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Abstract

In this paper, determining the operator norm, we give certain characterizations of matrix
transformations from the space

∣∣∣Nφ

p

∣∣∣
k
, the space of all series summable by the absolute

weighted mean summability method, to one of the classical sequence spaces c0,c, l∞. Also,
we obtain the necessary and sufficient conditions for each matrix in these classes to be
compact and establish a number of estimates or identities for the Hausdorff measures of
noncompactness of the matrix operators in these classes.

1. Introduction

The summability theory has an important role in analysis, applied mathematics and engineering sciences, and has been studied
by many authors for a long time. One of the main subjects in the summability theory is the theory of sequence spaces that
concerns with the generalization of the notions of convergence for sequences and series. The main purpose is to assign a limit
value for non-convergent series or sequences by using a transformation which is given by the most general linear mappings of
infinite matrices. In this concept, the literature has still enlarged, concerned with characterizing completely all matrices which
transform one given sequence space into another and also, many sequence spaces defined as domain of special matrices such as
Euler, Nörlund, Hausdorff, Cesàro and weighted mean matrices and related matrix operators have been investigated by several
authors (see, [?, ?]). On the other hand, from a different point of view, using the concept of absolute summability, several new
spaces of series summable by the absolute summability methods have taken place in the literature (see, for instance, [?]-[?]).
In a recent paper, the sequence space

∣∣∣Nφ

p

∣∣∣
k

has introduced and studied by Sarıgöl [?, ?], Mohapatra and Sarıgöl [?].

The present paper aims to characterize the infinite matrix classes
(∣∣∣Nφ

p

∣∣∣
k
,c
)

,
(∣∣∣Nφ

p

∣∣∣
k
,c0

)
,
(∣∣∣Nφ

p

∣∣∣
k
, l∞
)

and to determine the
operator norms for 1≤ k < ∞. Further, the necessary and sufficient conditions for each matrix in these classes to be compact
are obtained and certain identities or estimates for the Hausdorff measure of noncompactness are established.
A vector subspace of ω , the space of all sequences of real or complex numbers, is called a sequence space. The sequence
spaces Φ, l∞, c, c0, bs, cs and lk (k ≥ 1) stand for the sets of all finite, bounded, convergent and null sequences and the sets of
all bounded, convergent and k-absolutely convergent series, respectively.
Let Λ and Γ be two arbitrary sequence spaces and R = (rnv) be an infinite matrix of complex components. The transform
sequence R(λ ) of the sequence λ = (λv) is deduced by the usual matrix product and the components of R(λ ) are written as

Rn(λ ) =
∞

∑
v=0

rnvλv,
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provided that the series converges for all n ∈ N. If the sequence R(λ ) exists and R(λ ) ∈ Γ for λ ∈ Λ, then, it is said that R is a
matrix mapping from Λ into Γ. The collection of all such infinite matrices is denoted by (Λ,Γ).
The set

ΛR = {λ ∈ ω : R(λ ) ∈ Λ}
is called domain of an infinite matrix R in the space Λ. Note that it is also a sequence space.
The β -dual of Λ⊂ ω is the set

Λ
β =

{
a : ∀λ ∈ Λ,

∞

∑
v=0

avλv converges

}
.

Let Λ and Γ be Banach spaces. By B(Λ,Γ), we mean the set of all bounded (continuous) linear operators L from Λ to Γ.
B(Λ,Γ) is also a Banach space with the operator norm given by

‖L‖= sup
λ∈SΛ

‖L(λ )‖
Γ

for all L ∈B(X ,Y ). Here, SΛ represents the unit sphere in Λ, i.e.,

SΛ = {λ ∈ Λ : ‖λ‖= 1} .

If a ∈ω and Λ⊃Φ is a BK-space, a Banach space on which all coordinate functional pn(λ ) = λn are continuous for all n, then

‖a‖∗
Λ
= sup

λ∈SΛ

∣∣∣∣∣ ∞

∑
k=0

akλk

∣∣∣∣∣
provided the expression on the right side is defined and finite which is the case whenever a ∈ Λβ .
If, for each λ ∈ Λ, ∥∥∥∥∥λ −

m

∑
j=0

λ je( j)

∥∥∥∥∥→ 0 as m→ ∞

then it is said that the BK-space Λ has AK property, and in this case we write λ =
∞

∑
j=0

λ je( j) where e( j) is a sequence whose

only non-zero term is one in jth place for j ∈ N.
Throughout the whole paper, assume that φ = (φn) is a sequence of positive constants and R = (rnv) is an infinite matrix of
complex numbers for all n,v ∈ N. Also, k∗ is the conjugate of k, that is, 1/k+1/k∗ = 1 for k > 1 and 1/k∗ = 0 for k = 1.
Let ∑λn be an infinite series with its partial sum sn. The series ∑λv is said to be summable |R,φn|k, if (see[?]).

