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ABSTRACT 

In this paper, we have studied the smallest dimensional submanifold of para β-Kenmotsu manifold. Necessary         

and sufficient conditions are given on 3-dimensional submanifolds of a 5-dimensional para β-Kenmotsu manifold to 

be a slant submanifold. After that, we have studied the 3-dimensional minimal slant submanifolds of para β-

Kenmotsu manifold.  

Key words: Para β-Kenmotsu manifold, smallest dimension, slant submanifold  

 

1.  INTRODUCTION 

As a generalization of invariant submanifold and anti-

invariant submanifolds, B.Y. Chen introduced slant 

submanifolds of almost Hermitian manifold in 1990 [5],    

[6]. On the other hand A. Lotta introduced the notion of 

slant immersion of a Riemannian manifold into an almost 

contact manifold [9]. He also studied 3-dimensional slant 

submanifolds K-contact manifold [10] . Recently, 

Cabrerizo et al. [2] studied slant submanifold of Sasakian 

manifold and general view about slant immersions can be 

founds in [3]. Khan et al. studied slant submanifold of 

Kenmotsu manifold  [7] , [8] . 

In 1976, Sato defined the notion of an almost para 

contact Riemannian manifold [11]. After [12], Olszak 

introduced para β-Kenmotsu manifold. Many authors 

studied smallest dimension submanifolds [4], [8]. 

The purpose of present paper is to study slant 

submanifolds of para β-Kenmotsu manifolds with the 

smallest dimension. The paper organized as follows. In 

section 2, we give basic formula and defination of para β-

Kenmotsu manifold. We review, in section 3, formulas and 

definitions for para β-Kenmotsu manifolds and their 

submanifolds, which we use later. In section 4, we obtain 

the smallet dimension slant submanifold of para β-
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Kenmotsu manifold. Necessary and sufficient conditions 

are given on a 3-dimensional submanifolds of 5-

dimensional para β-Kenmotsu manifold to be slant 

submanifold after studied 3-dimensional minimal 

submanifolds of  para  β-Kenmotsu manifold. 

2.  PRELIMINARIES 

Let 𝑀  be a (2n+1)-dimensional differentiable manifold 

endowed with a quadruplet (𝜑, 𝜉, 𝜂, 𝑔), where φ  is (1,1)-

tensor field, ξ is a vector field, η is a 1-form, and g is a 

pseudo-Riemannian such that 

𝜑2𝑋 = 𝜇(𝑋 − 𝜂(𝑋)𝜉),     𝜂(𝜉) = 1           

(1) 

        𝑔(𝜑𝑥, 𝜑𝑌) = −𝜇(𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌))     (2) 

for all 𝑋, 𝑌𝜖Γ(𝑇𝑀) , where 𝜇, 𝜖 = ±1 .  In addition, we 

have 

        𝜑(𝜉) = 0,   𝜂𝜊𝜑 = 0, 𝜂(𝑋) = 𝜀𝑔(𝑋, 𝜉).      

(3) 

  

The manifold 𝑀 will be called almost para contact metric, 

and the quadruplet (𝜑, 𝜉, 𝜂, 𝑔) will be called the almost 

para contact metric structure on 𝑀.  

When 𝜇 = 1, then the manifold 𝑀 is an almost contact 

metric manifold. In this case the metric g is assumed to be 

pseudo-Riemannian in general, including Riemannian. 

Thus, if "𝜀 = 1, the signature of g is equal to 2p, where 0 ≤

𝑝 ≤ 𝑛  and if " 𝜀 = 1, the signature of g is equal to 2p+1,  

where 0 ≤ 𝑝 ≤ 𝑛.   

When 𝜇 = 1 , then the manifold 𝑀  is an almost 

paracontact metric manifold. In this case, the metric g is 

pseudo-Riemannian, and its signature is equal to n when 

" 𝜀 = 1, or  n+1 when " 𝜀 = −1. One notes that in this 

case, the eigenspaces of the linear operator 𝜑 

corresponding to the eigenvalues 1 and -1 are both n-

dimensional at every point of the manifold [12]. 

