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ABSTRACT

In this article, we study the generalized bivariate Fibonacci (GBF) and generalized bivariate Lucas (GBL)
polynomials from specifying p(x,y) and q(x,y) , classical bivariate Fibonacci and Lucas polynomials
((p(x,¥) = x and q(x,y) = y). Afterwards, we obtain the some properties of the GBF and GBL polynomials.

Keywords: Bivariate Fibonacci Polynomial, Binet Formula.

1. INTRODUCTION

Large classes of polynomial can be defined by and The GLPs are the polynomials defined recursively by
Fibonacci-like recurrence relations and yield Fibonacci _

numbers. Such polynomials, called the Fibonacci Gin(ty, ta, ) t) = t1Gpoq + -+ ty—1Gr k-1
polynomials, were studied in 1883 by E. Charles Catalan + tiGrn-k

and E. Jacobsthal. Also, Lucas polynomials orginally where  Fio(ty to - ti) =1, Grolty, o t) = k

studied in 1970 by Bicknell [7]. and t = (t, ty, -+, ty) is set of coefficients of the monic

MacHenry [8-10] defined the generalized Fibonacci polynomial X% — t; X% — ... —t, = [t1,t5, -+, t;] the
polynomial (GFP) and generalized Lucas polynomial companion or core polynomial, the coefficients ¢; being
(GLP). The GFPs are polynomials defined recursively by regarded as interminate parameters.

Frn(tyty, o te) = tiFnoq + -+ tee 1 Fonok—1
+ teFin-k

*Corresponding author, e-mail: ekocer@konya.edu.tr
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In [1,2,6], the authors introduced bivariate Fibonacci and
Lucas polynomials and give the some properties. Also,
Catalini [3] considered the generalized bivariate Fibonacci
and Lucas polynomials. In [12], Swamy show that there
exists an intimate relationship between the network
functions of certain ladder one-port and two-port networks
and a set of generalized bivariate Fibonacci and Lucas
polynomials. In [13], authors defined the bivariate and
trivariate Fibonacci polynomials. Some properties of these
polynomials are derived and these polynomials in special
cases are studied. In [4,5], Djordjevic considered the
generating functions, explicit formulas and partial
derivative sequences of the generalized Fibonacci and
Lucas polynomials.

In [11], Nalli and Haukkanen defined the
h(x) —Fibonacci and Lucas polynomials which h(x) is a
polynomial with real coefficients. Also, given the some
properties of h(x) —Fibonacci and Lucas polynomials.
The h(x) —Fibonacci and Lucas polynomials are defined
recursively by

Funs1(6) = h(x) Fpp () + Fpy g (x); Fpo(x) =
0, Fh_l(x) =1

and

L1 () = h()Lyy (%) + Lpn—q (0); Lpo(x) = 2, Ly 1 ()
= h(x)
In [14], the authors defined the bivariate Fibonacci and
Lucas p —polynomials (p = 0is integer) and obtained the
some properties of bivariate Fibonacci and Lucas
p —polynomials.

In this study, based on the definitions Nalli and
Haukkanen [11] and Tuglu, et al. [14], we make a new
generalization of bivariate Fibonacci and Lucas
polynomials.

2. GENERALIZED BIVARIATE FIBONACCI AND
LUCAS POLYNOMIALS

Let p(x,y) and q(x,y) be polynomials with real
coefficients. For m > 2, the generalized bivariate
Fibonacci polynomials (GBF) are defined by the
recurrence relation

Hy(x,y) = p(x, y)Hn-1(x,y) + q(x, ) Hyp—2(x,y)  (2.1)
where Hy(x,y) = 0,H,(x,y) = 1.

The recursive relation for he generalized bivariate Lucas
polynomials (GBL) is

Ky (x,y) = pO6,y)Kn-1(x, ) + q(x, ) Kn2(x,y)  (2.2)
with the initial conditions Ky(x,y) = 2,K,(x,y) =
p(x, ).

The characteristic equation of the generalized bivariate
Fibonacci and Lucas polynomials is

t2—plx, )t —qlx,y) =0
(2.3) The Binet’s formulas for the GBF polynomial
H, (x,vy) and GBL polynomias K, (x,y) are

a™(xy)—(—q@xy) a " (xy)
a(ey)+q(xy)at(xy)

Hn(xt }’) =
and

Kn(x,y) = a™(x,y) + (—q(x, ) a ™ (x, )

Where a(x,y) and a 1(x,y) are roots of
characteristic equation (2.3).

