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1. Introduction

An important class of almost contact metric (shortly a.c.m.) manifolds is the class consisting of those which are normal. However, the
curvature nature of such manifolds is not known in general, except for Sasakian or cosymplectic manifolds. If the almost contact structure
(shortly a.c.s.) is normal and the fundamental 2-form is closed then the manifold M is called a quasi-Sasakian manifold (shortly q.S.).
First examples of q.S. manifolds were given by D. E. Blair [1]. Also, some remarks on q.S. structures given by S. Tanno [2]. Then, on a
three-dimensional q.S. manifold the structure function ¥ was introduced by Z. Olszak [3].

The Schouten-van Kampen connection (shortly S.K.con.) has been introduced of non-holomorphic manifolds. Then the S.K.con. was
applied to a.c.m. structure by Z. Olszak and he characterized some classes of a.c.m manifolds [4]. Also, A. Yildiz studied three-dimensional
f-Kenmotsu manifolds according to this connection [5].

In the present paper, we study three-dimensional q.S. manifolds with a Zy-homothetic deformation admitting the S.K.con..

2. Preliminaries

Let ¢ is (1, 1)-type tensor field, & is a locally defined vector field tangent to M and 7 is a 1-form on M. Then M(¢,&,1,g) is called an
a.c.m. manifold whose elementary properties are [6]-[8]

o’ =-1+n®&, nE) =1,
g(oU, V) =g(U,V)=n(U)n(V).

95 =0, nop=0, nU)=g(U,$).
The fundamental 2-form 6 is defined by
O(U,V)=g(U,9V).

Thus 6(U,&) =0, for U € TM. If the a.c.s. (¢,&,n) is normal, i.e., [, @](U,U)+dn(U,V)E = 0 and the fundamental 2-form 6 is closed,
i.e. d0 =0, then M is called a q.S. manifold. An a.c.m. manifold M is a three-dimensional q.S. manifold if and only if [9]

Vyé = —yU, @1
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for a function y on M satisfying &y = 0. Also if ¥ = 0 then a q.S. manifold is a cosymplectic manifold [10], the converse is true. From (2.1),
we have [9]

(Vue)V =v{gU.,V)E —nU)V}. (2.2)
Again from (2.1) and (2.2), we get
R(U,V)& = =U[1loV +V[1loU + ¥ {n(V)U —n(U)V}.
Using (2.1) and (2.2), we obtain
R(U,&)E = y{U —n(U)E},
and
R(U,E)V =-U[yloV — v {g(U,V)E —n(V)U}.
In a three-dimensional Riemannian manifold, the curvature tensor is written
RU VW = g(V,W)QU —g(U,W)QV +S(V,W)U —S(U,W)V — %{g(VvW)Ufg(U,W)V}

Let M be a three-dimensional q.S. manifold. The Ricci tensor S of M is

SV.W) = (5= PIeV.W)+ (7 = n)n(W) = n(V)dy(W) - n(W)dr(gV). 23)

From (2.3), we get
v = (G-PWHEP - )NWIEFnV)(perady) - dr(gV)E,
where dy(V) = g(grady,V). Again from (2.3), we obtain
=27'n(U) ~dy(pU).

As a consequence of (2.1), we have

(VumW =g(Vue, W) = —rg(oU,V). 2.4
3. Three-dimensional q.S. manifolds admitting S.K.con.

For an a.c.m. manifold M, the S.K.con. Vis given by [4]

VyV =VyV —n(V)Vyé+ (Vun)(V)E. 3.1
Let M3 be a q.S. manifold. Then using (3.1), we have

VuV = VyV+1n(V)eU + 15U, 9V)E. (32)

Now we put equation (3.1) in the definition of the Riemannian curvature tensor, we can write

R(U,V)W =VyVyW — VyVyW = Vi yW. (3.3)
Using (3.2) in (3.3), we obtain
RUVIW = Vy(VyW+yn(W)eV +yg(V,oW)E)
=Vv(VuW +yn(W)eU + (U, oW)E) (3.4)

Again using (2.2) and (2.4) in (3.4), we have

RUVIW = RUV)W+U[Y{g(V,oW)E+n(W)pV}
—V[M{g(U,eW)E +n(W)eU}
+7{(U,W)n(V)E —g(V,W)n(U)E +n(U)n(W)V 3.5
—nVINW)U +g(U,oW)eV —g(V,eW)oU},
which gives
gRUVIW,Z) = gR(U,VW,Z)
+U[r{g(V,oW)n(Z) +g(
—Y[y{g(U,9W)n(Z) +2(oU,Z)n(W)}
+7{(U,W)n(V)n(2) - g(V,W)n(U)n(2)
+8(V.Z)n(U)n(W) —g(U,Z)n(V)n(W)
+8(U,oW)g(9V,Z) — g(V,0W)g(9U,Z)}.