Then a 2-form Φ is defined by Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜑𝑌), for 

any 𝑋, 𝑌𝜖Γ(𝑇𝑀) , called the fundamental 2-form.  

Moreover, an almost para contact metric manifold is 

normal if  

[𝜑, 𝜑] − 2𝑑𝜂 ⊗ 𝜉 = 0. 

where [𝜑, 𝜑]  is denoting the Nijenhuis tensor field 

associated to φ [12] . A normal almost para contact metric 

manifold is called para contact metric manifold. 

the almost para contact metric structure on 𝑀.  

Proposition 1 Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔)  be an almost para 

contact manifold. Then , the Levi-Civita connection ∇ 

satisfies the following equality, for any 𝑋, 𝑌, 𝑍𝜖Γ(𝑇𝑀), 

2𝑔((∇𝑋𝜑)𝑌, 𝑍) = 3𝑑Φ(X, φY, φZ) − 3𝑑Φ(X, Y, Z)

+ g(N(Y, Z), φX) + 𝜇𝑁2(𝑌, 𝑍)𝜂(𝑋)

+ 2𝜇𝑑𝜂(𝜑𝑌, 𝑋)𝜂(𝑍)

− 2𝜇𝑑𝜂(𝜑𝑍, 𝑋)𝜂(𝑌) 

where 𝑁2(𝑋, 𝑌) = 2𝑑𝜂(𝜑𝑋, 𝑌) − 2𝑑𝜂(𝜑𝑌, 𝑋). 

Definition 1 Let 𝑀 be an almost para contact metric 

manifold of dimension (2n+1), with (𝜑, 𝜉, 𝜂, 𝑔). 𝑀 is said 

to be an almost para β-Kenmotsu manifold if 1-form 𝜂  

are closed and 𝑑Φ = 2𝛽𝜂 ∧ Φ.  A normal almost para β-

Kenmotsu manifold 𝑀 is called a para β-Kenmotsu 

manifold.  

Theorem 1 Let (�̅�, 𝜑, 𝜉, 𝜂, 𝑔)  be an almost para contact 

metric manifold. �̅� is a para β-Kenmotsu manifold if and 

only if 

(∇̅𝑋𝜑)𝑌 = 𝛽{𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋}      (4) 

for all 𝑋, 𝑌𝜖Γ(𝑇�̅�) where ∇̅ is Levi-Civita connection on 

�̅�.  

Proof. Let �̅�  be a para β-Kenmotsu manifold. From 

Proposition 1,  ∀ 𝑋, 𝑌𝜖Γ(𝑇�̅�)  we have 

2𝑔((∇̅𝑋𝜑)𝑌, 𝑍) = 3𝑑Φ(X, φY, φZ) − 3𝑑Φ(X, Y, Z)). 

Then, we have 

𝑔((∇̅𝑋𝜑)𝑌, 𝑍) = −𝛽𝜂(𝑋)𝑔(𝜑𝑌, 𝜑2𝑍) + 𝛽𝜂(𝑋)𝑔(𝑌, 𝜑𝑍) 

                   −𝛽𝜂(𝑌)𝑔(𝑍, 𝜑𝑋) − 𝛽𝜂(𝑍)𝑔(𝑋, 𝜑𝑌) 

                 = −𝛽𝜂(𝑌)𝑔(𝑍, 𝜑𝑋) − 𝛽𝜂(𝑍)𝑔(𝑋, 𝜑𝑌) 

                 = 𝑔(𝛽{𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋}, 𝑍). 

 

Conversely, firstly, using (4) , we get 

𝜑∇̅𝑋𝜉 = 𝛽{𝑔(𝜑𝑋, 𝜉)𝜉 − 𝜂(𝜉)𝜑𝑋} 

hence, we get 

∇̅𝑋𝜉 = 𝛽𝜑2𝑋.  