∞

∑
n=1

φ
k−1
n |∆Rn(s)|k < ∞,

where 1 ≤ k < ∞ and ∆Rn(s) = Rn(s)−Rn−1(s). In the special case, when R is a weighted mean matrix, the summability
method |R,φn|k is reduced to

∣∣N, pn,φ
∣∣
k [?]. In recent paper,

∣∣∣Nφ

p

∣∣∣
k

has been generated from the space lk as a set of all series

summable by the absolute weighted mean method by Mohapatra and Sarıgöl [?] and Sarıgöl [?, ?]. The space
∣∣∣Nφ

p

∣∣∣
k

can be
expressed as ∣∣∣Nφ

p

∣∣∣
k
=

λ = (λv) :
∞

∑
n=1

φ
k−1
n

∣∣∣∣∣ pn

PnPn−1

n

∑
v=1

Pv−1λv

∣∣∣∣∣
k

< ∞

 ,

or equivalently, according to notation of domain,
∣∣∣Nφ

p

∣∣∣
k
= (lk)T (p) where the matrix T (p) is given by

t(p)
nv =


1, n = 0, v = 0

φ
1/k∗
n

pnPv−1
PnPn−1

, 1≤ v≤ n
0, v > n,

whose inverse S(p) is

s(p)
nv =


1, n = 0,v = 0

−φ
−1/k∗

n−1
Pn−2
pn−1

, v = n−1

φ
−1/k∗
n

Pn
pn
, v = n

0, v 6= n−1,n.

(1.1)

Besides, it is obvious that the space
∣∣∣Nφ

p

∣∣∣
k

is a BK-space with the norm ‖λ‖∣∣∣Nφ

p

∣∣∣
k

=
∥∥∥T (p)(λ )

∥∥∥
lk

and it is also linearly

isomorphic to the space lk for 1≤ k < ∞ [?].
We recall the following lemmas which are useful in proving our results:
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Lemma 1.1. [?] Let U be a triangle. Then,

(i) For Λ,Γ⊂ ω , R ∈ (Λ,ΓU ) iff B =UR ∈ (Λ,Γ).

(ii) If Λ,Γ are BK-spaces and R ∈ (Λ,ΓU ), then ‖LR‖= ‖LB‖.

Lemma 1.2. [?] The following statements hold:

1. R ∈ (l,c)⇔ (i) lim
n

rnv exists for all v≥ 0, (ii) sup
n,v
|rnv|< ∞ and R ∈ (l, l∞)⇔ (ii) holds.

2. If 1 < k < ∞, then,R ∈ (lk,c)⇔ (i) holds,(iii)sup
n

∞

∑
v=0
|rnv|k

∗
< ∞ and R ∈ (lk, l∞)⇔ (iii) holds.

3. R ∈ (l,c0)⇔ (ii) holds, (iv) lim
n

rnv = 0 for all v≥ 0.

4. If 1 < k < ∞, then,R ∈ (lk,c0)⇔ (iii) and (iv) hold.

Lemma 1.3. [?] Let 1≤ k < ∞. Then, R ∈ (l, lk) iff

‖R‖(l,lk) = sup
v

{
∞

∑
n=0
|rnv|k

}1/k

.

Lemma 1.4. [?] Let 1 < k < ∞. Then, R ∈ (lk, l) iff

‖R‖
′
(lk,l) =

 ∞

∑
v=0

(
∞

∑
n=0
|rnv|

)k∗


1/k∗

< ∞.

Since
‖R‖(lk,l) ≤ ‖R‖

′
(lk,l) ≤ 4‖R‖(lk,l) ,

there exists 1≤ ξ ≤ 4 such that ‖R‖
′
(lk,l) = ξ ‖R‖(lk,l) where

‖R‖(lk,l) = sup
N∈F

 ∞

∑
v=0

∣∣∣∣∣ ∞

∑
n∈N

rnv

∣∣∣∣∣
k∗


1/k∗

and F represents the collection of all finite subsets of N.

