PAPER DETAILS

TITLE: THE SMALLEST DIMENSION SUBMANIFOLDS OF PARA B-KENMOTSU MANIFOLD

AUTHORS: Aysel TURGUT VANLI, Ramazan SARI

PAGES: 695-701

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/225527

The Smallest Dimension Submanifolds of Para β-Kenmotsu Manifold

Aysel TURGUT VANLI^{1, *}, Ramazan SARI²

¹Gazi Universty, Faculty of Arts and Sciences, Department of Mathematics, 06100, Ankara-TURKEY ²Amasya University, Merzifon Vocational School, Amasya, TURKEY

Received: 15/04/2016 Accepted: 30/05/2016

ABSTRACT

In this paper, we have studied the smallest dimensional submanifold of para β -Kenmotsu manifold. Necessary and sufficient conditions are given on 3-dimensional submanifolds of a 5-dimensional para β -Kenmotsu manifold to be a slant submanifold. After that, we have studied the 3-dimensional minimal slant submanifolds of para β -Kenmotsu manifold.

Key words: Para β -Kenmotsu manifold, smallest dimension, slant submanifold

1. INTRODUCTION

As a generalization of invariant submanifold and antiinvariant submanifolds, B.Y. Chen introduced slant submanifolds of almost Hermitian manifold in 1990 [5], [6]. On the other hand A. Lotta introduced the notion of slant immersion of a Riemannian manifold into an almost contact manifold [9]. He also studied 3-dimensional slant submanifolds K-contact manifold [10] . Recently, Cabrerizo et al. [2] studied slant submanifold of Sasakian manifold and general view about slant immersions can be founds in [3]. Khan et al. studied slant submanifold of Kenmotsu manifold [7], [8]. In 1976, Sato defined the notion of an almost para contact Riemannian manifold [11]. After [12], Olszak introduced para β -Kenmotsu manifold. Many authors studied smallest dimension submanifolds [4], [8].

The purpose of present paper is to study slant submanifolds of para β -Kenmotsu manifolds with the smallest dimension. The paper organized as follows. In section 2, we give basic formula and defination of para β -Kenmotsu manifold. We review, in section 3, formulas and definitions for para β -Kenmotsu manifolds and their submanifolds, which we use later. In section 4, we obtain the smallet dimension slant submanifold of para β -

^{*}Corresponding author, e-mail: avanli@gazi.edu.tr

Kenmotsu manifold. Necessary and sufficient conditions are given on a 3-dimensional submanifolds of 5dimensional para β -Kenmotsu manifold to be slant submanifold after studied 3-dimensional minimal submanifolds of para β -Kenmotsu manifold.

2. PRELIMINARIES

 $\varphi(\xi)=0,$

Let *M* be a (2n+1)-dimensional differentiable manifold endowed with a quadruplet (φ, ξ, η, g) , where φ is (1,1)tensor field, ξ is a vector field, η is a 1-form, and *g* is a pseudo-Riemannian such that

 $\varphi^2 X = \mu(X - \eta(X)\xi),$

(1)

$$g(\varphi x, \varphi Y) = -\mu(g(X, Y) - \varepsilon \eta(X)\eta(Y))$$
(2)

 $\eta o \varphi = 0, \ \eta(X) = \varepsilon g(X, \xi).$

 $\eta(\xi) = 1$

for all $X, Y \in \Gamma(TM)$, where $\mu, \epsilon = \pm 1$. In addition, we have

(3)

The manifold *M* will be called almost para contact metric, and the quadruplet (φ, ξ, η, g) will be called the almost para contact metric structure on *M*.

When $\mu = 1$, then the manifold *M* is an almost contact metric manifold. In this case the metric g is assumed to be pseudo-Riemannian in general, including Riemannian. Thus, if " $\varepsilon = 1$, the signature of g is equal to 2p, where $0 \le p \le n$ and if " $\varepsilon = 1$, the signature of g is equal to 2p+1, where $0 \le p \le n$.