On the other hand, we have  
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𝑑𝜂(𝑋, 𝑌) =
1

2
{𝑔(𝑌, −𝜑2𝑋) − 𝑔(𝑋, −𝜑2𝑌)} = 0 

for all 𝑋, 𝑌𝜖Γ(𝑇�̅�). In addition, we know 

3𝑑Φ(X, Y, Z) = g(Y, (∇Xφ)Z) − g(Z, (∇Yφ)X)

− g(X, (∇Zφ)Y) 

From hypothesis, we have 

3𝑑Φ(X, Y, Z) = β{𝑔(𝜑𝑋, 𝑍)g(Y, ξ) − 𝜂(𝑍)𝑔(𝑌, 𝜑𝑋) 

− 𝑔(𝜑𝑌, 𝑍)g(X, ξ) + 𝜂(𝑍)𝑔(𝑋, 𝜑𝑌)

+ 𝑔(𝜑𝑍, 𝑌)g(X, ξ) − 𝜂(𝑌)𝑔(𝑋, 𝜑𝑍}) 

                  = 2𝛽{Φ(𝑍, 𝑋)𝜂(𝑌) + Φ(𝑋, 𝑌)𝜂(𝑍) 

+Φ(𝑌, 𝑍)𝜂(𝑋). 

  

Then, we obtain 

𝑑Φ = 2𝛽𝜂 ∧ Φ. 

  

Moreover, the Nijenhuis torsion of φ is obtained 

𝑁𝜑(𝑋, 𝑌) = 𝜑(−𝛽{𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋}

+ 𝛽{𝑔(𝜑𝑌, 𝑋)𝜉 − 𝜂(𝑋)𝜑𝑌})

+ 𝛽{𝑔(𝜑2𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑2𝑋}

− 𝛽{𝑔(𝜑2𝑌, 𝑋)𝜉 − 𝜂(𝑋)𝜑2𝑌} 

                = 0. 

Hence, we have 

[𝜑, 𝜑] − 2𝑑𝜂 ⊗ 𝜉 = 0. 

The proof  is completed.  

Corollary 1 Let �̅� be (2n+1)-dimensional a para β-

Kenmotsu manifold with structure  (𝜑, 𝜉, 𝜂, 𝑔). Then we 

have 

              ∇̅𝑋𝜉 = 𝛽𝜑2𝑋                (5) 

for all 𝑋, 𝑌𝜖Γ(𝑇�̅�). 

3  SUBMANIFOLDS OF PARA β-KENMOTSU 

MANIFOLD 

Now, let 𝑀  be a submanifold of the (2n+1) 

dimensional a para β-Kenmotsu manifold �̅�. Let ∇ be the 

Levi-Civita connection of 𝑀 with respect to the induced 

metric g. Then Gauss and Weingarten formulas are given 

by 

     ∇̅𝑋𝑌 = ∇XY − h(X, Y)                (6) 

      ∇̅𝑋𝑉 = ∇X
⊥Y − AVX                  (7) 

 

for any 𝑋, 𝑌𝜖Γ(𝑇𝑀)  and
 

𝑉𝜖Γ(𝑇𝑀)⊥ . ∇⊥  is the 

connection in the normal bundle, h is the second 

fundamental from of 𝑀  and AV  is the Weingarten 

endomorphism associated with V. The second fundamental 

form h and the shape operator A related by 

             𝑔(ℎ(𝑋, 𝑌), 𝑉) = 𝑔(AV𝑋, 𝑌).             (8) 

The mean curvature tensor H is defined by  

𝐻 =
1

𝑚
∑ ℎ(𝑒𝑘 , 𝑒𝑘)

𝑚

𝑘=1

 

where {𝑒1, … , 𝑒𝑚}  is a local orthonormal basis of TM. M 

said to be minimal if H vanishes identically. 

