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Abstract

In this paper, we give a new approach for Bertrand and Mannheim curves in 3D Lie groups
with bi-invariant metrics. In this way, some conditions including the known results have
been given for a curve to be Bertrand or Mannheim curve in 3D Euclidean space and in 3D
Lie groups.

1. Introduction

The curve and surface theory is a comprehensive field in differential geometry. Especially associated curves whose the Frenet
apparatus satisfy some geometric conditions in Euclidean 3-space. For examples, general helix is a curve, whose tangent
vector makes a constant angle with a fixed straight line. Lancret gave the condition for a given curve to be a general helices by
the ratio of its curvatures to be constant [1]. In [2], a different approach is given to a general helix lying on a sphere. Also, slant
helix was defined as a curve whose normal vector makes a constant angle with a fixed straight line in 3D Euclidean space by
Izumiya and Takeuchi [3]. They showed that a curve is a slant helix iff the geodesic curvature of spherical image of principal
normal indicatrix of the curve is a constant function. On the other hand, there exist some examples of associated curves such as
Bertrand and Mannheim curve couples whose the Frenet apparatus satisfy some geometric conditions in 3D Euclidean space.
Bertrand curve couples defined by J. M. Bertrand in 1845 [4]. ”If the normal vectors of the two curves are coincide at the
corresponding points of the curves, we say that these curves are Bertrand curve couple”. Liu and Wang defined Mannheim
curve couples in 2008 [5]. ”If the normal vector of a given curve is coincide with an other curve’s bi-normal vector at the
corresponding points of the curves, we say that these curves are Mannheim curve couple.” They gave a condition for a given
curve to be a Mannheim curve. Also, [6]-[9] can be looked at for examining Bertand and Mannheim curves in different spaces.
Recently, Ç. Camcı et.all and A. Uçum et.all gave a generalization for Bertrand and Mannheim curves in 3D Euclidean space,
respectively [10, 11].
Lie groups are an important mathematical form because they have three different structures in mathematics such that S3, SO(3)
and Abelian Lie groups. In addition, Lie groups have a wide range of theory and application in physics and mechanics, as well
as their importance in mathematics. Some associated curves such as general helices, slant helices, Bertrand and Mannheim
curves are introduced in the Lie groups [12]-[15]. On the other hand, different structures such as spinor representations, curve
flows in Lie groups and the conjugate mate structures of curves were investigated in [16]-[19]. And it has been shown that
the conditions obtained in 3D Lie groups are a generalization of the conditions obtained in 3D Euclidean space. In [20], Lie
algebras and their applications related to dynamical structures are given.
In this paper, we introduce a generalization for Bertrand and Mannheim curves in 3D Lie groups, respectively. Also, we obtain
some characterizations of these curves. Moreover, we give some results about this curves for special cases of 3D Lie groups.
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2. Preliminaries

Assume that G be the 3D Lie group with bi-invariant metric 〈,〉 and ∇ be the Levi-Civita connection of Lie group G. The Lie
algebra of G denotes with g, which is isomorphic to TfG, where f is neutral element of G. As the metric is bi-invariant, we
have the following equations for all P,Q,R ∈ g;

〈P, [Q,R]〉= 〈[P,Q] ,R〉

and

∇PQ=
1
2
[P,Q] .

Let E1,E2, ...,En be an orthonormal basis of g and γ be an an arc-lengthed curve on G. Then, we can write any two vector
fields Y1 and Y2 along γ as Y1 = ∑

n
i=1 aiEi and Y2 = ∑

n
i=1 biEi where ai and bi are real-valued smooth functions. Also, the

Lie bracket of Y1 and Y2 is given

[Y1,Y2] =
n

∑
i=1

aibi[Ei,E j]

On the other hand, the covariant derivative of Z along γ is given by

∇
γ
′Z= Ż+

1
2
[t,Z] (2.1)

where t = γ
′

and Ż= ∑
n
i=1

dz
dt

Ei. Also, if Z is the left-invariant vector field, then Ż= 0 [21].

Let γ be a curve with Frenet apparatus {t,n,b,κ,τ} in Lie group G. Then the Frenet-Serret formulas are expressed by

∇tt = κn, ∇tn =−κt+ τb, ∇tb =−τn

where ∇ is connection of Lie group G and κ = ‖ṫ‖.

Proposition 2.1. [12] Let γ : J ⊂ R→ G be a curve in Lie group G with the Frenet apparatus {t,n,b,κ,τ}. Then Lie
curvature τG is defined by

τG =
1
2
〈[t,n],b〉.