When $\mu = 1$, then the manifold *M* is an almost paracontact metric manifold. In this case, the metric *g* is pseudo-Riemannian, and its signature is equal to *n* when " $\varepsilon = 1$, or n+1 when " $\varepsilon = -1$. One notes that in this case, the eigenspaces of the linear operator φ corresponding to the eigenvalues 1 and -1 are both *n*dimensional at every point of the manifold [12].

Then a 2-form Φ is defined by $\Phi(X, Y) = g(X, \varphi Y)$, for any $X, Y \in \Gamma(TM)$, called the *fundamental 2-form*. Moreover, an almost para contact metric manifold is *normal* if

$$[\varphi,\varphi]-2d\eta\otimes\xi=0.$$

where $[\varphi, \varphi]$ is denoting the Nijenhuis tensor field associated to φ [12]. A normal almost para contact metric manifold is called para contact metric manifold.

the almost para contact metric structure on M.

Proposition 1 Let $(M, \varphi, \xi, \eta, g)$ be an almost para contact manifold. Then, the Levi-Civita connection ∇ satisfies the following equality, for any $X, Y, Z \in \Gamma(TM)$,

$$2g((\nabla_X \varphi)Y, Z) = 3d\Phi(X, \varphi Y, \varphi Z) - 3d\Phi(X, Y, Z)$$
$$+ g(N(Y, Z), \varphi X) + \mu N^2(Y, Z)\eta(X)$$
$$+ 2\mu d\eta(\varphi Y, X)\eta(Z)$$
$$- 2\mu d\eta(\varphi Z, X)\eta(Y)$$

where $N^2(X, Y) = 2d\eta(\varphi X, Y) - 2d\eta(\varphi Y, X)$.

Definition 1 Let *M* be an almost para contact metric manifold of dimension (2n+1), with (φ, ξ, η, g) . *M* is said to be an almost para β -Kenmotsu manifold if 1-form η are closed and $d\Phi = 2\beta\eta \wedge \Phi$. A normal almost para β -Kenmotsu manifold *M* is called a para β -Kenmotsu manifold.

Theorem 1 Let $(\overline{M}, \varphi, \xi, \eta, g)$ be an almost para contact metric manifold. \overline{M} is a para β -Kenmotsu manifold if and only if

$$(\overline{\nabla}_X \varphi)Y = \beta \{ g(\varphi X, Y)\xi - \eta(Y)\varphi X \}$$
(4)

for all $X, Y \in \Gamma(T\overline{M})$ where $\overline{\nabla}$ is Levi-Civita connection on \overline{M} .

Proof. Let \overline{M} be a para β -Kenmotsu manifold. From Proposition 1, $\forall X, Y \in \Gamma(T\overline{M})$ we have

 $2g((\overline{\nabla}_X \varphi)Y, Z) = 3d\Phi(X, \varphi Y, \varphi Z) - 3d\Phi(X, Y, Z)).$ Then, we have

$$g((\overline{\nabla}_X \varphi)Y, Z) = -\beta\eta(X)g(\varphi Y, \varphi^2 Z) + \beta\eta(X)g(Y, \varphi Z) -\beta\eta(Y)g(Z, \varphi X) - \beta\eta(Z)g(X, \varphi Y) = -\beta\eta(Y)g(Z, \varphi X) - \beta\eta(Z)g(X, \varphi Y) = g(\beta\{g(\varphi X, Y)\xi - \eta(Y)\varphi X\}, Z).$$

Conversely, firstly, using (4), we get

 $\varphi \overline{\nabla}_X \xi = \beta \{ g(\varphi X, \xi) \xi - \eta(\xi) \varphi X \}$

hence, we get

 $\overline{\nabla}_X \xi = \beta \varphi^2 X.$

On the other hand, we have

$$d\eta(X,Y) = \frac{1}{2} \{g(Y, -\varphi^2 X) - g(X, -\varphi^2 Y)\} = 0$$

for all $X, Y \in \Gamma(T\overline{M})$. In addition, we know
 $3d\Phi(X,Y,Z) = g(Y, (\nabla_X \varphi)Z) - g(Z, (\nabla_Y \varphi)X)$
 $- g(X, (\nabla_Z \varphi)Y)$

