distance method that is frequently 

used to operate between two fuzzy numbers [13].  
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𝑑2(𝐴, 𝐵) = (𝑙𝐴 − 𝑙𝐵)
2 + (𝑐𝐴 − 𝑐𝐵)

2 + (𝑢𝐴 − 𝑢𝐵)
2 (5) 

3. METHODOLOGY 
 

The fuzzy expression of local polynomial regression, bandwidth selection criteria, and model 

performance criteria will be discussed in this part of the study. 

 

3.1. Fuzzy Local Polynomial Regression  
 

The purpose of fuzzy techniques is to include all the inherent uncertainty in the data into the model. 

Therefore, models based on fuzzy data contain more information than models in which the original 

uncertainty in the data is rejected or optionally omitted [31]. In this respect, it is essential to express all 

methods in fuzzy structure to be used in fuzzy data. When expressed with such fuzzy models, datasets 

with inherent fuzziness give better and more effective results. A fuzzy nonparametric local polynomial 

regression model will be expressed in this part of the study. Considering the case where the input 

variable X is a crisp number and the output variable Y is a fuzzy number, a fuzzy nonparametric 

regression model with a single explanatory variable is expressed as in Equation (6). 

�̃� = 𝜇(𝑥) {+} ε    (6) 

Here, 𝜇(𝑥) = (𝑙(𝑥), 𝑐(𝑥), 𝑢(𝑥))𝐿𝑅 is the fuzzy function defined in the crisp set 𝒟 and whose values are 

𝐿𝑅 fuzzy numbers, ε is the fuzzy error term. The {+} symbol shows the operator that measures the 

difference between the observed and estimated fuzzy outputs whose definition depends on the fuzzy 

ranking methods used [16, 18]. Assuming that (𝑥𝑖, 𝑦𝑖) (𝑖 = 1,2,… , 𝑛) are observation data for the model 

(6) with crisp inputs and 𝐿𝑅 fuzzy outputs, for each output �̃�, the 𝑐𝑦 is the center, 𝛼𝑦 and 𝛽𝑦 are the left 

and right spreads components of LR fuzzy number as (𝑐𝑦, 𝛼𝑦, 𝛽𝑦). Taking 𝑙𝑦 = 𝑐𝑦 − 𝛼𝑦 and 𝑢𝑦 = 𝑐𝑦 +

𝛽𝑦, this number can be written as (𝑙𝑦, 𝑐𝑦, 𝑢𝑦)𝐿𝑅 with the help of left, center, and right limit points. The 

membership function for 𝐴 = (𝑙𝐴, 𝑐𝐴, 𝑢𝐴)𝐿𝑅 that is a 𝐿𝑅 fuzzy number with 𝑙𝐴, 𝑐𝐴 ve 𝑢𝐴 the lower limit, 

center, and upper limit with real number as expressed as Equation (7).  

𝜇𝐴(𝑡) =

{
 
 

 
 

 

𝐿 (
𝑐𝐴 − 𝑡

𝑐𝐴 − 𝑙𝐴
),       𝑙𝐴 ≤ 𝑡 ≤ 𝑐𝐴

𝑅 (
𝑡 − 𝑐𝐴
𝑢𝐴 − 𝑐𝐴

) , 𝑐𝐴 ≤ 𝑡 ≤ 𝑢𝐴 

           0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

Here, the functions 𝐿(. ) and 𝑅(. ) are continuous, strictly decreasing in the interval [0,1] and 𝐿(0) =

𝑅(0) = 1, 𝐿(1) = 𝑅(1) = 0. In this case, Equation (5) becomes the expression in Equation (8).  

�̃� = 𝜇(𝑥) {+} ε = (𝑙(𝑥), 𝑐(𝑥), 𝑢(𝑥))𝐿𝑅{+} ε (8) 

𝑙(𝑥), 𝑐(𝑥), 𝑢(𝑥) are the left, center and right limit functions of a 𝐿𝑅 function, when they have a 

continuous derivative of order (𝑝 + 1)𝑡ℎ in domain 𝒟, these functions can be written as Equation (9) as 

approximately pth order Taylor polynomial with the neighborhood of a given point 𝑥0 ∈ 𝒟.  