Lemma 1.5. [?] Let 1 < k < ∞ and k∗ denote the conjugate of k. Then, we have lβ

k = lk∗ and lβ
∞ = cβ = cβ

0 = l, lβ = l∞. Also,
if Λ ∈ {l∞,c,c0, l, lk} then, we have

‖a‖∗
Λ
= ‖a‖

Λβ

for all a ∈ Λβ , where ‖.‖
Λβ is the natural norm on Λβ .

Lemma 1.6. [?] Let Λ⊃Φ be a BK-space and Γ ∈ {c,c0, `∞} . If R ∈ (Λ,Γ) , then

‖LR‖= ‖R‖(Λ,l∞) = sup
n
‖Rn‖∗Λ < ∞.

The Hausdorff measure of noncompactness χ was introduced by Goldenstein, Gohberg and Markus [?]. Using the Hausdorff
measure of noncompactness, some compact operators on various sequence spaces are characterized by many authors. For
example, Mursaleen and Noman in [?, ?], Malkowsky and Rakocevic in [?] have used the Hausdorff measure of noncompactness
method to characterize the class of compact operators on some known spaces, (see also [?, ?, ?, ?], [?]-[?]).
Let (Λ,d) be a metric space and H,M ⊂ Λ. If there exists an h ∈ H such that d(h,m)< ε for every m ∈M, then it is said that
H is an ε-net of M; if H is finite, then the ε-net H of M is called a finite ε-net of M. Let Q be a bounded subset of the metric
space Λ. Then, the Hausdorff measure of noncompactness of Q is defined by

χ (Q) = inf{ε > 0 : Q has a finite ε−net in Λ} ,

and χ is called the Hausdorff measure of noncompactness.
Let Λ,Γ be Banach spaces. A linear operator L from Λ into Γ is called compact if its domain is all of Λ and, for every bounded
sequence (λn) in Λ, (L(λn)) has a convergent subsequence in Γ. The class of all compact operators in B(Λ,Γ) is denoted by
C (Λ,Γ).
The following lemmas give a calculation method for the Hausdorff measure of noncompactness of a bounded subset and the
necessary and sufficient conditions a linear operator to be compact.
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Lemma 1.7. [?] Let Λ be one of the spaces c0 or lk for 1 ≤ k < ∞ and Q be a bounded subset of Λ. If Pr : Λ→ Λ is the
operator described by Pr(λ ) = (λ0,λ1, ...λr,0,0, ...) for all λ ∈ Λ, then

χ (Q) = lim
r→∞

(
sup
λ∈Q
‖(I−Pr)(λ )‖

)
.

Assume that χ1, χ2 are two Hausdorff measures on the spaces Λ,Γ and Q is a bounded subset of Λ. The linear operator
L : Λ→ Γ is said to be (χ1,χ2)- bounded if L(Q) is a bounded subset of Γ and there exists a positive constant M such that
χ2 (L(Q))≤Mχ1 (Q) for every Q. If an operator L is (χ1,χ2)- bounded, then the number

‖L‖(χ1,χ2)
= inf{M > 0 : χ2 (L(Q))≤Mχ1 (Q) for all bounded sets Q⊂ Λ}

is called the (χ1,χ2)-measure noncompactness of L. In particular, for χ1 = χ2 = χ, it is written by ‖L‖(χ,χ) = ‖L‖χ
.

Lemma 1.8. [?] L ∈B(Λ,Γ) and SΛ be the unit sphere in X. Then,

‖L‖
χ
= χ (L(SΛ))

and
L is compact ⇔‖L‖

χ
= 0.

Lemma 1.9. [?] Let Λ be a normed sequence space, U = (unv) be an infinite triangle matrix, χU and χ denote the Hausdorff
measures of noncompactness on MΛU and MΛ, the collections of all bounded sets in ΛU and Λ, respectively. Then, χU (Q) =
χ(U(Q)) for all Q ∈MΛU .

Lemma 1.10. [?] Let Λ⊃Φ be a BK-space with AK property or Λ = l∞. If R ∈ (Λ,c), then we have

lim
n→∞

rnk = αk exists for all k,

α = (αk) ∈ Λ
β ,

sup
n
‖Rn−α‖∗

Λ
< ∞,

lim
n→∞

Rn(λ ) =
∞

∑
k=0

αkλk for every λ = (λk) ∈ Λ.