From hypothesis, we have

 $\begin{aligned} 3d\Phi(X,Y,Z) &= \beta\{g(\varphi X,Z)g(Y,\xi) - \eta(Z)g(Y,\varphi X) \\ &- g(\varphi Y,Z)g(X,\xi) + \eta(Z)g(X,\varphi Y) \\ &+ g(\varphi Z,Y)g(X,\xi) - \eta(Y)g(X,\varphi Z\}) \\ &= 2\beta\{\Phi(Z,X)\eta(Y) + \Phi(X,Y)\eta(Z) \\ &+ \Phi(Y,Z)\eta(X). \end{aligned}$

Then, we obtain

$$d\Phi = 2\beta\eta \wedge \Phi.$$

Moreover, the Nijenhuis torsion of
$$\phi$$
 is obtained

$$\begin{split} N_{\varphi}(X,Y) &= \varphi(-\beta\{g(\varphi X,Y)\xi - \eta(Y)\varphi X\} \\ &+ \beta\{g(\varphi Y,X)\xi - \eta(X)\varphi Y\}) \\ &+ \beta\{g(\varphi^2 X,Y)\xi - \eta(Y)\varphi^2 X\} \\ &- \beta\{g(\varphi^2 Y,X)\xi - \eta(X)\varphi^2 Y\} \\ &= 0. \end{split}$$

Hence, we have

$$[\varphi,\varphi]-2d\eta\otimes\xi=0.$$

The proof is completed.

Corollary 1 Let \overline{M} be (2n+1)-dimensional a para β -Kenmotsu manifold with structure (φ, ξ, η, g) . Then we have

$$\overline{\nabla}_X \xi = \beta \varphi^2 X \tag{5}$$

for all $X, Y \in \Gamma(T\overline{M})$.

3 SUBMANIFOLDS OF PARA β-KENMOTSU MANIFOLD

Now, let *M* be a submanifold of the (2n+1) dimensional a para β -Kenmotsu manifold \overline{M} . Let ∇ be the Levi-Civita connection of *M* with respect to the induced metric g. Then Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y - h(X, Y) \tag{6}$$

$$\overline{\nabla}_X V = \nabla_X^{\perp} Y - A_V X \tag{7}$$

for any $X, Y \in \Gamma(TM)$ and $V \in \Gamma(TM)^{\perp}$. ∇^{\perp} is the connection in the normal bundle, *h* is the second fundamental from of *M* and A_V is the Weingarten endomorphism associated with *V*. The second fundamental form *h* and the shape operator *A* related by

$$g(h(X,Y),V) = g(A_V X,Y).$$
(8)

The mean curvature tensor H is defined by

$$H = \frac{1}{m} \sum_{k=1}^{m} h(e_k, e_k)$$

where $\{e_1, \dots, e_m\}$ is a local orthonormal basis of *TM*. *M* said to be minimal if *H* vanishes identically.

Now, let $\{e_1, \dots, e_n, e_{n+1}, \dots, e_m\}$ be local orthonormal basis of *TM* such that the vector fields $\{e_1, \dots, e_n\}$ are tanget to *M* and $\{e_{n+1}, \dots, e_m\}$ are normal to m. Then for any $X \in \Gamma(TM)$

$$\nabla_{X} e_{i} = \sum_{j=1}^{n} w_{i}^{j} e_{i} + \sum_{k=n+1}^{m} w_{i}^{k} e_{k}$$
(9)
$$\nabla_{X} e_{r} = \sum_{j=1}^{n} w_{r}^{j} e_{j} + \sum_{k=n+1}^{m} w_{r}^{k} e_{k}$$

where i=1,...,n and r=n+1,...,m and $w_i^j = g(\nabla_{e_i}, e_j)$. The 1-forms w_i^j, w_i^k and w_r^j can called connection forms of M.

