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1. INTRODUCTION  

The concept of fuzzy sets was introduced initially by Zadeh [12] in 1965. George and Veeramani [7] slightly 

modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9]. In 1986, Atanassov 

[3] introduced and studied the concept of intuitionistic fuzzy sets by generalizing fuzzy sets. In 2004, Park 

[8] defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and 

continuous t-conorms. Recently, in 2006, Alaca et al. [1] defined the concept of intuitionistic fuzzy metric 

space with the help of continuous t–norms and continuous t-conorms as a generalization of fuzzy metric 

space which is introduced by Kramosil and Michalek [7]. The aim of this paper is to obtain a common fixed 

point theorem for a pair of maps intuitionistic fuzzy metric space. Our theorem extend and generalize a 

theorem of Hamaizia and Aliouche [6]. 

2. PRELIMINARIES 

First of all we recall the following basic properties of fuzzy metric space: 

Definition 1. [8]. A binary operation ∗: [0,1] × [0,1] ⟶ [0,1] is called a continuous t-norm if it satisfies 

the following conditions: 

1) ∗  is associative and commutative, 

2) ∗  is continuous, 

3) 𝑎 ∗ 1 = 1 for all 𝑎 ∈ [0,1], 

4) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑  whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, for each 𝑎, 𝑏, 𝑐 ∈ [0,1]. 

Two typical examples of a continuous t-norm are 𝑎 ∗ 𝑏 = 𝑎𝑏 and min{𝑎, 𝑏}. 

Definition 2. [8]. A binary operation ◊: [0,1] × [0,1] ⟶ [0,1] is called a continuous t-norm if it satisfies 

the following conditions: 

1) ◊  is associative and commutative, 
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2) ◊  is continuous, 

3) 𝑎 ◊ 0 = 0 for all 𝑎 ∈ [0,1], 

4) 𝑎 ◊ 𝑏 ≤ 𝑐 ◊ 𝑑  whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, for each 𝑎, 𝑏, 𝑐 ∈ [0,1]. 

Alaca et al. [1] introduced the notion of intuitionistic fuzzy metric space which follows: 

Definition 3. [1]. A 5-tuple (X,M,N,∗,◊) is called an intuitionistic fuzzy metric 

space if X is an arbitrary (non-empty) set, ∗ is a continuous t-norm, ◊ is a continuous 

t-conorm and M,N are a fuzzy sets on X2 × (0,1) satisfying the following conditions : 

(1) M(x, y, t)  +  N(x, y, t) ≤ 1  for all x, y ∈ 𝑋 and t >  0; 

(2) M(x, y, 0) = 0 for all x, y ∈ 𝑋; 

(3) M(x, y, t) = 1 for all x, y ∈ 𝑋 and t >  0 if and only if x = y; 

(4) M(x, y, t) =  M(y, x, t) for all x, y ∈ 𝑋 and t >  0; 

(5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for each x, y, z ∈ 𝑋 and t, s > 0; 

(6) For all x, y ∈ 𝑋, M(x, y, .) : (0,1) ⟶ [0, 1] is continuous; 

(7) lim
n→∞

M(x, y, t) = 1 for all x, y ∈ 𝑋 and t > 0; 

(8) N(x, y, 0) = 1 for all x, y ∈ 𝑋; 

(3) N(x, y, t) = 0 for all x, y ∈ 𝑋 and t > 0 if and only if x = y; 

(9) N(x, y, t) = N(y, x, t) for all x, y ∈ 𝑋 and t > 0; 

(10) N(x, y, t) ◊N(y, z, s) ≥ N(x, z, t + s),for each x, y, z ∈ 𝑋 and t, s > 0; 

(11) For all N(x, y, .) : (0,1)⟶ [0, 1] is continuous; 

(12) lim
n→∞

N(x, y, t) = 0 for all x, y ∈ 𝑋 and t > 0. 

Then (M,N) is called an intuitionistic fuzzy metric on X. The functions 

M(x, y, t) and N(x, y, t) respectively denote the degree of nearness and 

degree of nonnearness between x and y with respect to t. 

Remark 1. [2]Every fuzzy metric space (X,M, ∗) is an intuitionistic fuzzy metric 

space of the form (X,M, 1 − M, ∗,◊) such that t-norm ∗ and t-conorm ◊,are 

associated as x◊y = 1 − ((1 − x) ∗ (1 − y)) for all x, y ∈ 𝑋. 

Remark 2. [2]In the intuitionistic fuzzy metric space (X,M,N, ∗,◊), M(x, y, ·) is nondecreasing and N(x, 

y, ·) is non-increasing for all x, y ∈ 𝑋. 

Definition 4. [1]. Let (X,M, 1 − M, ∗,◊) be an intuitionistic fuzzy metric space. Then 

(a) A sequence {xn} in X is said to be convergent to a point x in X if and only if 

lim
n→∞

M(xn, x, t) = 1 and lim
n→∞

N(xn, x, t) = 0 for each t > 0. 

(b) A sequence {xn} in X is called Cauchy sequence if 

lim
n→∞

M(xn+p, x, t) = 1 and lim
n→∞

N(xn+p, x, t) = 0 for each p > 0 and t > 0. 