) +8(eV.Z)n(W)}
)+ (3.6)
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Putting U =Z = ¢; ,{i = 1,2,3}, in (3.6), we get
S(V.W) = S(V, W)+ (oV)[yln(W) =27’ n(V 3.7)
From (3.7), we have
QV = OV +(oV)[1]& — 27" (V)&

Again putting V =W = ¢; in (3.7), then we obtain

From (3.5) and (3.6), we have

7:r7272,

R(U,V)W +R(V,U)W =0,

¢(R(U,V)W,Z)+g(R(U,V)Z,W) =0.

and

R(U,V)W+R(V,W)U+RW, U)WV = U[y{2g(V,oW)E +n(W)eV —n(V)eW}

If y is a constant, then we have

+VI[YH{2e(W,0U)E +n(U)eW —n(W)eU}
+WY{2e(U,0V)E+n(V)oU —n(U)@V}.

R(U,V)W +R(V,W)U +R(W,U)V = 0.

4. Three-dimensional q.S. manifolds and Z,-homothetic deformations

In this section, we study a Zg-homothetic deformation on a q.S. manifold M>.
For a (2n+ 1)-dimensional a.c.m. manifold (M, ¢,£,7n,g) if n = 0, then there is an 2n-dimensional distribution P, on M. Also an
2n-dimensional homothetic deformation or a Z-homothetic deformation is defined by

o

n

o

8

where a = constant > 0. If (M, ¢,&,1,g) is an a.c.m.

Now we have the followings:

1

[ a_
an, & —aé, 0% =0,
= agt+a(a—-1)n®mn,

structure then (M, %, E%,n%, ¢%) is also an a.c.m. structure [2].

Lemma 4.1. Let M> be a q.S. manifold admitting a Do-homothetic deformation. Then

VeV =VyV —(a—1)y{nU)eV+n(V)eU}.

Proof. From Kozsul’s formula, we have

28%(VgV. W) = Ug™(V,W)+Vg*(UW)—Wg*(U,V) —g*(U,[V.W]) —g*(V.[U,W]) +¢%(W,[U,V]),
for any vector fields U,V,W. From (4.1), we obtain
2Hag(VEV. W) +a(a—1)n(ViV)n(W)} = Ufag(V,W)+a(a—1)n(U)n(W)}
+V{ag(U,W)+a(a—1)nU)n(W)}
~W{ag(U,V)+ala—1)nU)n(V)}
—afg(U, [V,W]) + (= 1)n(U)n([V,W])}
—afg(V,[U,W]) + (= 1)n(V)n([U,W])
+afgW,[U,V])+ (a—1)n(W)n([U,V])}
After some calculations, we get
2{ag(ViV,W)+ala—Dn(VgVn(W)} = a{g(VuV,W)+g(V,VuW)}
Fa(a—D{UMV)n(W))+V(nU)n(W))
—WnWnv)) —nUn(Vyw) +nU)n(Vwv)
=n(V)n(VuW)+n(V)n(VwU)
FnW)n(VuV) —n(W)n(VvU)}.
Thus we have
2{ag(ViV,W)+a(a—1)n(VgV)n(W)} = 2ag(VyV,W)+2a(a—1)n(VyV)n(W)

+a(a—1){g(V,.Vu&)n(W)+g(W,Vy&)n(V)
+8(U,VvE)n(W)+g(W,VyE)n(U)
—8(U,Vw&)n(V) —g(V.Vw&)n(U)}.

.1

4.2)

4.3)
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Using (2.1) in (4.3), we get

2{ag(VgV,W)+a(a—1)n(VEV)n(W)} 20g(VyV,W) +2a(a—1)n(VyV)n(W)
—a(o—1)y{g(V,eU)n(W)+g(W,oU)n(V)
+g(eV,U)n(W) +g(W,9V)n
n

—gU,oW)n(V) —g(V, oW

()
()}
After some calculations, we obtain

g(VEV.W)+(a—1)n(Vgv)n(w) = g(VuV.W)+(a—1)n(VuV)n(W) — (o — 1) y{g(W,U)n(V)+g(W.eV)n(U)},
which implies (4.2). O

Proposition 4.2. Let M be a q.S. manifold with a D,-homothetic deformation. Then

R”‘(U7V)W = R(U,V)W
(a—DU{n(V)eW +n(W)eV}
+Ha-1)V M{n <pW+n W)U}
—(a—1)Y{n W)V —n(V)n(W)U}
+(oc 17 {g( (U)& —g(U,W)n(V)E (44

2n(U)n(w )V+2n( IMW)U —2g(U, V)W
—&(U, W)V +g(V,oW)oU}.