On the other hand, the mix second fundamental form in the direction e_r is defined

$$h_{ij}^r = g(h(e_i, e_j), e_r)$$

For every tangent vector field X we write

$$\varphi X = TX + NX \tag{10}$$

where *TX* (resp. NX) denotes the tangential (resp. normal) component of φX and *NX* is the normal one. Moreover for every normal vector field V,

$$\rho V = tV + nV \tag{11}$$

where tV in the tangential component and nV is the normal one.

Now, for later use, we establish proposition for submanifolds of para β -Kenmotsu manifold.

Proposition 2 Let M be submanifold of para β -

Kenmotsu *manifold* \overline{M} . *Then*, $(\nabla_X T)Y = A_{NY}X + th(X, Y)$

 $\eta(Y)TX\}$ (12) $(\nabla_X N)Y = nh(X,Y) - h(X,TY) - \beta\eta(Y)NX$ (13)

 $+\beta\{g(TX,Y)\xi -$

for all $X, Y \in \Gamma(TM)$ Proof. For any $X, Y \in \Gamma(TM)$ $(\overline{\nabla}_X \phi) Y = \overline{\nabla}_X \phi Y - \phi \overline{\nabla}_X Y.$

Then, using (4), (6) and (7) $\beta\{g(TX + NX, Y)\xi - \eta(Y)(TX + NX)\}$ $= \overline{\nabla}_X(TY + NY) - \varphi(\nabla_X Y + h(X, Y))$ $= \nabla_X TY + h(X, TY) - A_{NY}X + \nabla_X^{\perp}NY - T\nabla_X Y - N\nabla_X Y - th(X, Y) - th(X, Y) - N\nabla_X Y - th(X$

nh(X,Y)

$$= (\nabla_X T)Y + (\nabla_X N)Y + h(X, TY) - A_{NY}X$$
$$-\text{th}(X, Y) - \text{nh}(X, Y)$$

or

 $(\nabla_X T)Y + (\nabla_X N)Y = \beta \{g(TX + NX, Y)\xi - \eta(Y)TX - \eta(Y)NX\} - h(X, TY) + A_{NY}X + th(X, Y) - nh(X, Y).$

Proposition 3 Let M be submanifold of para β -Kenmotsu manifold \overline{M} , tanget to the structure vector field. Then,

and

 $h(X,\xi)=0$

 $\nabla_X \xi = \beta \varphi^2 X$

for any $X, Y \in \Gamma(TM)$.

Now, we defined slant submanifold of para β -Kenmotsu manifold.

Definition 2 *Let* M *be a submanifold of a para* β *-*

Kenmotsu manifold \overline{M} . M is a slant submanifold if for any $x \in M$ and $X \in T_x M$ linearly independent of $\{\xi\}$, the angle between φX and $T_x M$ is a constant $\theta \in [0, \frac{\pi}{2}]$. Then θ called the slant angle of M in \overline{M} .

Theorem 2 Let M be a submanifold of para β -

Kenmotsu manifold \overline{M} , tanget to the structure vector fields. Then, M is a slant submanifold if and only if there exists a constant $\lambda \in [0, \frac{\pi}{2}]$. such that

$$T^2 = \lambda (I - \eta \otimes \xi) \tag{14}$$

Furthermore in such case, if θ is the slant angle of *M* it satisfies that $\lambda = \cos^2 \theta$.