Now, let {𝑒1, … , 𝑒𝑛, 𝑒𝑛+1, … , 𝑒𝑚}  be local 

orthonormal basis of TM such that the vector fields 

{𝑒1, … , 𝑒𝑛} are tanget to M and {𝑒𝑛+1, … , 𝑒𝑚} are normal 

to m . Then for any 𝑋𝜖Γ(𝑇𝑀) 

∇𝑋𝑒𝑖 = ∑ 𝑤𝑖
𝑗
𝑒𝑖

𝑛
𝑗=1 + ∑ 𝑤𝑖

𝑘𝑒𝑘
𝑚
𝑘=𝑛+1          (9) 

∇𝑋𝑒𝑟 = ∑ 𝑤𝑟
𝑗
𝑒𝑗

𝑛

𝑗=1

+ ∑ 𝑤𝑟
𝑘𝑒𝑘

𝑚

𝑘=𝑛+1

 

 

where i=1,…,n and r=n+1,…,m and 𝑤𝑖
𝑗

= 𝑔(∇𝑒𝑖
. , 𝑒𝑗). The 

1-forms 𝑤𝑖
𝑗
, 𝑤𝑖

𝑘  and𝑤𝑟
𝑗
 can called connection forms of 

𝑀. 

On the other hand, the mix second fundamental 

form in the direction 𝑒𝑟 is defined  

ℎ𝑖𝑗
𝑟 = 𝑔(ℎ(𝑒𝑖 , 𝑒𝑗), 𝑒𝑟) 

For every tangent vector field X we write 

         𝜑𝑋 = 𝑇𝑋 + 𝑁𝑋                (10) 

where TX (resp. NX) denotes the tangential (resp. normal) 

component of 𝜑𝑋 and  NX  is the normal one. Moreover 

for every normal vector field V, 

         𝜑𝑉 = 𝑡𝑉 + 𝑛𝑉                   (11) 

where tV in the tangential component and nV is the normal 

one. 

Now, for later use, we establish proposition for 

submanifolds of para β-Kenmotsu manifold. 

 

Proposition 2  Let 𝑀 be submanifold of para β-
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Kenmotsu manifold �̅�. Then, 

(∇𝑋𝑇)𝑌 = A𝑁𝑌X + th(X, Y) 

                        +𝛽{𝑔(𝑇𝑋, 𝑌)𝜉 −

𝜂(𝑌)𝑇𝑋}        (12) 

(∇𝑋𝑁)𝑌 = 𝑛ℎ(𝑋, 𝑌) − ℎ(𝑋, 𝑇𝑌) − 𝛽𝜂(𝑌)𝑁𝑋   (13) 

 

 for all 𝑋, 𝑌𝜖Γ(𝑇𝑀) 

Proof. For any 𝑋, 𝑌𝜖Γ(𝑇𝑀) 

(∇̅𝑋φ)Y = ∇̅𝑋φY − φ∇̅𝑋𝑌. 

  

Then, using (4), (6) and (7) 

𝛽{𝑔(𝑇𝑋 + 𝑁𝑋, 𝑌)𝜉 − 𝜂(𝑌)(𝑇𝑋 + 𝑁𝑋)} 

         = ∇̅𝑋(𝑇𝑌 + 𝑁𝑌) − φ(∇𝑋𝑌 + ℎ(𝑋, 𝑌)) 

         = ∇𝑋𝑇𝑌 + ℎ(𝑋, 𝑇𝑌) − A𝑁𝑌X + ∇X
⊥NY − T∇𝑋𝑌 −

                     N∇𝑋𝑌 − 𝑡ℎ(𝑋, 𝑌) −

𝑛ℎ(𝑋, 𝑌) 

         = (∇𝑋𝑇)𝑌 + (∇𝑋𝑁)𝑌 + ℎ(𝑋, 𝑇𝑌) − A𝑁𝑌X 

−th(X, Y) − nh(X, Y) 

or 

(∇𝑋𝑇)𝑌 + (∇𝑋𝑁)𝑌 = 𝛽{𝑔(𝑇𝑋 + 𝑁𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑇𝑋

− 𝜂(𝑌)𝑁𝑋} − ℎ(𝑋, 𝑇𝑌) + A𝑁𝑌X

+ th(X, Y) − nh(X, Y). 

Proposition 3   Let 𝑀 be submanifold of para β-

Kenmotsu manifold �̅�, tanget to the structure vector 

field. Then,  

∇𝑋𝜉 = 𝛽𝜑2𝑋 

and 

ℎ(𝑋, 𝜉) = 0 

for any 𝑋, 𝑌𝜖Γ(𝑇𝑀). 

