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Abstract

BCK-modules were introduced as an action of a BCK-algebra over an Abelian group.
Homomorphisms of BCK-modules form an exact sequence which is called BCK-sequence.
In this paper, we study homomorphisms of BCK-modules. We show that this homomor-
phisms have a module structure. Moreover, we show that sequences of Hom functors are
BCK-sequences.

1. Introduction

BCK/BCI-algebras were introduced by Imai and Iseki [1, 2]. BCK/BCI-algebras have been studied by many authors, extensively.
In 1994, the BCK-module structure of BCK-algebras was introduced as an action on an Abelian group [3]. In [4], exact
sequences of BCK-modules were studied. Further, in [5],the authors studied the homomorphisms between BCK-modules
and they showed that the set of homomorphisms of BCK-modules form a BCK-module. Later, in [6], homology theory of
BCK-modules was investigated. In [7], the authors studied BCK-sequences and finitely presented BCK-modules.
The paper organized as follows; in section 2, we give general theory of BCK-algebras and BCK-modules. In section 3, we
study the exactness of modules of homomorphisms between BCK-modules.

2. Preliminaries

In this section we introduce the background informations about BCK-algebras, BCK-modules and X-homomorphisms.

Definition 2.1. [8] A BCK-algebra is an algebra (X ;∗,0) of type (2,0) which satisfies the following axioms:
for all p,q,r ∈ X,

1. ((p∗q)∗ (p∗ r))∗ (r ∗q) = 0,
2. (p∗ (p∗q))∗q = 0,
3. (p∗ p) = 0,
4. p∗q = 0 = q∗ p implies p = q.
5. 0∗ p = 0.

Moreover, the relation ≤ can be defined as p≤ q if and only if p∗q = 0, for any p,q ∈ X , is a partial-order on X which is
called BCK-ordering of X .

Definition 2.2. [6] Let (X ;∗,0) be a BCK-algebra and M be an Abelian group under addition +, then M is said to be an
(left) X-module, if there is a mapping (x,m) 7→ xm from X ×M→ M such that it satisfies the following conditions for all
x,x1,x2 ∈ X and m,m1,m2 ∈M:

1. (x1∧ x2)m = x1(x2m),
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2. x(m1 +m2) = xm1 + xm2,
3. 0m = 0

where, x1∧ x2 = x2 ∗ (x2 ∗ x1). If X is bounded with maximal element 1, then

4. 1m = m.

The right X-module can be defined similarly. This X-module M is an BCK-module. If a subgroup N of the X-module M is
also an X-module, then N is called a submodule.
Let M and N be X-modules. A mapping φ : M→ N is said to be an X-homomorphism, if for any x ∈ X and m1,m2 ∈M the
followings hold:

1. φ(m1 +m2) = φ(m1)+φ(m2),
2. φ(xm1) = xφ(m1).

If φ is both injective and surjective, then φ is an X-isomorphism. We say M is isomorphic to N if φ is an X-isomorphism and
denote it by M ∼= N.
The bounded implicative BCK-algebras form a BCK-module over itself (Abujabal et al., 1994). This section devoted to the
examples of BCK-modules.

Example 2.3. Let (X ;∗,0) be a bounded implicative BCK-algebra with X = {0,x,y,1}. Let M = {0,x} be a subset of X. If we
define addition operation + as x+ y = (x∗ y)∨ (y∗ x) and xm = x∧m for all x ∈ X, m ∈M, then M is an X-module. Cayley
table of these operations are as follows:

* 0 x y 1
0 0 0 0 0
x x 0 x 0
y y y 0 0
1 1 y x 0

+ 0 x
0 0 x
x x 0

∧ 0 x
0 0 0
x 0 x
y 0 0
1 0 x

3. Exact BCK-sequences

Definition 3.1. [7] The sequence of X-module homomorphisms M1
f−→M2

g−→M3 is said to be exact at M2, if Im( f ) = Ker(g). A

sequence of X-module homomorphisms, M1
f1−→M2

f2−→ . . .
fn−1−−→Mn is called exact sequence of X-modules, if Im( fi)=Ker( fi+1)

for all i ∈ {1,2, ...,n}.

Theorem 3.2. Let X be a BCK-algebra and K,L and M be X-modules. If A is an X-module and 0→ K
ψ−→ L

φ−→M is exact,
then

0→ Hom(A,K)
ψ∗−→ Hom(A,L)

φ∗−→ Hom(A,M)

is an exact sequence of X-modules.