Proposition 2.2. [13] Let γ : J ⊂ R→G be an arc length parametrized curve with the Frenet apparatus {t,n,b}. Then the
following equalities

[t,n] = 〈[t,n],b〉b = 2τGb

[t,b] = 〈[t,b],n〉n =−2τGn

hold.

Remark 2.3. [12, 22] The follows hold for Lie group G with bi-invariant metric in special cases:
(i) Let G is an Abelian group, then τG = 0,
(ii) Let G is SU2, then τG = 1,
(iii) Let G is SO3, then τG = 1

2 .

Theorem 2.4. [12] Let γ : J ⊂ R→G be a curve in Lie group G with the curvatures κ,τ and Lie curvature τG. Then, γ is a
general helix iff

τ− τG
κ

= constant

Theorem 2.5. [13] Let γ : J ⊂ R→G be a curve in Lie group G such that parametrized by the arc-length parameter s with
the curvatures κ,τ and Lie curvature τG. Then γ is a slant helix iff

κ

(
1+
(

τ− τG
κ

)2
)3

2

(
τ− τG

κ

)′ = constant
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Theorem 2.6. [14] Let γ : J ⊂ R→G be a curve in Lie group G such that parametrized by the arc-length parameter s with
the curvatures κ,τ and Lie curvature τG. Then, γ is Mannheim curve iff

λκ

(
1+
(

τ− τG
κ

)2
)

= 1

where λ is constant.

Theorem 2.7. [15] Let γ : J ⊂ R→ G be a Bertrand curve in Lie group G with the curvatures κ,τ and Lie curvature τG.
Then, γ satisfy the following equality

λκ +µ(τ− τG) = 1

where λ ,µ are constants.

3. Generalized Bertrand curves in 3D Lie groups

In this section, we investigate generalized Bertrand curves in 3D Lie groups and we give some characterizations.

Definition 3.1. A curve γ : J ⊂ R→ G is a Bertrand curve if there exists a special curve γ : J ⊂ R→ G and a bijection
ζ : γ → γ where n(s) and n(s) at s ∈ J, s ∈ J coincide. Also, γ(s) is called the Bertrand mate of γ(s) in Lie group G.

Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the Frenet apparatus
{t,n,b} and the curvatures κ,τ 6= 0 and γ(s) be a Bertrand mate curve of γ with the Frenet apparatus {t,n,b} and the
curvatures κ,τ 6= 0. We can write as

γ(s) = γ(σ(s)) = γ(s)+a(s)t(s)+b(s)n(s)+ c(s)b(s) (3.1)

where a(s),b(s) and c(s) are differentiable functions on J.

Theorem 3.2. Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve with Bertrand mate γ iff one of the followings holds:
i. The differentiable functions a,b and c satisfy the following equations:

aκ +b
′ − c(τ− τG) = 0 and c

′
+b(τ− τG) = 0 (3.2)

ii. The differentiable functions a,b,c and real number ` satisfy the following equations:

aκ +b
′ − c(τ− τG) = 0, c

′
+b(τ− τG) 6= 0 (3.3)

1+a
′ −bκ = `(c

′
+b(τ− τG)), `κ− (τ− τG) 6= 0, κ + `(τ− τG) 6= 0

Proof. Let us assume that γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with
the curvatures κ,τ 6= 0. By differentiating equation (3.1), we get

dγ(s)
ds

σ
′
=

dγ(s)
ds

+a
′
(s)t(s)+a(s)ṫ(s)+b

′
(s)n(s)+b(s)ṅ(s)+ c

′
(s)b(s)+ c(s)ḃ(s). (3.4)

By using equation (2.1) and Proposition 2.1, we have

tσ
′
= (1+a

′ −bκ)t+(aκ +b
′ − c(τ− τG))n+(c

′
+b(τ− τG))b (3.5)

By taking the inner product of equation (3.5) with n, we have

aκ +b
′ − c(τ− τG) = 0

Therefore, we get

tσ
′
= (1+a

′ −bκ)t+(c
′
+b(τ− τG))b (3.6)

It is clear that,

(σ
′
)2 = (1+a

′ −bκ)2 +(c
′
+b(τ− τG))

2 (3.7)

Then, we can write as

t = λ1t+λ2b (3.8)



204 Fundamental Journal of Mathematics and Applications

for

λ1 =
1+a

′ −bκ

σ
′ and λ2 =

c
′
+b(τ− τG)

σ
′ (3.9)

By differentiating equation (3.8) in G, we get

σ
′
κn = λ

′
1t+(λ1κ−λ2(τ− τG))n+λ

′
2b (3.10)

This shows that λ
′
1 = 0 and λ

′
2 = 0.