Now, we defined slant submanifold of para β-Kenmotsu 

manifold. 

Definition 2 Let 𝑀 be a submanifold of a para β-

Kenmotsu manifold �̅� . 𝑀 is a slant submanifold if for 

any 𝑥𝝐𝑀 and  𝑋𝝐𝑇𝑥𝑀  linearly independent of {𝜉}, the 

angle between φX and 𝑇𝑥𝑀 is a constant 𝜃𝜖[0,
𝜋

2
]. Then 

𝜃 called the slant angle of 𝑀 in �̅�.  

 

Theorem 2  Let 𝑀 be a submanifold of para β-

Kenmotsu manifold �̅�, tanget to the structure vector 

fields. Then, 𝑀 is a slant submanifold if and only if there 

exists a constant 𝜆𝜖[0,
𝜋

2
].  such that  

       𝑇2 = 𝜆(𝐼 − 𝜂 ⊗ 𝜉)               (14) 

Furthermore in such case, if 𝜃 is the slant angle of 𝑀 it 

satisfies that 𝜆 = 𝑐𝑜𝑠2𝜃. 

Corollary 2 Let 𝑀  be a slant submanifold of para β-

Kenmotsu manifold �̅�, with slant angle 𝜃. Then, for any 

𝑋, 𝑌𝜖Γ(𝑇𝑀) we have 

𝑔(𝑇𝑋, 𝑇𝑌) = −𝑐𝑜𝑠2𝜃(𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌)) 

𝑔(𝑇𝑋, 𝑇𝑌) = −𝑠𝑖𝑛2𝜃(𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌)). 

 

4  SUBMANIFOLDS OF SMALLEST DIMENSION 

IN PARA β-KENMOTSU MANIFOLD 

 
Let 𝑀  be 3-dimensional slant submanifold of 5-

dimensional para contact manifold �̅�  and 

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝜉} be local orthonormal basis of 𝑇�̅� . Let 

𝑒1 be unit vector field. �̃� is para contact structure, 

𝑔(𝑒1, �̃�𝑒1) = 0. 

Then, we can choice 

𝑒2 = 𝑠𝑒𝑐𝜃𝑇𝑒1. 

Then 

{−𝑠𝑒𝑐𝜃𝑇𝑒2, −𝑠𝑒𝑐𝜃𝑇𝑒1, 𝜉} 

is a local orthonormal basis of TM. 

On the other hand,  

{𝑐𝑠𝑐𝜃𝑁𝑒1, 𝑐𝑠𝑐𝜃𝑁𝑒2} 

is a local orthonormal basis of 𝑇𝑀⊥. 

Proposition 4 Let 𝑀  be a 3-dimensional non-invariant 

slant submanifold of a 5-dimensional para contact 

manifold �̅�. Let 𝑒1 be an unit vector field and tanget to 

𝑀. If  

𝑒1 = −𝑠𝑒𝑐𝜃𝑇𝑒2,   𝑒2 = −𝑠𝑒𝑐𝜃𝑇𝑒1,   

 𝑒3 = 𝑐𝑠𝑐𝜃𝑁𝑒1,   𝑒4 = 𝑐𝑠𝑐𝜃𝑁𝑒2.  

Then {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝜉} be a local orthonormal basis of 

𝑇�̅� , where {𝑒1, 𝑒2, 𝜉}  are tanget to 𝑀  and {𝑒3, 𝑒4}  are 

normal to 𝑀. Moreover, we have 

𝑡𝑒3 = −𝑠𝑖𝑛𝜃𝑒1,   𝑛𝑒3 = −𝑐𝑜𝑠𝜃𝑒4,    
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𝑡𝑒4 = −𝑠𝑖𝑛𝜃𝑒2,   𝑛𝑒4 = −𝑐𝑜𝑠𝜃𝑒3.    