Proof. First we show that ψ∗ is a monomorphism. Let θ : A→ K be a X-homomorphism with ψ∗θ = 0. Since ψ is a
monomorphism, then for any a ∈ A, the identity ψ∗θ(a) = 0 implies that θ(a) = 0. Thus θ = 0. Hence ψ∗ is a monomorphism.
Let b ∈ Im(ψ∗)⊆ Hom(A,L). Then there exists a ∈ Hom(A,K) such that ψ∗(a) = b = ψa. Since φ∗(b) = φ∗(ψa) = φψa =
0a = 0, we have b∈Ker(φ∗). Hence Im(ψ∗)⊆Ker(φ∗). Let u∈Ker(φ∗)⊆Hom(A,L). Then φ∗(u) = 0 and φu(a) = 0 for any
a ∈ A. The exactness of the sequence gives that Ker(φ) = ψ(K). Thus there exists an x ∈ K which satisfies ψ(x) = u(a). Then
v(a) = x defines a homomorphism v : A→ K with ψ∗(v) = u. Thus Ker(φ∗)⊆ Im(ψ∗). Therefore Ker(φ∗) = Im(ψ∗).

Theorem 3.3. Let X be a BCK-algebra and K,L and M be X-modules. If A is an X-module and K
ψ−→ L

φ−→M→ 0 is exact,
then
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0→ Hom(M,A)
φ∗−→ Hom(L,A)

ψ∗−→ Hom(K,A)

is an exact sequence of X-modules.

Proof. First we show that φ∗ is a monomorphism. Let θ : M→ A be an X-homomorphism and θ ∈ Ker(φ∗). Since 0 = φ∗θ =
θφ , this implies that θ(φ(l)) = 0 for all l ∈ L. Thus θ(m) = 0 for all m ∈ Im(φ). The fact that φ is epimorphism implies that
Im(φ) = M and θ = 0. Hence φ∗ is a monomorphism.
Let b ∈ Im(φ∗) ⊆ Hom(L,A). Then there exists a ∈ Hom(M,A) such that φ∗(a) = b = aφ . Since ψ∗(b) = ψ∗(aφ) and
ψ∗(aφ) = aφψ = a0 = 0, this implies that b ∈ Ker(ψ∗). Hence Im(φ∗) ⊆ Ker(ψ∗). Let u ∈ Ker(ψ∗) ⊆ Hom(L,A). Then
ψ∗(u) = 0 = uψ . Following the diagram,

There exists p ∈ Hom(M,A) such that u = pφ = φ∗(p). This implies that u ∈ Im(φ∗). Thus Ker(ψ∗) ⊆ Im(φ∗). Therefore
Ker(ψ∗) = Im(φ∗).

Definition 3.4. Let X be a BCK-algebra and M,N and K be X-modules. If the following sequence of X-modules is exact. Then

0→M→ N→ K→ 0

is called short exact sequence.

Theorem 3.5. Let X be a BCK-algebra and M,N and K be X-modules. If the short sequence of X-homomorphisms is exact;

then followings are equivalent;

1. There exists an X-homomorphism η : N→M such that ηψ = 1M .
2. Submodule Im(ψ) is a direct summand of N.
3. There exists an X-homomorphism θ : K→ N suct that φθ = 1K .

Moreover, we have N ∼= M⊕K.

Proof. 1⇒ 2 Let x ∈ N be any element. Since η(x−ψη(x)) = η(x)− ((ηψ)η(x)) = η(x)− η(x) = 0, then we have
x−ψη(x) ∈ Ker(η). This implies that x = ψ(η(x))+(x−ψη(x)) ∈ Im(ψ)+Ker(η).
Let ψ(m) ∈ Im(ψ)∩Ker(η). Since m = ηψ(m) = η(ψ(m)) = 0, one can conclude that Im(ψ)∩Ker(η) = 0. Hence
N = Im(ψ)⊕Ker(η).
2⇒ 3 Let N′ be a submodule of N and N = Im(ψ)⊕N′. Now since N′∩Ker(φ)=N′∩Im(ψ)= 0, the φ |N′ is a monomorphism.
The fact that φ is a epimorphism implies that there exists x in N for every y ∈ K such that φ(x) = y. If we set x = ψ(a)+b
for a ∈M,b ∈ N′. Then y = φ(x) = φ(ψ(a)+b) = φψ(a)+φ(b) = φ(b). This implies that φ |N′ is an epimorphism. Thus
φ |N′ is an isomorphism. Since φ |N′ is an isomorphism, we can conclude that φ |N′ has an inverse (φ |N′)−1 : K → N for
θ := (φ |N′)−1 : K→ N then we have φθ = 1K .
3⇒ 1 Since φ(n−θφ(n)) = φ(n)−φ(θφ(n)) = 0, we have n−θφ(n) ∈Ker(φ) = Im(ψ). Then there exists m ∈M such that
ψ(m) = n−θφ(n). This m is unique, since ψ is a monomorphism. Set η : N→M and η(n) = m with η is a homomorphism.
The equality,

ψ(m)−θφ(ψ(m)) = ψ(m)−θ(φψ(m)) = ψ(m)−θ(0) = ψ(m), for every m in M.

holds, since φψ(n) = 0. It follows that ψ(m) = ψ(m)−θφ(ψ(m)), and combining this equality with ψ(m) = n−θφ(n),
we can deduce that ψ(m) = n. Thus η(ψ(m)) = m, so we have ηψ = 1M . Since ψ is a monomorphism, then Im(ψ) ∼= M.
Therefore, N ∼= M⊕K.
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