Lemma 1.11. [?] Let X ⊃Φ be a BK-space. Then,
(a) If R ∈ (Λ,c0), then

‖LR‖χ
= lim

r→∞

(
sup
n>r
‖Rn‖∗Λ

)
.

(b) If Λ has AK property or Λ = l∞ and R ∈ (Λ,c), then

1
2

lim
r→∞

(
sup
n>r
‖Rn−α‖∗

Λ

)
≤ ‖LR‖χ

≤ lim
r→∞

(
sup
n>r
‖Rn−α‖∗

Λ

)
where α = (αk) defined by αk = lim

n→∞
rnk, for all n ∈ N.

(c) If R ∈ (Λ, l∞), then

0≤ ‖LR‖χ
≤ lim

r→∞

(
sup
n>r
‖Rn‖∗Λ

)
.

2. Matrix and compact operators on space
∣∣∣Nφ

p

∣∣∣
k

In this section, by computing the operator norms we characterize infinite matrix classes
(∣∣∣Nφ

p

∣∣∣
k
,c
)

,
(∣∣∣Nφ

p

∣∣∣
k
,c0

)
,
(∣∣∣Nφ

p

∣∣∣
k
, l∞
)

and also compact matrix classes C
(∣∣∣Nφ

p

∣∣∣
k
,c
)

, C
(∣∣∣Nφ

p

∣∣∣
k
,c0

)
, C
(∣∣∣Nφ

p

∣∣∣
k
, l∞
)

. Moreover, we establish some identities or
estimates for the Hausdorff measure of noncompactness.
For simplicity of notation, in what follows, we use

σnv = ∆rnv
Pv

pv
+ rn,v+1,

where ∆rnv = rnv− rn,v+1.
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Lemma 2.1. Let 1 < k < ∞. Then,

(i) If a = (av) ∈
{∣∣∣Nφ

p

∣∣∣
k

}β

, then, ã(k) = (ã(k)v ) ∈ lk∗ for all λ ∈
∣∣∣Nφ

p

∣∣∣
k

(ii) If a = (av) ∈
{∣∣∣Nφ

p

∣∣∣}β

, then, ã(1) = (ã(1)v ) ∈ l∞ for all λ ∈
∣∣∣Nφ

p

∣∣∣
and the equality

∞

∑
v=0

avλv =
∞

∑
v=0

ã(k)v yv (2.1)

holds, where y = T (p)(λ ) and

ã(k)v = φ
−1/k∗
v

(
∆av

Pv

pv
+av+1

)
for v > 0,a0 = ã(k)0 .

Proof. (i) Let a = (av) ∈
{∣∣∣Nφ

p

∣∣∣
k

}β

. By (??), the equation (??) is immediately obtained. Also, it follows from Lemma ??

that ã(k) ∈ lk∗ whenever a ∈
{∣∣∣Nφ

p

∣∣∣
k

}β

, which completes the proof.

The proof of (ii) is left to reader.

Lemma 2.2. Let 1 < k < ∞. Then, we have ‖a‖∗∣∣∣Nφ

p

∣∣∣
k

=
∥∥∥ã(k)

∥∥∥
lk∗

for all a ∈
{∣∣∣Nφ

p

∣∣∣
k

}β

and ‖a‖∗∣∣∣Nφ

p

∣∣∣ =
∥∥∥ã(1)

∥∥∥
∞

for all

a ∈
{∣∣∣Nφ

p

∣∣∣}β

.

Proof. Take a ∈
{∣∣∣Nφ

p

∣∣∣
k

}β

. It is obvious from Lemma ?? that ã(k) ∈ lk∗ . Also, it follows from Lemma ?? and Lemma ?? that

‖a‖∗∣∣∣Nφ

p

∣∣∣
k

= sup
λ∈S∣∣∣Nφ

p
∣∣∣
k

∣∣∣∣∣ ∞

∑
v=0

avλv

∣∣∣∣∣= sup
y∈Slk

∣∣∣∣∣ ∞

∑
v=0

ã(k)v yv

∣∣∣∣∣= ∥∥∥ã(k)
∥∥∥∗

lk
=
∥∥∥ã(k)

∥∥∥
lk∗

.