 

Definition 5. [1] An intuitionistic fuzzy metric space (X,M,N, ∗,◊) is said to be complete if and only if 

every Cauchy sequence in X is convergent. 

Lemma 1. [2] Let {xn} is a sequence in a intuitionistic fuzzy metric space  
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(X,M,N, ∗,◊). If there exists a constant k ∈ (0, 1) such that 

M(xn+1, xn, k t) ≥ M(xn−1, xn, t) 

N(xn+1, xn, k t) ≤ N(xn−1, xn, t) 

Then {xn} is a Cauchy sequence in X. 

Lemma 2. [2]Let (X,M,N, ∗,◊) be an intuitionistic fuzzy metric space and for all 

x, y in X, t > 0 and if there exists a number k ∈ (0, 1) 

M(x, y, k t) ≥ M(x, y, t) and N(x, y, k t) ≤ N(x, y, t) 

then x = y. 

In the interest of our main result we shall recall a theorem proved by Hamaizia and A. Aliouche [6]: 

Theorem 1. Let (X, M1, θ1) and (Y, M2, θ2) be complete fuzzy metric spaces with M1(x, x′, t) → 1 as t → 

1 for all x, x′ ∈ X and M2(y, y′, t) → 1 as t → 1 for all y, y′ ∈ Y . Let T :X → Y, S :Y→ X be mappings 

satisfying: 

M1(STx, STx′, kt) ≥  min {M1(x, x′, t), M1(x, ST x, t), M1(x′, ST x′, t), M2(T x, T x′, t)}   

M2(TSy, TSy′, kt) ≥  min {M2(y, y′, t), M2(y, TS y, t), M2(y′, TS y′, t), M1(Sy, Sy′, t)} 

for all x, x′ ∈ X, y, y′ ∈ Y and for all t > 0, where 0 < k < 1. Then ST has a unique fixed point z in X and 

TS has a unique fixed point w in Y . Further, Tz = w and Sw = z. 

3. MAIN RESULT 

We prove our main theorem (2) which is an extension of Theorem(1) of fuzzy metric space in to 

intuitionistic fuzzy metric space. 

Theorem 2. Let (X,M1,N1, ∗,◊) and (Y,M2,N2, ∗,◊) be complete intuitionistic fuzzy metric spaces with 

M1(x, x′, t) → 1 as t → 1 for all x, x′ ∈ X and M2(y, y′, t) → 1 as t → 1 for all y, y′ ∈ Y . Let T :X → Y, 

S :Y→ X be mappings satisfying: 

(3.1)  M1(STx, STx′, kt) ≥  min {M1(x, x′, t), M1(x, ST x, t), M1(x′, ST x′, t), M2(T x, T x′, t)} 

(3.2)  N1(STx, STx′, kt) ≤  max {N1(x, x′, t), N1(x, ST x, t), N1(x′, ST x′, t), N2(T x, T x′, t)} 

(3.3)  M2(TSy, TSy′, kt) ≥  min {M2(y, y′, t), M2(y, TS y, t), M2(y′, TS y′, t), M1(Sy, Sy′, t)} 

(3.4)  N2(TSy, TSy′, kt) ≤  max {N2(y, y′, t), N2(y, TS y, t), N2(y′, TS y′, t), N1(Sy, Sy′, t)} 

for all x, x′ ∈ X, y, y′ ∈ Y and for all t > 0, where 0 < k < 1. Then ST has a unique fixed point z in X and 

TS has a unique fixed point w in Y. Indeed Tz = w and Sw = z, whenever T is continuous. 

Proof. Let x be an arbitrary point in X. We define the sequences {xn} and {yn} in X and Y respectively by: 

Syn = xn, Txn−1 = yn, 

for n=1, 2, ... Putting x = xn and y = yn for all n. Applying inequality (3.1),(3.2) we get 

(3.5) M1(xn+1, xn, kt) ) ≥  min {M1(xn, xn−1, t), M1(xn, xn+1, t), M1(xn−1, xn, t), M2(yn+1, yn, t)}, 

(3.6) N1(xn+1, xn, kt) ) ≤  max {N1(xn, xn−1, t), N1(xn, xn+1, t), N1(xn−1, xn, t), N2(yn+1, yn, t)}, 

Using inequalities (3.3),(3.4) we have 

(3.7) M2(yn+1, yn, kt) ) ≥  min {M2(yn, yn−1, t), M2(yn, yn+1, t), M2(yn−1, yn, t), M1(xn, xn−1, t)}, 

(3.8) N2(yn+1, yn, kt) ) ≤  max {N2(yn, yn−1, t), N2(yn, yn+1, t), N2(yn−1, yn, t), N1(xn, xn−1, t)}, 

involve, respectively 

 (3.9)  M1(xn+1, xn, kt) ) ≥  min {M1(xn, xn−1, t), M2(yn+1, yn, t)}, 
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 (3.10)  N1(xn+1, xn, kt) ) ≤  max {N1(xn, xn−1, t), N2(yn+1, yn, t)}, 