Proof. The definition of the Riemannian curvature tensor, we can write
RY(U, V)W =VEVIW — VIVEW — V[U V]W 4.5)
Using (4.2) in (4.5) and after long calculations, we have

RO‘(U,V)W = R(U,V)W
—(a=1)y[nU)eVyW —n(U)Vy oW —n(V)pVyW
+N(V)VyoW —n(W)eVyV +n(W)Vy eV
+n(W)eVyU —n(W)VyeU (4.6)
+ay{2g(U, @V )W +g(U,oW)pV —g(V,oW)oU}
+(a=D)y{nU)n(W)V —n(V)n(W)U}
—(a=D{UmM)(n(V)eW +n(W)eV)
V() (U)W +n(W)eU)}.

Using (2.2) in (4.6), we obtain (4.4). O
From (4.4), we have

R*(U,V)W +R*(V,U)W =0,
and

R*(U, VYW +R*(V,W)U +R*(W,U)V = 0.

5. Z4-homothetic deformations on three-dimensional ¢.S. manifolds admitting the S.K.con.

In this section, we study how a Z-homothetic deformation affects a three-dimensional q.S. manifold M admitting the S.K.con..
Lemma 5.1. Let M> be a q.S. manifold with a Do-homothetic deformation admitting the S.K.con.. Then
VEV = VuV —(a—1)mU)eV +1n(V)pU +1g(U, 9V)E. G.1)
Proof. Using (3.1) and (4.2), we obtain
VBV = VoV (V)e®U + 5% (U. gV )&
= VyV—(a=1)y{nU)eV+n(V)eU} —yon(V)eU

+Y[8(U,0V) +(a—1)nU)n(eV)]&
= VyV—(a—-1)mU)eV+yn(V)eU +yg(U,eV)E.
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Proposition 5.2. Let M be a q.S. manifold with a Do-homothetic deformation admitting the S.K.con.. Then

R*(U,VYW = R(U,V)W
+U[YH{e(V,@W)E+n(W)V — (a —1)n (V)W }
~V[y{e(U,oW)E+n(W)eU — (a—1)n (U)W } (5.2)

+7P{g(U,W)n(V)E —g(V.W)N(U)E +g(U, oW )@V
—g(V,oW)oU +n(U)n(W)V —n(V)n(W)U}
—2(a—1)Pg(U,oV)oW.
Proof. Using (4.1), (3.5) and (4.4), we have
R*U V)W = R*(UV)W+U[W{g*(V.0"W)E* +n%(W)p*V}
—V[Y{e*(U,*W)E* +n%*(W)e*U}
+7{g*(U,W)N*(V)EX —g*(V,W)n*(U)E* (5.3)

N UMM* W)V —n*(V )n“(W)U
gH(U, W)V — g% (V,0*W)p*U}.

Using (4.2) in (5.3), we obtain (5.2). O
Now taking the inner product with Z and putting V =W =¢;, {i = 1,2,3}, in (5.2), we get
SUUZ) = SU2)+(eU)[YIN(Z) + (a—1)(@2)[¥In(U) =27 n(U)N(Z). (5.4)

If we use (2.3) in (5.4), we have

SM0.2) = (-1WU.2)+BP - H)nUnE@)
—(oU)[vIn(Z) — (2)[yIn(U)
+(9 )Mn() (@—1)(@2)[¥InW)
—-27°n(U)
ie.,
$W0.2) = (5-PNeW.2) - UMD} +(@-2(e2) (W)

Also we take U = Z = ¢; in (5.4), we get
7 =r— 2y2.
6. Main result

In this section, we study a projectively flat q.S. manifold M> with a Z4-homothetic deformation admitting the S.K.con..
In a q.S. manifold M with a Zg-homothetic deformation admitting the S.K.con. V¥, the projective curvature tensor P% is given by

~ - 1 ~ -
P*(U,V)W =R*(U,V)W — E{Sa(V,W)U —S*(U,W)V}.
Now let M3 be a projectively flat q.S. manifold with a Zg-homothetic deformation admitting the S.K.con. va (i.e. Pa= 0). Then we have
- 1 ~ ~
RY(U,V)W = E{S‘X(V,W)U—S‘X(U,W)V}. 6.1)