Corollary 2 Let M be a slant submanifold of para β -Kenmotsu manifold \overline{M} , with slant angle θ . Then, for any $X, Y \in \Gamma(TM)$ we have

$$g(TX,TY) = -\cos^2\theta(g(X,Y) - \varepsilon\eta(X)\eta(Y))$$

$$g(TX,TY) = -\sin^2\theta(g(X,Y) - \varepsilon\eta(X)\eta(Y)).$$

4 SUBMANIFOLDS OF SMALLEST DIMENSION IN PARA β-KENMOTSU MANIFOLD

Let M be 3-dimensional slant submanifold of 5dimensional para contact manifold \overline{M} and $\{e_1, e_2, e_3, e_4, \xi\}$ be local orthonormal basis of $T\overline{M}$. Let e_1 be unit vector field. $\tilde{\varphi}$ is para contact structure,

$$g(e_1, \tilde{\varphi}e_1) = 0$$

 $e_2 = sec\theta T e_1.$

Then, we can choice

Then

$$\{-sec\theta Te_2, -sec\theta Te_1, \xi\}$$

is a local orthonormal basis of *TM*. On the other hand,

 $\{csc\theta Ne_1, csc\theta Ne_2\}$

is a local orthonormal basis of TM^{\perp} .

Proposition 4 Let M be a 3-dimensional non-invariant slant submanifold of a 5-dimensional para contact manifold \overline{M} . Let e_1 be an unit vector field and tanget to M. If

$$e_1 = -sec\theta Te_2,$$
 $e_2 = -sec\theta Te_1,$
 $e_3 = csc\theta Ne_1,$ $e_4 = csc\theta Ne_2.$

Then $\{e_1, e_2, e_3, e_4, \xi\}$ be a local orthonormal basis of $T\overline{M}$, where $\{e_1, e_2, \xi\}$ are tanget to M and $\{e_3, e_4\}$ are normal to M. Moreover, we have

$$te_3 = -sin\theta e_1$$
, $ne_3 = -cos\theta e_4$,

 $te_4 = -sin\theta e_2$, $ne_4 = -cos\theta e_3$. *Proof.* It is easy that $\{e_1, e_2, e_3, e_4, \xi\}$ is local orthonormal basis off $T\overline{M}$. We only show that last section $\varphi e_3 = \varphi \{csc\theta Ne_1\}$

$$te_{3} + ne_{3} = csc\theta\{\varphi(\varphi e_{1} - Te_{1})\}$$

$$= csc\theta\{e_{1} - \varphi(cos\theta e_{2})\}$$

$$= csc\theta\{e_{1} - cos\theta(Te_{2} + Ne_{2})\}$$

$$= csc\theta\{e_{1} - cos\theta(cos\theta e_{1} + sin\theta e_{4})$$

$$= \frac{1}{sin\theta}e_{1} - \frac{cos^{2}\theta}{sin\theta}e_{1} - cos\theta e_{4}.$$
Then

Then

$$te_3 = sin\theta e_1$$

and

$$ne_3 = -cos\theta e_4.$$

Similarly

 $te_4 = -sin\theta e_2$, $ne_4 = -cos\theta e_3$.

Theorem 3 Let M be 3-dimensional submanifold of para β -Kenmotsu manifold \overline{M} Then M is slant submanifold if and only if

$$(\nabla_X T)Y = \beta\{g(TX, Y)\xi - \eta(Y)TX\}$$
(15)

(15)

for all $X, Y \in \Gamma(TM)$.

Proof. Let M be slant submanifold. We can choose local orthonormal basis $\{e_1, e_2, \xi\}$ of TM, where $e_1 = sec\theta Te_2$ and $e_2 = sec\theta Te_1$. Then $\forall X, Y \in \Gamma(TM)$ $(\nabla_X T)e_1 = \nabla_X Te_1 - T\nabla_X e_1$

$$= \nabla_X T(sec\theta Te_2) - T\nabla_X e_1$$
$$= sec\theta \nabla_X T^2 e_2 - T\nabla_X e_1$$

from (14)

$$(\nabla_X T)e_1 = \cos\theta \nabla_X e_2 - T \nabla_X e_1$$

Then using (9)

$$(\nabla_X T)e_1 = \cos\theta \sum_{i=1}^3 \beta g(TX, e_2)\xi_i$$
$$= \sum_{i=1}^3 \beta g(X, T^2 e_1)\xi_i$$

(16)