𝑙(𝑥) ≈ 𝑙(𝑥0) + 𝑙
′(𝑥0)(𝑥 − 𝑥0) + ⋯+

𝑙(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝 

𝑐(𝑥) ≈ 𝑐(𝑥0) + 𝑐
′(𝑥0)(𝑥 − 𝑥0) + ⋯+

𝑐(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝 

𝑢(𝑥) ≈ 𝑢(𝑥0) + 𝑢
′(𝑥0)(𝑥 − 𝑥0) + ⋯+

𝑢(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝  

(9) 
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In the method using the weighted least squares approach, the Diamond distance, which is a distance 

measurement for fuzzy sets, will be taken into account to calculate the difference between the actual and 

predicted values [13]. The application of the Diamond distance to the local polynomial fit estimation is 

expressed by Equation (10). 

 
∑ 𝑑2(𝜇(𝑥𝑖), 𝑦𝑖)𝐾ℎ(|𝑥𝑖 − 𝑥0|) 
𝒏
𝒊=𝟏 = 

∑ 𝑑2 (( 𝑙(𝑥𝑖), 𝑐(𝑥𝑖), 𝑢(𝑥𝑖)) , (𝑙𝑦𝑖 , 𝑐𝑦𝑖 , 𝑢𝑦𝑖) )
𝒏
𝒊=𝟏 𝐾ℎ(|𝑥𝑖 − 𝑥0|) =  

∑ (𝑙𝑦𝑖 − 𝑙(𝑥0) − 𝑙
′(𝑥0)(𝑥 − 𝑥0) − ⋯−

𝑙(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝 )
𝟐

𝐾ℎ(|𝑥𝑖 − 𝑥0|)
𝒏
𝒊=𝟏 + 

∑ (𝑐𝑦𝑖 − 𝑐(𝑥0) − 𝑐
′(𝑥0)(𝑥 − 𝑥0) − ⋯−

𝑐(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝 )
𝟐

𝐾ℎ(|𝑥𝑖 − 𝑥0|)
𝒏
𝒊=𝟏 + 

∑(𝑢𝑦𝑖 − 𝑢(𝑥0) − 𝑢
′(𝑥0)(𝑥 − 𝑥0) − ⋯−

𝑢(𝑝)(𝑥0)

𝑝!
(𝑥 − 𝑥0)

𝑝 )

𝟐

𝐾ℎ(|𝑥𝑖 − 𝑥0|)

𝒏

𝒊=𝟏

 

(10) 

 

The primary purpose is to minimize Equation (10). Minimizing the value of each sum separately will 

also help to obtain the desired solution. For a given kernel function 𝐾(∙) and smoothing parameter h, 

𝐾ℎ(|𝑥𝑖 − 𝑥0|) =
1

ℎ
𝐾 (

|𝑥𝑖−𝑥0|

ℎ
), 𝑖 = 1,2, … , 𝑛, is a weight function whose role is to assign more weight to 

observations close to a given point 𝑥0 and less to points farther away. Equation (11) expresses the Gauss 

kernel function, and Equation (12) represents the general structure of the Epanechnikov kernel function. 

𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2  (11) 

𝐾(𝑥) = {
0.75(1 − 𝑥2),    |𝑥| < 1

              0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
 (12) 

The kernel functions are closely related to the smoothing parameter in models. In local polynomial 

models, the degree of the polynomial and the selected smoothing parameter are significant to establish 

the bias-variance balance. Expressing the relationship between the degree of polynomial and kernel 

functions, Fan and Gijbels [32] stated that the variance between the model with the degree of two and 

the model with the degree of three is the same bias decreases as the degree of the polynomial increases. 

At this point, the result is that the fitting performed with a single degree performs better asymptotically. 