i. Let us suppose that λ2 = 0. Therefore, we have c
′
+b(τ− τG) = 0.

ii. Let us suppose that λ2 6= 0. Then, we can write

1+a
′ −bκ = `(c

′
+b(τ− τG)) (3.11)

where
λ1

λ2
= `= constant. By according to equation (3.10), we write

σ
′
κn = (λ1κ−λ2(τ− τG))n

By taking the norm of both sides and by using equations (3.7) and (3.9), we get

(σ
′
)2(κ)2 =

(`κ− (τ− τG))
2

`2 +1
(3.12)

where `κ− (τ− τG) 6= 0. If we denote by λ =
λ1κ−λ2(τ− τG)

σ
′
κ

, we have

n = λn (3.13)

By differentiating equation (3.13), we get

(−κt+(τ− τG)b)σ
′
=−λκt+λ (τ− τG)b (3.14)

where λ
′
= 0. If we rewrite equation (3.14) by using equation (3.6), we get,

−σ
′
(τ− τG)b = µ1(s)t+µ2(s)b

where

µ1(s) =−
(c
′
+b(τ− τG))(`κ− (τ− τG))

(σ
′
)2(`2 +1)κ

(κ + `(τ− τG))

and

µ2(s) =
(c
′
+b(τ− τG))(`κ− (τ− τG))`

(σ
′
)2(`2 +1)κ

(κ + `(τ− τG))

It is clear that κ + `(τ− τG) 6= 0.
Conversely, assume that γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0.
i. Let’s assume that the condition (3.2) is satisfied for the differentiable functions a,b and c. Therefore, we write the derivative
of equation (3.1) as follows:

dγ

ds
= (1+a

′ −bκ)t (3.15)

From equation (3.15), we get

σ
′
=

ds
ds

=

∥∥∥∥dγ

ds

∥∥∥∥= ε1(1+a
′ −bκ)> 0

where ε1 = sgn(1+a
′ −bκ). Therefore, we have

t = ε1t, n = ε1n, b = b
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and

κ =
κ

σ
′ , τ− τG =

ε1(τ− τG)

σ
′

Consequently, γ is a Bertrand curve in Lie group G.
ii. Let’s assume that the condition (3.3) is satisfied for the differentiable functions a,b,c and real function `. Therefore, we
write the derivative of equation (3.1) as follows:

dγ

ds
= (1+a

′ −bκ)t+(c
′
+b(τ− τG))b (3.16)

From equation, we get

σ
′
=

∥∥∥∥dγ

ds

∥∥∥∥= ξ1(c
′
+b(τ− τG))

√
`2 +1

where ξ1 = sgn(c
′
+b(τ− τG)). By according to equation (3.16), we have

t =
ξ1√
`2 +1

(`t+b), 〈t, t〉= 1 (3.17)

By differentiating (3.17) with respect to s, we get

ṫσ ′ =
ξ1√
`2 +1

(`ṫ+ ḃ)

ṫ =
ξ1(`κ− (τ− τG))n

σ
′√

`2 +1

(3.18)

Then, from equation (3.18), we get

κ = ‖ṫ‖= ξ2(`κ− (τ− τG))

σ
′√

`2 +1
(3.19)

and

n = ξ1ξ2n, 〈n,n〉= 1 (3.20)

where ξ2 = sgn(`κ− (τ− τG)). Then, we have

b = t∧n =
ξ2√
`2 +1

(−t+ `b), 〈b,b〉= 1 (3.21)

By differentiating equation (3.21), we get

τ− τG =−〈ḃ,n〉= ξ1(κ +(τ− τG)`)

σ
′√

`2 +1
(3.22)

Thus, γ is a Bertrand curve in Lie group G.

Proposition 3.3. Let γ : J ⊂ R→G and γ : J ⊂ R→G be Bertrand curve pair with the Frenet vectors {t,n,b} and {t,n,b},
respectively. Then τG = τG for τG = 1

2 〈[t,n],b〉 and τG = 1
2 〈[t,n],b〉.

Proof. The proof is easily seen from equations (3.17), (3.20) and (3.21).

Remark 3.4. If a = c = 0 in Theorem 3.2, we obtain the Bertrand curve conditions in the 3D Lie groups in the literature [15]
where

γ(s) = γ(σ(s)) = γ(s)+b(s)n(s)

Corollary 3.5. Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve where γ(s) = γ(σ(s)) = γ(s)+b(s)n(s) iff there exist real number b and ` satisfying

1−bκ = `b(τ− τG) `κ− (τ− τG) 6= 0

In the following corollary, we show the existence of Bertrand curves with general helix in Lie group G.
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Corollary 3.6. Let γ : J ⊂R→G be a general helix in Lie group G with the curvatures κ,τ satisfying `κ− (τ− τG) 6= 0 and
κ + `(τ− τG) 6= 0 where ` is a real number. Then, γ is given by

γ(σ(s)) = γ(s)+
ks

`− k
t+

s
`− k

b (3.23)

where k 6= 0 is constant.