The generating functions of GBF and GBL polynomials
are

Z
h(z) = 1-p(x,y)z—qx,y)z?
and
k(z) = 2-plx,y)z

1-p(x,y)z—qx,y)z?

GBF and GBL polynomials for the negative values of n
are

H_p(x,y) = (=1)"1q " (x, y)Hy (x,y)
and
K_n(x,y) = (=D"q 7" (x, ) K, (x, y).

For the different p(x,y) and q(x,y) , the recursive
relation generates different polynomial sequences. These
polynomial sequences are given as follows.

p(,y q(x,y. Hy(x,y) Kn(x,y)

x y Bivariate.Fibonacci,  Bivariate.Lucas,
Fa(x,y) Ln(x,y)

x 1 Fibonacci,F, (x) Lucas, Ly (x)

2x 1 Pell, B,(x) Pell-Lucas, @, (x)

1 2x  Jacobsthal, J,, (x) Jaco-Lucas, j, (x)

2x —1  Chebyshev of 2nd Chebyshev of 1st
kind , Up,_; (x) kind, 2T, (x)

3x —2  Fermat, F,(x) Fermat-Lucas,

fa(2)

Theorem 1. The explicit formulas of the GBF and GBL
polynomials are given as

ln—l

Hy(x,y) = X ,-ZTOJ (") e y)  (24)

and

Kn(x,y) = ZEJO — (") Endy)  (25)
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Proof. Using the mathematical induction principle, the
formula (2.4) trivially true for n = 2. Assume it is true
for n=k . Shortly, let p(x,y) =p and q(x,y) =¢q
in recurrence relation (2.1) for n = k + 1. Then, we have

Hyy1(x,y) = pHy(x,y) + qHy_1(x,y)

+q ZLTOJ () pr2i-2gs

= p| (3 (et

+q [(kgz)pk—z + (RI3)pk—4q 4+ et

=P ) + (D) a4+
k=2 &
)
2
From the relation (}) = (327) + (";') of binomial

coefficients, we have

k—1 k-1
Hk+1(x,y)=( 0 )p"+( 1 )p"‘zq+---

k-2
+ kEZ ¢
2

Therefore

k

2] e—h |
His1(x, ) =Z( j )p" 21, y)q’ (x,y)

=0

The formula holds, and the proof is completed. The proof
for the GBL polynomials is similar.

Theorem 2. The sum of the GBF and GBL polynomials
are

Zn:H (x,y) = Hpy1(x,y) + q(x, y)H, (x,y) — 1
k=0 KT p(x,y) +qle,y) —1

and

i Kn(x,y)
0

" K () + 40 YK () + P y) = 2
p(xy) +q(xy) -1

where p(x,y) +q(x,y) # 1

Proof. Taking the Binet’s formulas for H,(x,y) and
Ky, (x,y) the proof is clear.

Teorem 3. ( Catalan Identity) Let H,(x,y) be nth
GBF polynomial. Then

Hp i (x, y)Hn_li (x,y) —Hi(x,y) =
-

—(=q(x,»)" "HZ(x,y)

where n>0,n > k.

Proof. Let a(xy)=a al(x,y)=a? and
q(x,y) = q Using the Binet’s formula fort he left hend
side (LHS), we have

(LHS)
B an+k _ (_q)n+ka—n—k an—k _ (_q)n—ka—n+k
- a+qat a+qa?

a" — (-@)"a "\’
a+qat
_ _(_q)n—k (aZk—Z(—q)k+(—q)2ka_2k)

- (at+qa1)?

— (o ()

a+qa~?

= —(—@Q" *HE(x, y).

Theorem 4. (d’Ocagne’s Identity) Let H,(x,y) be nth
GBF polynomial. The d’Ocagne’s identity is

Hn(xry)Hmn-tl(x' y) - Hm(xfy)HrH-l(x! }’) =
(_q(xry)) Hn—m(xJ }’)

where n>0,m = 0.