Proof. It is easy that {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝜉}  is local 

orthonormal basis off 𝑇�̅�. We only show that last section  

𝜑𝑒3 = 𝜑{𝑐𝑠𝑐𝜃𝑁𝑒1} 

𝑡𝑒3 + 𝑛𝑒3 = 𝑐𝑠𝑐𝜃{𝜑(𝜑𝑒1 − 𝑇𝑒1)} 

           = 𝑐𝑠𝑐𝜃{𝑒1 − 𝜑(𝑐𝑜𝑠𝜃𝑒2)} 

           = 𝑐𝑠𝑐𝜃{𝑒1 − 𝑐𝑜𝑠𝜃(𝑇𝑒2 + 𝑁𝑒2)} 

= 𝑐𝑠𝑐𝜃{𝑒1 − 𝑐𝑜𝑠𝜃(𝑐𝑜𝑠𝜃𝑒1 + 𝑠𝑖𝑛𝜃𝑒4) 

=
1

𝑠𝑖𝑛𝜃
𝑒1 −

𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛𝜃
𝑒1 − 𝑐𝑜𝑠𝜃𝑒4. 

Then 

𝑡𝑒3 = 𝑠𝑖𝑛𝜃𝑒1 

and 

𝑛𝑒3 = −𝑐𝑜𝑠𝜃𝑒4. 

Similarly 

𝑡𝑒4 = −𝑠𝑖𝑛𝜃𝑒2, 𝑛𝑒4 = −𝑐𝑜𝑠𝜃𝑒3 . 

Theorem 3 Let 𝑀 be 3-dimensional submanifold of para 

β-Kenmotsu manifold �̅� Then 𝑀 is slant submanifold if 

and only if 

(∇𝑋𝑇)𝑌 = 𝛽{𝑔(𝑇𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑇𝑋}      (15) 

 

(15) 

for all 𝑋, 𝑌𝜖Γ(𝑇𝑀). 

Proof. Let 𝑀  be slant submanifold. We can 

choose local orthonormal basis {𝑒1, 𝑒2, 𝜉} of TM, where 

𝑒1 = 𝑠𝑒𝑐𝜃𝑇𝑒2 and 𝑒2 = 𝑠𝑒𝑐𝜃𝑇𝑒1. Then ∀ 𝑋, 𝑌𝜖Γ(𝑇𝑀) 

(∇𝑋𝑇)𝑒1 = ∇𝑋𝑇𝑒1 − 𝑇∇𝑋𝑒1 

 = ∇𝑋𝑇(𝑠𝑒𝑐𝜃𝑇𝑒2) − 𝑇∇𝑋𝑒1 

 = 𝑠𝑒𝑐𝜃∇𝑋𝑇2𝑒2 − 𝑇∇𝑋𝑒1 

from (14) 

(∇𝑋𝑇)𝑒1 = 𝑐𝑜𝑠𝜃∇𝑋𝑒2 − 𝑇∇𝑋𝑒1. 

 

Then using (9) 

(∇𝑋𝑇)𝑒1 = 𝑐𝑜𝑠𝜃 ∑ 𝛽

3

𝑖=1

𝑔(𝑇𝑋, 𝑒2)𝜉𝑖 

                 = ∑ 𝛽

3

𝑖=1

𝑔(𝑋, 𝑇2𝑒1)𝜉𝑖 

 

                = −𝑐𝑜𝑠2𝜃 ∑ 𝛽3
𝑖=1 𝑔(𝑋, 𝑒1)𝜉𝑖  .            

(16)  

 

Similarly, 

(∇𝑋𝑇)𝑒2 = ∇𝑋𝑇𝑒2 − 𝑇∇𝑋𝑒2 

                 = −𝑐𝑜𝑠𝜃 ∑ 𝑤1
𝑖(𝑋)𝜉𝑖

3

𝑖=1

 

      = −𝑐𝑜𝑠2𝜃 ∑ 𝑔(𝑋, 𝑒2)𝑠
𝑖=1 𝜉

𝑖
        (17) 

 

and  

(∇𝑋𝑇)𝜉 = −𝑇(𝑐𝑜𝑠2𝜃𝛽(𝑇2𝑋)) 

         = −𝑐𝑜𝑠2𝜃𝛽(𝑇𝑋).                        (18) 

 

On the other hand, for any 𝑌𝜖Γ(𝑇𝑀) writing  

𝑌 = 𝑐1𝑒1 + 𝑐2𝑒2 + 𝜂(𝑌)𝜉. 