For a ∈
{∣∣∣Nφ

p

∣∣∣}β

, the proof is similar, so it is left to reader.

Theorem 2.3. Let 1≤ k < ∞, Λ be arbitrary sequence space. Further, let B = (bn j) be a matrix satisfying

bn j = φ
1/k∗
n

pn

PnPn−1

n

∑
v=1

Pv−1rv j. (2.2)

Then, R ∈
(

Λ,
∣∣∣Nφ

p

∣∣∣
k

)
iff B ∈ (Λ, lk).

Proof. Let λ ∈ Λ. Then, it follows from (??) that

∞

∑
j=0

bn jλ j = φ
1/k∗
n

pn

PnPn−1

n

∑
v=1

Pv−1

∞

∑
j=0

λ jrv j,

which implies that Bn(λ ) = T (p)
n (R(λ )). This gives that Rn(λ ) ∈

∣∣∣Nφ

p

∣∣∣
k

for all λ ∈ Λ iff B(λ ) ∈ lk for all λ ∈ Λ. So, the proof
of the theorem is completed.

Let us define the matrix R̃(k) =
(

r̃(k)nv

)
with r̃(k)nv = 1

φ
1/k∗
v

σnv for v > 0, r̃(k)n0 = rn0. It is clear that the matrices R and R̃(k) are

connected by (??).

Theorem 2.4. (i) Let 1 < k < ∞ and Λ ∈ {c0,c, l∞}. Then,

R ∈
(∣∣∣Nφ

p

∣∣∣
k
,Λ
)
⇒‖LR‖= sup

n

∥∥∥R̃(k)
n

∥∥∥
lk∗

= sup
n

(
∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗)1/k∗

,

R ∈
(∣∣∣Nφ

p

∣∣∣ ,Λ)⇒‖LR‖= sup
n

∥∥∥R̃(1)
n

∥∥∥
l∞
= sup

n,v

∣∣∣r̃(1)nv

∣∣∣ .
(ii) Let 1 < k < ∞. Then, there exists 1≤ ξ ≤ 4 such that
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R ∈
(∣∣∣Nφ

p

∣∣∣
k
, l
)
⇒‖LR‖=

1
ξ

∥∥∥R̃(k)
∥∥∥′
(lk,l)

=
1
ξ

 ∞

∑
v=0

(
∞

∑
n=0

∣∣∣r̃(k)nv

∣∣∣)k∗


1/k∗

,

R ∈
(∣∣∣Nφ

p

∣∣∣ , lk)⇒‖LR‖=
∥∥∥R̃(1)

∥∥∥
(l,lk)

= sup
v

{
∞

∑
n=0

∣∣∣r̃(1)nv

∣∣∣k} 1
k

,

R ∈
(∣∣∣Nφ

p

∣∣∣ , l)⇒‖LR‖=
∥∥∥R̃(1)

n

∥∥∥
(l,l)

= sup
v

∞

∑
n=0

∣∣∣r̃(1)nv

∣∣∣ .
Proof. The proof of the theorem is obtained from Lemma ??, Lemma ??, Lemma ??, and Lemma ??.

Theorem 2.5. Let 1 < k < ∞. Then,
a) R ∈ (

∣∣∣Nφ

p

∣∣∣
k
,c0) iff

lim
n→∞

r̃(k)nv = 0 for all v (2.3)

sup
n

∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗ < ∞ (2.4)

sup
m

{
m−1

∑
v=1

1
φv
|σnv|k

∗
+

1
φm

∣∣∣∣rnm
Pm

pm

∣∣∣∣k∗
}

< ∞ (2.5)

hold.
b) R ∈ (

∣∣∣Nφ

p

∣∣∣
k
,c) iff (??), (??) and

lim
n→∞

r̃(k)nv exists for all v

hold.
c) R ∈ (

∣∣∣Nφ

p

∣∣∣
k
, l∞) iff (??), (??) hold.