Similarly,

$$(\nabla_X T)e_2 = \nabla_X Te_2 - T\nabla_X e_2$$

= $-\cos\theta \sum_{i=1}^3 w_1^i(X)\xi_i$
= $-\cos^2\theta \sum_{i=1}^s g(X, e_2)\xi_i$ (17)

 $= -\cos^2\theta \sum_{i=1}^3 \beta g(X, e_1)\xi_i$

and

$$(\nabla_X T)\xi = -T(\cos^2\theta\beta(T^2X))$$
$$= -\cos^2\theta\beta(TX).$$
(18)

On the other hand, for any
$$Y \in \Gamma(TM)$$
 writing

$$Y = c_1 e_1 + c_2 e_2 + \eta(Y)\xi.$$

Then $\nabla_X TY = c_1 \nabla_X T e_1 + c_2 \nabla_X T e_2 + g(Y,\xi) \nabla_X T\xi$ and

$$T\nabla_X Y = c_1 T\nabla_X e_1 + c_2 T\nabla_X e_2 + g(Y,\xi) T\nabla_X \xi.$$
(20)

Finally, using (19) and (20)

$$(\nabla_X T)Y = c_1(\nabla_X T)e_1 + c_2(\nabla_X T)e_2 + \eta(Y)(\nabla_X T)\xi.$$
(21)

(21)

Then, using (16), (17) and (18) into (21) it follows that

$$(\nabla_X T)Y = \beta \{g(TX, Y)\xi - \eta(Y)TX\}.$$

Corollary 3 Let M be 3-dimensional submanifold of para β -Kenmotsu manifold \overline{M} Then M is slant submanifold if and only if

$$A_{NY}X = A_{NX}Y$$

for all $X, Y \in \Gamma(TM)$.

Proposition 5 Let M be 3-dimensional proper slant submanifold of 5-dimensional para β –Kenmotsu manifold \overline{M} and let $\{e_1, e_2, e_3, e_4, e_5 = \xi\}$ be basis of $T\overline{M}$. Then

$$h_{12}^3 = h_{11}^4, \ h_{22}^3 = h_{12}^4$$
 (22)

(19)

and the other mixed second fundamental forms are zero.

Proof. Firstly,

$$h_{12}^3 = g(h(e_1, e_2), e_3)$$

$$= g(h(e_1, e_2), csc\theta Ne_1)$$

$$= csc\theta g(h(e_1, e_2), Ne_1)$$

using (8),

$$h_{12}^3 = csc\theta g(A_{Ne_1}e_2, e_1)$$

from Corollary 3,

$$\begin{aligned} h_{12}^{3} &= csc\theta g(A_{Ne_{2}}e_{1},e_{1}) \\ &= csc\theta g(h(e_{1},e_{1}),Ne_{2}) \\ &= g(h(e_{1},e_{1}),e_{4}) \\ &= h_{11}^{4}. \end{aligned}$$

Similary

$$h_{22}^3 = h_{12}^4$$

Theorem 4 Let M be 3-dimensional submanifold of 5dimensional para β -Kenmotsu manifold \overline{M} Then Mproper slant submanifold of para β -Kenmotsu manifold \overline{M} if and only if

$$(\nabla_X N)Y = -\beta\eta(Y)NX.$$
Proof. Let $\{e_1, e_2, e_3, e_4, e_5 = \xi\}$ be basis of $T\overline{M}$. Using (13)
 $\cdot (\nabla_X N)Y = nh(X,Y) - h(X,TY) - \beta\eta(Y)NX$

and from (22),

$$(\nabla_X N)Y = -\beta\eta(Y)NX.$$

Conversely, let (23) hold. Then, $\forall X, Y \in \Gamma(TM)$ nh(X, Y) = h(X, TY).

On the other hand, from (8)

$$g(A_{Ne_1}e_2, X) = g(h(e_2, X), Ne_1).$$

Then

$$g(A_{Ne_1}e_2, X) = g(h(sec\theta Te_1, X), sin\theta e_3)$$
$$= sin\theta g(h(e_1, X), e_4)$$

 $= g(h(e_1, X), sin\theta e_4)$ = g(h(e_1, X), Ne_2) = g(A_{Ne_2}e_1, X).