 

Then 

∇𝑋𝑇𝑌 = 𝑐1∇𝑋𝑇𝑒1 + 𝑐2∇𝑋𝑇𝑒2 + 𝑔(𝑌, 𝜉)∇𝑋𝑇𝜉       (19) 

and 

𝑇∇𝑋𝑌 = 𝑐1𝑇∇𝑋𝑒1 + 𝑐2𝑇∇𝑋𝑒2 + 𝑔(𝑌, 𝜉)𝑇∇𝑋𝜉.       (20) 

 

Finally, using (19) and (20) 

(∇𝑋𝑇)𝑌 = 𝑐1(∇𝑋𝑇)𝑒1 + 𝑐2(∇𝑋𝑇)𝑒2 + 𝜂(𝑌)(∇𝑋𝑇)𝜉. (21) 

 

(21) 

Then, using (16), (17) and (18) into (21) it follows that 

(∇𝑋𝑇)𝑌 = 𝛽{𝑔(𝑇𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑇𝑋}. 

Corollary 3 Let M be 3-dimensional submanifold of para 

β-Kenmotsu manifold �̅� Then 𝑀 is slant submanifold if 

and only if 

𝐴𝑁𝑌𝑋 = 𝐴𝑁𝑋𝑌 

 

for all 𝑋, 𝑌𝜖Γ(𝑇𝑀).  

Proposition 5 Let 𝑀 be 3-dimensional proper slant 

submanifold of 5-dimensional para 𝛽 −Kenmotsu 

manifold �̅� and let {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 = 𝜉} be basis of 

𝑇�̅�. Then 

         ℎ12
3 = ℎ11

4 , ℎ22
3 = ℎ12

4        (22) 
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and the other mixed second fundamental forms are zero.  

Proof.  Firstly, 

ℎ12
3 = 𝑔(ℎ(𝑒1, 𝑒2), 𝑒3) 

= 𝑔(ℎ(𝑒1, 𝑒2), 𝑐𝑠𝑐𝜃𝑁𝑒1) 

= 𝑐𝑠𝑐𝜃𝑔(ℎ(𝑒1, 𝑒2), 𝑁𝑒1) 

using (8), 

ℎ12
3 = 𝑐𝑠𝑐𝜃𝑔(𝐴𝑁𝑒1

𝑒2, 𝑒1) 

 

from Corollary 3, 

ℎ12
3 = 𝑐𝑠𝑐𝜃𝑔(𝐴𝑁𝑒2

𝑒1, 𝑒1) 

= 𝑐𝑠𝑐𝜃𝑔(ℎ(𝑒1, 𝑒1), 𝑁𝑒2) 

= 𝑔(ℎ(𝑒1, 𝑒1), 𝑒4) 

= ℎ11
4 . 

 

Similary 

ℎ22
3 = ℎ12

4 . 

Theorem 4 Let 𝑀 be 3-dimensional submanifold of 5-

dimensional para β-Kenmotsu manifold �̅� Then 𝑀 

proper slant submanifold of para β-Kenmotsu manifold �̅� 

if and only if 

 

(∇𝑋𝑁)𝑌 = −𝛽𝜂(𝑌)𝑁𝑋.   

Proof. Let {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 = 𝜉}  be basis of 

𝑇�̅�.
.
 
Using (13) 

(∇𝑋𝑁)𝑌 = 𝑛ℎ(𝑋, 𝑌) − ℎ(𝑋, 𝑇𝑌) − 𝛽𝜂(𝑌)𝑁𝑋 

 

and from (22),  

(∇𝑋𝑁)𝑌 = −𝛽𝜂(𝑌)𝑁𝑋. 

 

Conversely, let (23) hold. Then, ∀ 𝑋, 𝑌𝜖Γ(𝑇𝑀) 

𝑛ℎ(𝑋, 𝑌) = ℎ(𝑋, 𝑇𝑌).
 