Proof. Prove only the part (a) since the proofs of the other parts can be made the same way. R ∈ (
∣∣∣Nφ

p

∣∣∣
k
,c0) if and only if

(rnv)
∞
v=0 ∈

{∣∣∣Nφ

p

∣∣∣
k

}β

and R(λ )∈ c0 for every λ ∈
∣∣∣Nφ

p

∣∣∣
k
. It is seen immediately from Theorem 2.1 in [?] (rnv)

∞
v=0 ∈

{∣∣∣Nφ

p

∣∣∣
k

}β

if and only if (??) holds. Also, if any matrix R ∈ (lk,c0), then the series ∑
v

rnvλv converges uniformly in n and so

lim
n ∑

v
rnvλv = ∑

v
lim

n
rnvλv. (2.6)

On the other hand,

lim
m

m

∑
v=0

rnvλv = lim
m

m

∑
v=0

b(n)mv yv

where B(n) = (b(n)mv ) is defined by

b(n)mv =


rn0, v = 0,

Pv

φ
1/µ∗v
v pv

(
rnv− Pv−1

Pv
rn,v+1

)
,1≤ v < m−1

Pmrnm

φ
1/µ∗m
m pm

, v = m,m≥ 1

0, v > m.

So, it follows from (??)

Rn(λ ) = lim
m

m

∑
v=0

rnvλv = lim
m

m

∑
v=0

b(n)mv yv =
∞

∑
v=0

r̃(k)nv yv = R̃(k)
n (y).

It is clear that R(λ ) ∈ c0 for every λ ∈
∣∣∣Nφ

p

∣∣∣
k

equals to R̃(k)(y) ∈ c0 for every y ∈ lk since
∣∣∣Nφ

p

∣∣∣
k
∼= lk. This means that

R̃(k) ∈ (lk,c0). Applying Lemma ?? to the matrix R̃(k) the conditions (??) and (??) are obtained which completes the proof of
the part (a).
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Theorem 2.6. The following statements hold:
a) R ∈ (

∣∣∣Nφ

p

∣∣∣ ,c0) iff

lim
n→∞

r̃(1)nv = 0 for all v (2.7)

sup
n,v

∣∣∣r̃(1)nv

∣∣∣< ∞ (2.8)

sup
v

{
|σnv|+

∣∣∣∣rnv
Pv

pv

∣∣∣∣}< ∞, for all n (2.9)

hold.
b) R ∈ (

∣∣∣Nφ

p

∣∣∣ ,c) iff (??), (??) and

lim
n→∞

r̃(1)nv exists for all v

hold.
c) R ∈ (

∣∣∣Nφ

p

∣∣∣ , l∞) iff (??), (??) hold.

Proof. (b) Let R ∈ (
∣∣∣Nφ

p

∣∣∣ ,c). R ∈ (
∣∣∣Nφ

p

∣∣∣ ,c) if and only if (rnv)
∞
v=0 ∈

{∣∣∣Nφ

p

∣∣∣}β

and R(λ ) ∈ c for every λ ∈
∣∣∣Nφ

p

∣∣∣. It follows

from Theorem 2.1 in [?], (rnv)
∞
v=0 ∈

{∣∣∣Nφ

p

∣∣∣}β

if and only if (??) holds. Further, for any matrix R ∈ (l,c), the series ∑
v

rnvλv

converges uniformly in n and so

lim
n ∑

v
rnvλv = ∑

v
lim

n
rnvλv. (2.10)

Also,

lim
m

m

∑
v=0

rnvλv = lim
m

m

∑
v=0

d(n)
mv yv

where the matrix D(n) = (d(n)
mv ) is given by

d(n)
mv =


Pv
pv

(
rnv− Pv−1

Pv
rn,v+1

)
,0≤ v < m−1

Pm
pm

rnm, v = m,m≥ 1
0, v > m.

So, it is deduced from (??)

Rn(λ ) = lim
m

m

∑
v=0

rnvλv = lim
m

m

∑
v=0

d(n)
mv yv =

∞

∑
v=0

r̃(1)nv yv = R̃(1)
n (y).

It is obvious that R(λ ) ∈ c for every λ ∈
∣∣∣Nφ

p

∣∣∣ if and only if R̃(1)(λ ) ∈ c for every y ∈ l, i.e., R̃(1) ∈ (l,c). Applying Lemma

?? to the matrix R̃(1) the conditions (??), (??) are obtained. This completes the proof of the part (b). The other parts can be
proved by the similar way with Lemma ??.

Take the matrix L = (ln j) defined by

ln j =

{
1, 0≤ j ≤ n
0, j > n.