On the other hand,

$$g(A_{Ne_1}e_5, X) = g(h(e_5, X), Ne_1) = 0.$$

In that case, M is slant submanifold of corollary 2. Moreover,

$$\begin{aligned} h_{12}^3 &= g(h(e_1, e_1), e_3) \\ &= -g(h(e_1, e_2), e_4) \\ &= sec\theta g(h(Te_2, e_2), e_4) \\ &= -g(h(e_2, e_2), e_3) \\ &= -h_{22}^3. \end{aligned}$$

Similarly

$$h_{11}^4 = -h_{22}^4.$$

Then M is minimal slant submanifold.

Example 1 In what follows, $(\mathbb{R}^{2n+1}, \varphi, \xi, \eta, g)$ will denote the manifold \mathbb{R}^{2n+1} with its usual β -Kenmotsu structure given by

$$\begin{split} \varphi(X_1, \dots, X_n, Y_1, \dots, Y_n, \xi) &= (Y_1, \dots, Y_n, -X_1, \dots, -X_n) \\ \xi &= \frac{\partial}{\partial z}, \qquad \eta = dz \\ g &= e^{-2z} \sum_{i=1}^n [dx_i \otimes dx_i + dy_i \otimes dy_i] - \varepsilon dz \otimes dz \end{split}$$

where $\beta = e^{-2z}$. The consider a submanifold of \mathbb{R}^5 defined by

$$M = X(u, v, t) = (u\cos\theta, u\sin\theta, v, 0, t).$$

Then the local frame of TM

$$e_{1} = \cos\theta \frac{\partial}{\partial x_{1}} + \sin\theta \frac{\partial}{\partial x_{2}}, \qquad e_{2} = \frac{\partial}{\partial y_{1}}, \qquad e_{3} = \xi = \frac{\partial}{\partial t}$$

On the other hand
 $(\nabla_{X}N)e_{1} = 0, \qquad (\nabla_{X}N)e_{2} = 0, \qquad (\nabla_{X}N)e_{3} = -\beta NX.$

For any
$$Y \in \Gamma(TM)$$
 writing

$$Y = c_1 e_1 + c_2 e_2 + \eta(Y) e_3.$$

In that case,

$$(\nabla_X N)Y = c_1(\nabla_X N)e_1 + c_2(\nabla_X N)e_2 + \eta(Y)(\nabla_X N)e_3.$$

Then M is a minimal slant submanifold.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

 D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in MathematicsVol. 203, Birkhauser, Boston, 2002.

[2] J. L.Cabrerizo, A. Carriazo and L. M. Fernandez, Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42 (2000), 125-138.

[3] A. Carriazo, New developments in slant submanifolds theory, In Applicable Mathematics in the Golden Age (2002), 339–356.

[4] A. Carriazo, L. M. Fernandez and M. B. Hans-Uber, Minimal slant submanifolds of the smallest dimension in S-manifold, Rev.Mat. Iberoamericana 21 (2005), 47-66.

[5] B.Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, 1990.

[6] B.Y. Chen, Slant Immersions, Bull, Australian Math.

Soc. 41 (1990), 135-147.

[7] R. S. Gupta, and P. K. Pandey, Structure on a slant submanifold of a Kenmotsu manifold. Differential Geometry-Dynamical Systems 10 (2008), 139-147.

[8] R. S. Gupta, S. M. K. Haider and M. H. Shaid, Slant submanifolds of Kenmotsu manifolds, Radovi Math., 12 (2004), 205-214.

[9] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie. 39 (1996), 183-198.

[10] A.Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl., 3 (1) (1998), 37-51.

[11] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.), 30 (1976), 219-224.

Z. Olszak, The Schouten-Van Kampen Affine
 Connection Adapted to an Almost Para Contact Metric
 Structure, Pub. de Linst. Math., 94(108), (2013), 31-42.