For this reason, it was preferred to work with local linear and local cubic models in the study. 
 

3.2. Selection of Smoothing Parameter  

 

The smoothing parameter selection in local polynomial fit is another critical consideration. Selecting 

the smoothing parameter large will cause over smoothing in the functional structure, and choosing it too 

small will cause under smoothing. Selecting this parameter at the optimal value is important to create a 

balanced model [1]. For the selection of bandwidth parameters, cross-validation criteria, GCV criteria, 

Akaike Information Criteria (AIC) are frequently used. For selecting the bandwidth value in the study, 

the GCV expressed in fuzzy structure in the study of Yildiz [19] will be used. A hat matrix is used to 

define the GCV criterion, which allows the observation values to be mapped to the predictive values. 

The GCV criterion is expressed by Equation (13) with H being hat matrix.  

𝐺𝐶𝑉(ℎ) =
1

𝑛
∑

(𝑦𝑖 − �̂�(𝑥𝑖 , ℎ))
2

(1 −
1
𝑛
𝑡𝑟(𝐻))

2

𝑛

𝑖=1
 (13) 
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Equation (13) can be expressed by using the Diamond distance as follows.  

𝐺𝐶𝑉(ℎ) =
1

𝑛
 ∑

𝑑2(𝑦𝑖 − �̂�(𝑥𝑖 , ℎ) )

(1 −
1
𝑛
𝑡𝑟(𝐻))

2

𝑛

𝑖=1

=
1

𝑛
∑

(𝑙𝑦𝑖 − 𝑙(𝑥𝑖 , ℎ))
𝟐

+ (𝑐𝑦𝑖 − �̂�(𝑥𝑖 , ℎ))
𝟐

+ (𝑢𝑦𝑖 − �̂�(𝑥𝑖 , ℎ))
𝟐

(1 −
1
𝑛
𝑡𝑟(𝐻))

2

𝑛

𝑖=1
 (14) 

Since the elements of the hat matrix H are crisp numbers, it can be written as a sum of three of the 

appropriate expressions for the variables 𝑙, 𝑐, 𝑢.  

𝐺𝐶𝑉(ℎ) = 𝐺𝐶𝑉(𝑙, ℎ) + 𝐺𝐶𝑉(𝑐, ℎ) + 𝐺𝐶𝑉(𝑢, ℎ)   (15) 

Here, 

𝐺𝐶𝑉(𝑙, ℎ) = ∑
(𝑙𝑦𝑖− 𝑙

(𝑥𝑖,ℎ))
𝟐

(1−
1

𝑛
𝑡𝑟(𝐻))

2
𝑛
𝑖=1 ,    𝐺𝐶𝑉(𝑐, ℎ) = ∑

(𝑐𝑦𝑖− 𝑐
̂(𝑥𝑖,ℎ))

𝟐

(1−
1

𝑛
𝑡𝑟(𝐻))

2
𝑛
𝑖=1  , 

𝐺𝐶𝑉(𝑢, ℎ) =∑
(𝑢𝑦𝑖 − �̂�(𝑥𝑖 , ℎ))

𝟐

(1 −
1
𝑛
𝑡𝑟(𝐻))

2

𝑛

𝑖=1
 

(16) 

For the selection of optimum ℎ = ℎ0 value of the smoothing parameter, it is necessary to solve the 

𝐺𝐶𝑉(ℎ∗)=min
ℎ
𝐺 𝐶𝑉(ℎ) minimization problem.  

 

3.3. Model Performance Criteria 

 

After mentioning the degree of the polynomial and the choice of bandwidth in the presentation of each 

model, the criterion to be used can be expressed in various ways for precise data when it is desired to 

make a comparison between the models. In order to make a comparison between local linear and local 

cubic models expressed in fuzzy structure, the average squared error based on Diamond distance is 

expressed in Yildiz’s [19] study. However, it will be represented as mean square error (MSE) in this 

study due to its more formal use. The MSE criterion is expressed by Equation (17) when comparing 

different models.  