Then, since bs = {l∞}L and cs = {c}L , the matrix classes
(∣∣∣N̄φ

p

∣∣∣
k
,cs

)
and

(∣∣∣N̄φ
p

∣∣∣
k
,bs

)
can be characterized as follows with

Lemma ??:

Corollary 2.7. Let 1 < k < ∞. R ∈ (
∣∣∣Nφ

p

∣∣∣
k
,cs) iff

lim
n→∞

r̃(n,v)exists for all v
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sup
n

∞

∑
v=0
|r̃(n,v)|k

∗
< ∞ (2.11)

sup
m

{
m−1

∑
v=1
|r̃(n,v)|k

∗
+

1
φm

∣∣∣∣r(n,m)
Pm

pm

∣∣∣∣k∗
}

< ∞, (2.12)

R ∈ (
∣∣∣Nφ

p

∣∣∣
k
,bs) if and only if (??) and (??) hold where r(n,v) =

n
∑
j=0

r jv, R(n,v) and R̃(n,v) are connected by (??).

Theorem 2.8. Suppose that 1 < k < ∞. Then,
a) R ∈ (

∣∣∣Nφ

p

∣∣∣
k
,c0) iff

‖LR‖χ
= limsup

n→∞

(
∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗)1/k∗

and R ∈ C (
∣∣∣N̄φ

p

∣∣∣
k
,c0) iff limsup

n→∞

∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗ = 0.

b) R ∈ (
∣∣∣Nφ

p

∣∣∣
k
,c) iff

1
2

limsup
n→∞

(
∞

∑
v=0

∣∣∣r̃(k)nv −αv

∣∣∣k∗)1/k∗

≤ ‖LR‖χ
≤ limsup

n→∞

(
∞

∑
v=0

∣∣∣r̃(k)nv −αv

∣∣∣k∗)1/k∗

and R ∈ C (
∣∣∣Nφ

p

∣∣∣
k
,c0) iff limsup

n→∞

∞

∑
v=0

∣∣∣r̃(k)nv −αv

∣∣∣k∗ = 0 where αv = lim
n→∞

r̃(k)nv .

c) R ∈ (
∣∣∣Nφ

p

∣∣∣
k
, l∞) iff

0≤ ‖LR‖χ
≤ limsup

n→∞

(
∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗)1/k∗

also, if limsup
n→∞

∞

∑
v=0

∣∣∣r̃(k)nv

∣∣∣k∗ = 0, then R ∈ C (
∣∣∣Nφ

p

∣∣∣
k
, l∞).

Proof. To avoid repetition, only the proof of b is made and the proofs of (a) and (c) are left to the reader.

(b) Let R ∈
(∣∣∣Nφ

p

∣∣∣
k
,c
)

. To compute the Hausdorff measure of noncompactness of LR, take the unit sphere S∣∣∣Nφ

p

∣∣∣
k

in the space∣∣∣Nφ

p

∣∣∣
k
. It is written from Lemma ?? that

‖LR‖χ
= χ(RS∣∣∣Nφ

p

∣∣∣
k

).

On the other hand, since
∣∣∣Nφ

p

∣∣∣
k
∼= lk, R ∈

(∣∣∣Nφ

p

∣∣∣
k
,c
)

if and only if R̃(k) ∈ (lk,c) , and so

‖LR‖χ
= χ(RS∣∣∣Nφ

p

∣∣∣
k

) = χ(R̃(k)T (p)S∣∣∣Nφ

p

∣∣∣
k

) =
∥∥LR̃(k)

∥∥
χ

which implies, by Lemma ??,

1
2

lim
r→∞

(
sup
n≥r

∥∥∥R̃(k)
n −α

∥∥∥∗
lk

)
≤ ‖LR‖χ

≤ lim
r→∞

(
sup
n≥r

∥∥∥R̃(k)
n −α

∥∥∥∗
lk

)
, (2.13)

where αv = lim
n→∞

r̃(k)nv , for all v≥ 0.

By Lemma ??,
∥∥∥R̃(k)

n −α

∥∥∥∗
lk
=
∥∥∥R̃(k)

n −α

∥∥∥
lk∗

. The last equality completes the first part of the proof of (b) with (??). Moreover,

the compactness of LR is immediately deduced from Lemma ??. So, the proof of (b) is completed.