Proof. Suppose that γ : J ⊂ R→G be a general helix in Lie group G with the curvatures κ,τ . From Theorem 2.4, we can
write

τ− τG
κ

= k (3.24)

where k 6= 0 is constant. On the other hand, if we take b = 0 in the conditions of (ii) in Theorem 3.2, we have

aκ = c(τ− τG), c
′ 6= 0, 1+a

′
= `c

′
(3.25)

By using equations (3.24) and (3.25), we get

a = kc, c =
s

`− k
.

Hence, equation (3.23) is satisfied.

Corollary 3.7. Let γ : J ⊂ R→G be a Bertrand curve with the curvatures κ,τ and γ : I ⊂ R→ G be a Bertrand mate curve
of γ with the curvatures κ,τ . Then γ is a general helix iff γ is a general helix in 3D Lie groups.

Proof. By using equations (3.19) and (3.22), we get

τ− τG
κ

= ξ1ξ2

1+ `

(
τ− τG

κ

)
`−
(

τ− τG
κ

)
and

τ− τG
κ

=

(
τ− τG

κ

)
`−ξ1ξ2(

τ− τG
κ

)
+ξ1ξ2`

.

Therefore, γ is a general helix (i.e
τ− τG

κ
= constant) iff γ is a general helix (i.e

τ− τG
κ

= constant).

Corollary 3.8. If G is Abelian Lie group, the results obtained correspond to the generalized Bertrand curves given in study
[10].

4. Generalized Mannheim curves in 3D Lie groups

In this part, we obtain generalized Mannheim curves in 3D Lie groups and we obtain some characterizations.

Definition 4.1. A curve γ : J ⊂ R→G is a Mannheim curve if there exists a special curve γ∗ : J ⊂ R→G and a bijection
ζ : γ → γ where n and b∗ at s ∈ J, s∗ ∈ J∗ coincide. Also, γ∗(s∗) is called the Mannheim mate of γ(s) in Lie group G.

Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the Frenet apparatus
{t,n,b} and the curvatures κ,τ 6= 0 and γ∗(s∗) be a Mannheim mate curve of γ with the Frenet apparatus {t∗,n∗,b∗} and the
curvatures κ∗,τ∗ 6= 0. Then, we have

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+ e(s)t(s)+ f (s)n(s)+g(s)b(s) (4.1)

where e(s), f (s) and g(s) are differentiable functions on J.

Theorem 4.2. Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Mannheim curve with Mannheim mate γ∗ iff there exist differentiable functions e, f ,g satisfying

eκ + f
′ −g(τ− τG) = 0, g

′
+ f (τ− τG) 6= 0 (4.2)

(1+ e
′ − f κ)κ = (g

′
+ f (τ− τG))(τ− τG)
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Proof. Suppose that γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. By differentiating equation (4.1), we get

dγ∗(s∗)
ds∗

ϕ
′
=

dγ(s)
ds

+ e
′
(s)t(s)+ e(s)ṫ(s)+ f

′
(s)n(s)+ f (s)ṅ(s)+g

′
(s)b(s)+g(s)ḃ(s)

Then, we have

t∗ϕ
′
= (1+ e

′ − f κ)t+(eκ + f
′ −g(τ− τG))n+(g

′
+ f (τ− τG))b (4.3)

By taking the scalar product of equation (4.3) with n, we find

eκ + f
′ −g(τ− τG) = 0

Then, we have

t∗ϕ
′
= (1+ e

′ − f κ)t+(g
′
+ f (τ− τG))b (4.4)

It is seen that

(ϕ
′
)2 = (1+ e

′ − f κ)2 +(g
′
+ f (τ− τG))

2 (4.5)

Then, we can denote as

t∗ = δ1t+δ2b (4.6)

for

δ1 =
1+ e

′ − f κ

ϕ
′ and δ2 =

g
′
+ f (τ− τG)

ϕ
′ (4.7)

By differentiating equation (4.6) in G, we have

ṫ∗ϕ ′ = δ
′
1t+δ1 ṫ+δ

′
2b+δ2ḃ

ϕ
′
κ∗n∗ = δ

′
1t+(δ1κ−δ2(τ− τG))n+δ

′
2b

(4.8)

By taking the scalar product of (4.8) with n, we have δ1κ−δ2(τ− τG) = 0. From equation (4.7), we get

(1+ e
′ − f κ)κ = (g

′
+ f (τ− τG))(τ− τG) (4.9)

where g
′
+ f (τ− τG) 6= 0.