 

On the other hand, from (8) 

𝑔(𝐴𝑁𝑒1
𝑒2, 𝑋) = 𝑔(ℎ(𝑒2, 𝑋), 𝑁𝑒1). 

  

Then  

𝑔(𝐴𝑁𝑒1
𝑒2, 𝑋) = 𝑔(ℎ(𝑠𝑒𝑐𝜃𝑇𝑒1, 𝑋), 𝑠𝑖𝑛𝜃𝑒3) 

            = 𝑠𝑖𝑛𝜃𝑔(ℎ(𝑒1, 𝑋), 𝑒4) 

            = 𝑔(ℎ(𝑒1, 𝑋), 𝑠𝑖𝑛𝜃𝑒4) 

            = 𝑔(ℎ(𝑒1, 𝑋), 𝑁𝑒2) 

            = 𝑔(𝐴𝑁𝑒2
𝑒1, 𝑋).  

  

On the other hand, 

𝑔(𝐴𝑁𝑒1
𝑒5, 𝑋) = 𝑔(ℎ(𝑒5, 𝑋), 𝑁𝑒1) = 0. 

  

In that case, 𝑀 is slant submanifold of corollary 2. 

Moreover, 

ℎ12
3 = 𝑔(ℎ(𝑒1, 𝑒1), 𝑒3) 

             = −𝑔(ℎ(𝑒1, 𝑒2), 𝑒4) 

             = 𝑠𝑒𝑐𝜃𝑔(ℎ(𝑇𝑒2, 𝑒2), 𝑒4) 

             = −𝑔(ℎ(𝑒2, 𝑒2), 𝑒3) 

             = −ℎ22
3 . 

Similarly 

ℎ11
4 = −ℎ22

4 . 

  

Then 𝑀 is minimal slant submanifold.  

Example 1   In what follows, (ℝ2𝑛+1, 𝜑, 𝜉, 𝜂, 𝑔)  will 

denote the manifold ℝ2𝑛+1 with its usual β-
 
Kenmotsu 

structure given by 

𝜑(𝑋1, … , 𝑋𝑛, 𝑌1, … , 𝑌𝑛, 𝜉) = (𝑌1, … , 𝑌𝑛 , −𝑋1, … , −𝑋𝑛) 

𝜉 =
𝜕

𝜕𝑧
,          𝜂 = 𝑑𝑧 

𝑔 = 𝑒−2𝑧 ∑[𝑑𝑥𝑖

𝑛

𝑖=1

⨂𝑑𝑥𝑖 + 𝑑𝑦𝑖⨂𝑑𝑦𝑖] − 𝜀𝑑𝑧⨂𝑑𝑧 

  

where 𝛽 = 𝑒−2𝑧 . The consider a submanifold of ℝ5 

defined by 

𝑀 = 𝑋(𝑢, 𝑣, 𝑡) = (𝑢𝑐𝑜𝑠𝜃, 𝑢𝑠𝑖𝑛𝜃, 𝑣, 0, 𝑡). 

  

Then the local frame of TM 

𝑒1 = 𝑐𝑜𝑠𝜃
𝜕

𝜕𝑥1
+ 𝑠𝑖𝑛𝜃

𝜕

𝜕𝑥2
,   𝑒2 =

𝜕

𝜕𝑦1
,   𝑒3 = 𝜉 =

𝜕

𝜕𝑡
. 

On the other hand 

(∇𝑋𝑁)𝑒1 = 0,   (∇𝑋𝑁)𝑒2 = 0,   (∇𝑋𝑁)𝑒3 = −𝛽𝑁𝑋. 

  

For any 𝑌𝜖Γ(𝑇𝑀)  writing  

𝑌 = 𝑐1𝑒1 + 𝑐2𝑒2 + 𝜂(𝑌) 𝑒3. 
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In that case, 

(∇𝑋𝑁)𝑌 = 𝑐1(∇𝑋𝑁)𝑒1 + 𝑐2(∇𝑋𝑁)𝑒2 + 𝜂(𝑌)(∇𝑋𝑁)𝑒3. 

  

Then 𝑀 is a minimal slant submanifold.  
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