𝑀𝑆𝐸(ℎ) =
1

𝑛
∑𝑑2(𝜇(𝑥𝑖), �̂�(𝑥𝑖))

𝑛

𝑖=1

 

=
1

𝑛
∑ [(𝑙(𝑥𝑖) − 𝑙(𝑥𝑖))

2 + (𝑐(𝑥𝑖) − �̂�(𝑥𝑖))
2 + (𝑢(𝑥𝑖) − �̂�(𝑥𝑖))

2]𝑛
𝑖=1    

(17) 

The MSE criterion is obtained by finding the mean of the squares of the difference between the actual 

values of the function and the predicted values. The minimum value of this performance criterion 

indicates the desired state for the models. It is possible to define the model with the smaller MSE 

criterion as a better model. 

 

4. SIMULATION STUDY AND RESULTS 

 

The simulation study aims to analyze and compare different fuzzy number types by using some parameters 

derived for fuzzy local polynomial models in Yildiz [19], Memmedli and Yildiz [20], and Memmedli et 

al. [21] studies. In the analysis, two cases where the input variable is the exact number and the output 

variable is the symmetric triangular fuzzy number and the trapezoidal fuzzy number were considered. The 

analyzes in the study were carried out in the R program with the help of the locpol package [33]. 
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For this purpose, a symmetrical triangular fuzzy number for the output variable will be produced to be 

used in the simulation study with the help of the function used in Cheng and Lee’s [16] studies. 

 

 Symmetric Triangular Fuzzy Number  

𝑔(𝑥) is a function defined in the range [0,10].  

𝑔(𝑥) = 10 + 5sin (0.025𝜋(1 − 𝑥)2) 

Let the following definitions be made for 𝑥𝑖 = 0.1𝑖 (𝑖 = 1,2,… ,100) values in the range [0,10].  

𝑦𝑖 = 𝑔(𝑥𝑖) + 𝑟𝑎𝑛𝑑[−0.5, 0.5] 

𝜎𝑖 =
1

4
𝑔(𝑥𝑖) + 𝑟𝑎𝑛𝑑[−0.25, 0.25] 

In the equations 𝑟𝑎𝑛𝑑[𝑎1, 𝑎2] for each i. term in the interval [𝑎1, 𝑎2] represents a random number 

generated independently from the uniform distribution. Based on these equations, symmetric triangular 

fuzzy numbers are derived by expressing them as follows. 

𝑌𝑖 = (𝑙𝑦𝑖 , 𝑐𝑦𝑖 , 𝑢𝑦𝑖)𝑇 = (𝑦𝑖 − 𝜎𝑖 , 𝑦𝑖 , 𝑦𝑖 + 𝜎𝑖)𝑇          𝑖 = 1,2, … ,100 

 Trapezoidal Fuzzy Number  

With the help of a function used in Naderkhani et al.’s [27] study, a trapezoidal fuzzy number will be 

produced for the output variable, and a simulations study will be carried out. The 𝑥𝑖’s are defined in the 

range [0,1] with a uniform distribution, and the 𝑓(𝑥) function is expressed as follows with                           

𝑖 = 1,2, … ,100.  

𝑓(𝑥) =
𝑥2

5
+ 2𝑒𝑥/10 

Using the 𝑓(𝑥) function in the following functional structures, the trapezoidal fuzzy number will be 

determined as Equation (18). 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝑟𝑎𝑛𝑑[−0.5, 0.5] 

𝑒𝑖 =
1

4𝑓(𝑥𝑖)
+ 𝑟𝑎𝑛𝑑[0,1] 

�̃�𝑖 = (𝑌𝑖
1, 𝑌𝑖

2, 𝑌𝑖
3, 𝑌𝑖

4) = (𝑦𝑖 − 𝑒𝑖 , 𝑦𝑖 +
1

3𝑒𝑖
, 𝑦𝑖 +

2

3𝑒𝑖
, 𝑦𝑖 + 𝑒𝑖)   (18) 

After producing the symmetric triangular fuzzy number and trapezoidal fuzzy number type outputs 

required for the simulation study, the bandwidth values that make the smallest of the GCV criteria will 

be determined using Gauss and Epanechnikov kernels for fuzzy local linear and fuzzy local cubic 

nonparametric models. Table 1 shows the results obtained when the output variable is a symmetric 

triangular fuzzy number. 