Conversely, suppose that γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with
the curvatures κ,τ 6= 0 and the conditions of (4.2) hold for differentiable functions e, f ,g. Then, we can write

dγ∗

ds
= (1+ e

′ − f κ)t+(g
′
+ f (τ− τG))b (4.10)

where

ϕ
′
=

√
〈dγ∗

ds
,

dγ∗

ds
〉= ξ1(g

′
+ f (τ− τG))

√
κ2 +(τ− τG)2

κ

with ξ1 = sgn(g
′
+ f (τ− τG)). From equation (4.10), we get

t∗ =
ξ1√

κ2 +(τ− τG)2
((τ− τG)t+κb), 〈t∗, t∗〉= 1 (4.11)

Then, we can denote

t∗ = γ1t+ γ2b (4.12)

where

γ1 =
ξ1(τ− τG)√

κ2 +(τ− τG)2
, γ2 =

ξ1κ√
κ2 +(τ− τG)2

.
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By differentiating (4.12) with respect to s, we get

ṫ∗ =
γ
′
1t+ γ

′
2b

ϕ
′ (4.13)

Then, from equation (4.13), we get

κ
∗ = ‖ṫ∗‖= ξ2((τ− τG)κ

′ − (τ− τG))
′
κ

ϕ
′
(κ2 +(τ− τG)2)

=

−ξ2κ2
(

τ− τG
κ

)′
ϕ
′
(κ2 +(τ− τG))2 (4.14)

and

n∗ =
ξ1ξ2√

κ2 +(τ− τG)2)
(−κt+(τ− τG)b), 〈n∗,n∗〉= 1 (4.15)

where ξ2 = sgn((τ− τG)κ
′ − (τ− τG))

′
κ). Moreover, we can obtain

b∗ = t∗∧n∗ =−ξ2n, 〈b∗,b∗〉= 1 (4.16)

Finally, we get

τ
∗− τ

∗
G =−〈ḃ∗,n∗〉= ξ1

√
κ2 +(τ− τG)2

ϕ
′ 6= 0 (4.17)

Then, γ is a Mannheim curve in Lie group G.

Proposition 4.3. Let γ : J ⊂ R→ G and γ∗ : J∗ ⊂ R→ G be Mannheim curve pair with the Frenet vectors {t,n,b} and

{t∗,n∗,b∗}, respectively. Then τG = τ∗G for τG =
1
2
〈[t,n],b〉 and τ∗G =

1
2
〈[t∗,n∗],b∗〉.

Proof. The proof is easily seen from equations (4.11), (4.15) and (4.16).

Remark 4.4. If e = g = 0 in Theorem 4.2, we satisfy the Mannheim curve conditions in the 3D Lie groups in the literature
[14] where

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+ f (s)n(s)

Corollary 4.5. Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve where γ∗(s∗) = γ∗(ϕ(s)) = γ(s)+ f (s)n(s) iff there exist real number f satisfying

κ = f (κ2 +(τ− τG)
2).

Corollary 4.6. Let γ : J ⊂ R→G be a general helix with the curvatures κ,τ 6= 0. Then, the Mannheim mate γ∗ is a straight
line in Lie group G.

Proof. Suppose that γ : J ⊂ R→G be a general helix with the curvatures κ,τ 6= 0 in Lie group G. Since the ratio
τ− τG

κ
is

constant, we get κ∗ = 0. Then, the Mannheim mate γ∗ is a straight line.

Corollary 4.7. Let γ : J ⊂ R→G be a Mannheim curve with the curvatures κ,τ and γ∗ : J∗ ⊂ R→ G be a Mannheim mate
of γ with the curvatures κ∗,τ∗. Then γ∗ is a general helix iff γ is a slant helix in Lie group G.

Proof. From equations (4.14) and (4.17), we get

τ∗− τG
κ∗

=−ξ1ξ2κ

(
1+
(

τ− τG
κ

)2
)3

2

(
τ− τG

κ

)′
Hence, the desired is achieved.

Corollary 4.8. If G is Abelian Lie group, the results obtained correspond to the generalized Mannheim curves given in study
[11].
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5. Conclusion

In this study, we examined generalized Bertrand and Mannheim curves in 3D Lie groups inspired by [10] and [11] studies. We
have shown that we obtain the results in studies [10], [11], [14] and [15], especially considering the Abelian Lie groups. In
connection with this study, special curve types can be studied in Lie groups with different metric structures in the future.
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