We have the following theorems by following the above lines:

Theorem 2.9. (a) If R ∈
(∣∣∣Nφ

p

∣∣∣ ,c0

)
. Then

‖LR‖χ
= limsup

n→∞

∥∥∥R̃(k)
n

∥∥∥
l∞
= limsup

n→∞

sup
v

∣∣∣r̃(1)nv

∣∣∣
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and R ∈ C
(∣∣∣Nφ

p

∣∣∣ ,c0

)
iff limsup

n→∞

sup
v

∣∣∣r̃(1)nv

∣∣∣= 0.

(b) If R ∈
(∣∣∣Nφ

p

∣∣∣ ,c), then
1
2

limsup
n→∞

sup
v

∣∣∣r̃(1)nv −αv

∣∣∣≤ ‖LR‖χ
≤ limsup

n→∞

sup
v

∣∣∣r̃(1)nv −αv

∣∣∣
and R ∈ C

(∣∣∣Nφ

p

∣∣∣ ,c) iff limsup
n→∞

sup
v

∣∣∣r̃(1)nv −αv

∣∣∣= 0 where αv = lim
n→∞

r̃(1)nv , for all v ∈ N.

(c) If R ∈
(∣∣∣Nφ

p

∣∣∣ , l∞), then

0≤ ‖LR‖χ
≤ limsup

n→∞

sup
v

∣∣∣r̃(1)nv

∣∣∣
and R ∈ C

(∣∣∣Nφ

p

∣∣∣ ,c0

)
if limsup

n→∞

sup
v

∣∣∣r̃(1)nv

∣∣∣= 0.

Theorem 2.10. (a) If R ∈
(∣∣∣Nφ

p

∣∣∣ , lk), 1≤ k < ∞, then

‖LR‖χ
= lim

j→∞

sup
v

(
∞

∑
n= j+1

∣∣∣r̃(1)nv

∣∣∣k)1/k
 ,

and R is a compact operator iff lim
j→∞

sup
v

∞

∑
n= j+1

∣∣∣r̃(1)nv

∣∣∣k = 0.

(b) If R ∈
(∣∣∣Nφ

p

∣∣∣
k
, l
)

, 1 < k < ∞, then there exists 1≤ ξ ≤ 4 such that

‖LR‖χ
=

1
ξ

lim
j→∞

 ∞

∑
v=0

(
∞

∑
n= j+1

∣∣∣r̃(k)nv

∣∣∣)k∗


1/k∗

,

and R is compact a compact operator iff lim
j→∞

∞

∑
v=0

(
∞

∑
n= j+1

∣∣∣r̃(k)nv

∣∣∣)k∗

= 0.

Proof. (a) Let S∣∣∣Nφ

p

∣∣∣ be a unit sphere in the space
∣∣∣Nφ

p

∣∣∣ and R = R̃(1) ◦T (p). Since λ ∈ S∣∣∣Nφ

p

∣∣∣, y = T (p)(λ ) ∈ Sl . So, by Lemma

??, Lemma ?? and Lemma ??, it is written that

‖R‖
χ

= χ

(
RS∣∣∣Nφ

p

∣∣∣
)
= χ

(
R̃(1) ◦T (p)S∣∣∣N̄φ

p

∣∣∣
k

)

= lim
j→∞

 sup
y∈T (p)S∣∣∣Nφ

p
∣∣∣
∥∥∥(I−Pj)(R̃(1)(y))

∥∥∥


= lim
j→∞

sup
v

{
∞

∑
n= j+1

∣∣∣r̃(1)nv

∣∣∣k}1/k

which completes the proof of the first part with Lemma ??. The proof of (b) is similar, so it is omitted.

3. Conclusion

The approach of constructing a lot of new sequence spaces by means of the matrix domain of some particular limitation
methods have recently been employed by several authors in many research papers. Also, with a different point of view, using
the concept of absolute summability method new sequence spaces have taken into the literature. For instance, in recent paper,∣∣∣Nφ

p

∣∣∣
k

has been generated from the space lk as a set of all series summable by the absolute weighted mean method by Mohapatra
and Sarıgöl [?] and Sarıgöl [?, ?]. In the present study, as a continuation of these papers, certain compact and matrix operatos
from this space to one of the classical sequence spaces c, l∞,c0 are characterized and their norms and Hausdorff measures of
noncompactness are determined. So, it has been brought a different perspective and studying field.
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[4] F. Gökçe, M.A. Sarıgöl, Some matrix and compact operators of the absolute Fibonacci series spaces, Kragujevac J. Math., 44(2) (2020), 273–286.
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