Using (5.2) and (5.4) in (6.1), we get

R(U,V)W
+U{g(V,@W)E +n(W)eV — (a—1)n(V)eW}
—V[{gWU,eW)E+n(W)U — (. — 1)n(U) W}
+7{(U,W)n(V)E —g(V,W)n(U)E +g(U,oW)pV
—g(V.oW)oU +n(U)n(W)V —n(V)n(W)U}

o — 17U, V)W

= %[s<v,w>u+(W)Mn(mm(m1)((pw>mn(vw
=27 (V)n(W)U —S(U,W)V — (oU)[yIn(W)V
— (o= 1)(@W)[YIn(U)V +27n(U)n(W)W],
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which gives
8(R(U,V)W,2Z)

FU[YH{e(V,oW)n(2) +n(W)g
—VIr{s(U,eW)n(Z) +n(W)e

~—

oV.Z) —(a—1)n(V)g(eW,Z)}
oU,Z)— (o~ 1)n(U)g(eW,Z)}

+7{eU,W)n(V)n(Z) — (V. W)n(U)N(Z) +g(U, oW )g(9V,Z)

—g(VApW) (9U.Z) +n(U)n(W)g(V.Z) —n(V)n(W)g(U,2)} (6.2)
2(a—1)7’g(U,oV)g(oW,Z)

SS(V:W)g(U,2) + (oV)[7]

+
1

5 n
+(a—1)(eW)[in(V)e(U,Z
SU,W)g(v,Z) - n

(o= 1)(@W)[¥In(V)g(V.2) + 27’ n(U)n(W)g(V.Z)].

(
(

Putting U = Z = £ in (6.2), we have
S(V,W) =27 n(V)n(W) — (W) [1In(V) — (@V)[¥In(W). (6.3)
If we put (6.3) in (5.4), we get

SHV.W) = (a0 =2)(@W)[yIn (V). (64)

Clearly, if 7 is a constant or & = 2, then from (6.4), we have S* = 0. If % = 0, then from (6.1), we get R* = 0. Conversely if R = 0 then
we have S% = 0 and from (6.4) we obtain ¥ is a constant or & = 2.
Thus the above discussion leads us to state the following:

Theorem 6.1. Let M> be a projectively flat q.S. manifold with a Dg-homothetic deformation admitting the S.K.con.. Then the followings
hold: (i) v is a constant or o = 2. (ii) The manifold M is a Ricci-flat manifold, (iii) The manifold M is a flat manifold.

7. Example

In this section, we give an example of three-dimensional q.S. manifolds with a Z-homothetic deformation admitting the S.K.con..
Let M = {(x,y,z) € R : x # 0} be a three-dimensional manifold, where (x,y,z) are standard coordinates in R3and {&,&,,é3} be linearly
independent global frame on M is given by

d d d d d

=22 =22 42 1,2 &6=-2.
él y e X 8y+y¢9z7 “= 92

Let g be the Riemannian metric, 17 be the 1-form and ¢ be the (1,1)-type tensor field given by

g(e,83) = g(é1,6) =g(ér,83) =0, (7.1
g(ere1) = g(&,6)=g(é,e)=1,

n(w)=gWw,é), (7.2)
(Pél - 527 (PEZ = _Elv (PE?) = 07 (73)

and
8(eW,0Z) = ¢(W,Z) —n(W)n(2).
Thus for &3 = &, (¢,&,7,g) defines a c.m.s. on M>. Thus we have
[61,8] =283, [61,83] =0, [¢,83]=0.
Recall Koszul’s formula
2¢(VyV,W) = Ug(V,W)+Vg(U,W)-Wg(U,V)—g(U,[V,W])—g(V,[U,W])+g(W,[U,V]),

Taking &3 = £ and using the above formula for Riemannian metric g, we get

Vsés = —&, Vgé3=¢8, Vzé3=0, (7.4)
Vaéy = =&, V& =26, Ve =-2&,
ngéz = 0, Vg3e‘~2=€~|, Vglé] =0
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Hence from (2.1), the manifold M3 is a g-S. manifold with y = 1. Using (7.1), (7.2), (7.3) and (7.4) in (5.1), we have D,-homothetic
deformation of the manifold M3 admitting the S.K.con. given by

%g ez = 0, %gzéb =0, 632 ey =0,
Vée = —a&, Vi&s=0, V& =0, (1.5)
62‘252 = 07 6%52 = ey, %glél =0.
Using (7.5), we obtain
RY1,8)e, = 20, R%(61,8)é =-208, R*(1,8,)é =0,
RY(&1,83)8; = 0, R%(&),83)é, =0, R%(&,83)83 =0, (7.6)
R*(&,83)8, = 0, R%(2,,83)é, =0, R%(&,83)23 = 0.

Thus from (7.6), the manifold M? is a flat manifold. Since a flat manifold is a Ricci flat manifold, from the Theorem 6.1 the manifold M3 is a
projectively flat manifold.
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