Proof. Using recurrence relation (2.1) to left hand side
(LHS), we have

(LHS) = Ho e, M [p G ) Hp (x,¥) + q(x, ) Hi 1 (x, ¥)]
—Hp (%, ) [pCe, ) Hn (6, ) + q (¢, y)Hpp 1 (x, ¥)]
= _q(ny)[Hm(ny)Hn—l(xJ Y) - Hn(ny)Hm—l(xly)]
Similarly, using recurrences for H,,(x,y) and H,(x,y) ,
we obtain
(LHS) = (=q(6, 7)) [Hynoy G, Y) i (5, 9)
= Hy 1 (6, ) Hp o (%, )]
Repeated process for m times, we have
(LHS) = (=4, )" [Hym (x, Y)H, (x, )
- Hn—m+1(x:y)Ho(x:y)]

Therefore, d’Ocagne’s identity of GBF polynomial is
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Hn(xv Y)Hmwﬂ(x:w - Hm(va/)HnH(x:Y) =
(—q(x, y)) anm(x'y)-

Theorem 5. Let H,(x,y) and K,(x,y) be nth GBF
and GBL polynomials. Then

Hie G5, ) = Hie 6, YK (6, 7) = (g6 3)) Hyie (6, )
(2.6)
where n = 0,n > k.

If we take k =1 in (2.6), we obtain the relation between
GBF and GBL polynomials as follows.

Kn(x,y) = Hp1 (6, ) + q(x, y) Hpog (3, y)
Corollary 1. Let K,(x,y) be nth GBL polynomials.
Then
K2(x,y) = Kan(x,) + 2(—q(x, )"

Corollary 2. Let K,(x,y) be nth GBL polynomials.
Then

Ki(x,y) = .

(P?(x,¥) + 4q(x, ) HZ(x,y) + 4(—q(x,y)) .

In [7], the Q —matrix associated with Fibonacci numbers
is defined by Q = (} (1)) In [2,3], the author defined
the A — matrix associated with bivariate Fibonacci
polynomials. The Matrix A is A = (; é) Now, we

define the matrix Q,4(x,y). The matrix Q,,(x,y) that
plays the role of Q —matrix and A —matrix. The matrix
Qpq(x,y) is

p(x,y) 1)

q(x,y) 0

It’s note that, the determinant of matrix Qp,(x,y) is
—q(x,y). By easy induction

n _ Hn+1(x'}’) Hn(x'}’)
(00 0) = (o) aGeyyin re)

Now, we give Cassini identity which is special case of
Catalan identity.

Qpq(x,y) = (

Teorem 8. ( Cassini ldentity ) Let H,(x,y) be nth
GBF polynomial. The Cassini identity is

-1
Hpi1 (6, ) Hner (0,9) — H2 (6, ) = —(—q ()"
where n > 1.

Proof. Since det ((Qp,q(x,y))n)=(—q(x,y))n » we
have

g6, y) (Hns1 (6, Y)Hp—1 (x,y) — H2(x, )
= (—qGx»)"

Hence

Hipo1 (6, ) oy (3, y) — H2(x,y) = —(—q ()"

Theorem 9. ( Honsberger Identity) Let H,(x,y) be
nth GBF polynomial. Then

Hn+m(x’y) =
q(x, y)Hn(x:y)Hm—l(xl Y) + Hm(xr }’)Hn+1(x, }’)

where n>0,m = 0.

Proof. From the identity

(@)™ = (0pa @) (e )"
and matrix equality, the result is clear.

Taking m = n in Honsberger identity, we have
Hy, (x,y) = Hy(x, y)Ky (x, )

If we take n + 1 instead of m in Honsberger identity,we
obtain

Hapy1(x,y) = Hi 1 (x,y) + q(x, y)H3 (x, y).

n
Theorem 10. The eigenvalues of (Qp,q(x,y)) are
a™(x,y) and a™"(x,y).

Proof. The characteristic equation of (QM (x, y))n is
n
det ((Qp,q (x, y)) —ul )

= 12 — pKy (6, ) + (—q(x, )"
The roots of this equation are

K, (x,y) £ \/K{‘{ (6,y) — 4(=q(x, )"
2
From Corallary 2, we have
P OF: Vp2(x,y) + 490, y)Hn(x,y)
- 2

Therefore, we obtain the eigenvalues as a™(x,y) and
a ™ (x,y).

u=
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