Table 1. Bandwidth and GCV values for symmetric triangular fuzzy number output 

 
Gauss Kernel Epanechnikov  Kernel 

h GCV MSE h GCV MSE 

Local linear smoothing (LLS) 0.20 0.3590 0.226404 0.40 0.3600 0.229386 

Local cubic smoothing (LCS) 0.50 0.3324 0.245779 1.70 0.3306 0.262345 
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According to the information in Table 1, if a fuzzy nonparametric local linear model is used, a bandwidth 

value of 0.20 will be reached using the Gaussian kernel with the GCV formulation expressed in fuzzy 

structure. On the other hand, when the Epanechnikov kernel is used, the bandwidth parameter is 

determined as 0.40. In the fuzzy expression of the local cubic model, the bandwidth value of the model 

created with Gaussian kernel is 0.50, and when the Epanechnikov kernel is used, it has the smallest GCV 

value of 1.70 bandwidth. In addition, the performance criteria MSE values of the four models were 

found to be close to each other. In Figure 1, the fit curves formed within the framework of the optimal 

bandwidth parameter determined in the cases where the degree of the polynomial is one and three and 

in the models using Gaussian and Epanechnikov kernels are given. 

           

                                            (a)                                                                                        (b)  

          

                                          (c)                                                                                           (d)  

Figure 1. Model fit curves for the symmetric triangular fuzzy number output variable: (a) deg=1, h=0.20, Gauss 

Kernel; (b) deg=3, h=0.50, Gauss Kernel; (c) deg=1, h=0.40, Epanechnikov Kernel; (d) deg=3, h=1.70, 

Epanechnikov Kernel       

              

Straight lines in the graphs are the estimation curves for the output variable's right scatter, center, and 

left scatter value in the form of symmetric triangular fuzzy numbers for the fitted model. The points on 

the graphs represent the actual observed values. In the examinations made when the output variable is a 

symmetric triangular fuzzy number, it is seen that the fit curves with a polynomial degree of one exhibit 

a more wavy structure. It can be stated that this situation can be explained by the increase in the 

bandwidth parameter when the polynomial degree is increased to three. On the other hand, in cases 

where the Epanechnikov kernel is used in the modeling, it is seen that the fitting occurs with a wider 

bandwidth compared to the model using the Gaussian kernel. Bandwidth parameter has an important 

place in nonparametric models in terms of obtaining correct model results. 

 

In the study, the MSE criterion was used to evaluate the performance of the linear and cubic models 

created with the optimal bandwidth parameter. The bandwidth value, GCV value, and MSE values 
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calculated according to the kernel function used in the models where the output variable is trapezoidal 

fuzzy number are presented in Table 2. As a numerical measure based on the difference between actual 

values and predicted values, MSE values are close to each other in all models. 
 

Table 2. Bandwidth and GCV values for trapezoidal fuzzy number output 

 

 
Gauss Kernel Epanechnikov  Kernel 

h GCV MSE h GCV MSE 

Local linear smoothing (LLS) 0.45 0.6589 0.531616 0.85 0.6589 0.529351 

Local cubic smoothing (LCS) 0.95 0.6425 0.545452 2.30 0.6511 0.548633 

 

For the fuzzy nonparametric local linear model in which the output variable is derived as a trapezoidal 

fuzzy number, the optimal bandwidth parameter was 0.45 with Gaussian kernel and 0.85 with 

Epanechnikov kernel according to the GCV criterion. On the other hand, in the cubic model, the 

bandwidth for the Gaussian kernel is 0.95, while it is 2.30 for the Epanechnikov kernel. The model fit 

curves for the selected bandwidth parameters for the trapezoidal fuzzy output variable and the use of 

Gaussian and Epanechnikov kernels in cases where the degree is one and three are shown in Figure 2. 

        

                                  (a)                                                                                       (b)  

        

                                          (c)                                                                                       (d)  

Figure 2. Model fit curves for the trapezoidal fuzzy number output variable: (a) deg=1, h=0.45, Gauss Kernel; (b) 

deg=3, h=0.95, Gauss Kernel; (c) deg=1, h=0.85, Epanechnikov Kernel; (d) deg=3, h=2.30, 

Epanechnikov Kernel                                                     

 

The structures shown with straight lines in the graphs are the estimation curves of the four parameters 

(𝑌𝑖
1, 𝑌𝑖

2, 𝑌𝑖
3, 𝑌𝑖

4) in the fuzzy number expression of the output variable in the form of trapezoidal fuzzy 
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numbers for the fitted model. The points on the graphs represent the actual observation values. In the 

case where the output variable is a trapezoidal fuzzy number, similar results were observed to the results 

obtained with the symmetrical triangular fuzzy number. It is seen that the fit curves with a polynomial 

degree of one exhibit a more wavy structure. Also, in cases where the Epanechnikov kernel is used in 

the modeling, it is seen that the fitting occurs with a wider bandwidth compared to the model using the 

Gaussian kernel. Although the functional structure used to generate the trapezoidal fuzzy number is 

more linear, it is seen that the smoothness of the fit curves increases when the degree is taken as three. 

Again, in the case of using the Epanechnikov kernel, it can be stated that the wider bandwidth parameter 

is selected. When we look at the difference between the performances of the models created using the 

trapezoidal fuzzy number type output, it is observed that there is no high difference between the MSE 

values. 

 

5. CONCLUSION 

 

In today's conditions, although the collection of data in the exact number type seems to represent easy 

and clear solutions for people, technological developments and the increase in the use of artificial 

intelligence algorithms are the harbingers of future innovations in data collection. An important part of 

the studies in both technology and software is an indication that the way of data collection will be far 

from certain, based on probability and in a fuzzy structure. Although it is not very possible to collect 

fuzzy data in current conditions, no matter what discipline it is, it is essential to prepare scientifically 

for the location and status of the data in the future. In this framework, statistical methods have been 

expressed in fuzzy structure for data that can be collected in fuzzy structure for many years. However, 

at this point, since there is no direct fuzzy data collection process, researchers have focused on 

simulation studies. 

 

The aim of this study is to contribute to the fuzzy nonparametric local polynomial regression approach 

and to observe and discuss the results with two different fuzzy number types. With the help of two 

separate functions are used to create the output variable of the symmetrical triangular fuzzy number and 

then the trapezoidal fuzzy number type. Common observations in studies using both number types are 

as follows; 

 

 Bandwidth is chosen smaller in the fuzzy local linear model. This situation is the theoretical 

expectation. 

 If the Epanechnikov kernel is preferred in creating the model, the selected bandwidth is wider 

than if the Gaussian kernel is selected. 

 If the polynomial degree is three, the fit curves have a smoother structure than if the polynomial 

degree is one. 

 When the output variable is a trapezoidal fuzzy number, the bandwidth value selected in all 

models is determined wider than the models whose output variable is a symmetrical triangular 

fuzzy number. 

 It has been determined that the smallest GCV value obtained at the point of bandwidth selection 

and the MSE criterion values, which help us have information about the performance of the 

models, have higher values when the output variable is a trapezoidal fuzzy number. Due to the 

nature of the numbers, three parameters in the symmetric triangular fuzzy number type and four 

different parameters in the trapezoidal fuzzy number type affect these values. 

 

There are many new fuzzy number types and fuzzy distance methods in the literature. Experimenting 

with different fuzzy numbers and expressing the formulations used in the calculation of criteria such as 

GCV and MSE, both according to the number type and with other fuzzy distance methods, will make 

important contributions in scientific terms. 
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