And 

 (3.11)  M2(yn+1, yn, kt) ) ≥  min {M2(yn, yn−1, t), M1(xn, xn−1, t)}, 

 (3.12)  N2(yn+1, yn, kt) ) ≤  max {N2(yn, yn−1, t), N1(xn, xn−1, t)}, 

using inequalities (3.1), (3.2) again, it follows that 

(3.13)  M1(xn+1, xn, kt) ) ≥  min {M1(xn, xn−1, t), M2(yn+1, yn, t)}, 

 (3.14)  N1(xn+1, xn, kt) ) ≤  max {N1(xn, xn−1, t), N2(yn+1, yn, t)}, 

In the similar way, using inequality (3.3),(3.4) we get 

 (3.15)  M2(yn+1, yn, kt) ) ≥  min {M2(yn, yn−1, t), M1(xn, xn−1, t)}, 

 (3.16)  M2(yn, yn−1, kt) ) ≥  min {M2(yn−1, yn−2, t), M1(xn−1, xn−2, t)}, 

And 

(3.17)  N2(yn+1, yn, kt) )  ≤  max  {N2(yn, yn−1, t), N1(xn, xn−1, t)}, 

(3.18)  N2(yn, yn−1, kt) ) ≤  max  {N2(yn−1, yn−2, t), N1(xn−1, xn−2, t)}, 

Using inequalities (3.9),(3.15) and (3.10),(3.17), we have 

(3.19)  M1(xn+1, xn, kt) ) ≥  min {M1(xn, xn−1, t), M2(yn, yn−1, t)}, 

(3.20)  N1(xn+1, xn, kt) ) ≤  max {N1(xn, xn−1, t), N2(yn, yn−1, t)}, 

In a similar way by using inequalities (3.13),(3.16) and (3.14),(3.18), we get 

(3.21)  M1(xn+1, xn, kt) ) ≥  min {M1(xn, xn−1, t), M2(yn, yn−1, t)}, 

(3.22)  N1(xn+1, xn, kt) ) ≤  max {N1(xn, xn−1, t), N2(yn, yn−1, t)}, 

It now follows inequalities (3.15),(3.16),(3.19),(3.21) and (3.17),(3.18),(3.20),(3.22) that 

(3.23)               M1(xn+1, xn, kt) ) ≥ M2(yn, yn−1, t) , 

(3.24)               M2(yn+1, yn, kt) ) ≥ M1(xn, xn−1, t) , 

and 

(3.25)               N1(xn+1, xn, kt) ) ≥ N2(yn, yn−1, t) , 

(3.26)               N2(yn+1, yn, kt) ) ≥ N1(xn, xn−1, t) . 

Using (3.23),(3.24) and(3.25),(3.26) we have for n=1, 2, 

M1(xn+1, xn, t) ) ≥ M2 (yn, yn−1,
t

k2
) , 

M2(yn+1, yn, t) ) ≥ M1 (xn, xn−1,
t

k2
) , 

and 

N1(xn+1, xn, t) ) ≥ N2 (yn, yn−1,
t

k2
) , 

N2(yn+1, yn, kt) ) ≥ N1 (xn, xn−1,
t

k2
) . 

From lemma 2, it follows that xn and yn are cauchy sequences in X and Y respec-tively. Hence xn converges 

to z in X and yn converges to w in Y . Now, suppose that T is continuous, then 

lim Txn−1 = Tz = lim yn = w 

and so Tz = w. Applying inequalities (3.1) and (3.2),we have 
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M1(STz, STxn−1, kt) ≥  min {M1(z, xn−1, t), M1(z, ST z, t), M1(xn−1, ST xn−1, t), M2(T z, T xn−1, t)}, 

N1(STz, STxn−1, kt) ≤  max {N1(z, xn−1, t), N1(z, ST z, t), N1(xn−1, ST xn−1, t), N2(T z, T xn−1, t)}, 

letting n tend to infinity, we have 

M1(Sw, z, kt) ≥  min {1, M1(z, Sw, t), 1}, 

N1(Sw, z, kt) ≤  max {0, N1(z, Sw, t), 0}, 

so Sw = z. In the same manner we can show that T z = w. Finally we show that the fixed point is unique. 

Suppose that ST has a second fixed point z′ in X Then, using inequalities (3.1) and (3.2), we have 

M1(z, z′, kt) ≥  min {M1(z, z′, t), M2(T z, T z′, t)}, 

N1(z, z′, kt) ≤  max {N1(z, z′, t), N2(T z, T z′, t)}, 

Again, using inequality (3.3) and (3.4) we have 

(3.29)  M2(T z, T z′, kt ) ≥  min {M2(T z, T z′, t), M2(T z′, T z′, t), M2(T z, T z, t), M1(z, z′, t)} 

(3.30)  N2(T z, T z′, kt ) ≤  max {N2(T z, T z′, t), N2(T z′, T z′, t), N2(T z, T z, t), N1(z, z′, t)} 

It now follows easily from inequalities (3.27), (3.28 and (3.29), (3.30) that 

M1(z, z′, kt) ≥ M2(T z, T z′, t)  , 

N1(z, z′, kt) ≤ N2(T z, T z′, t), 

and 

M2(T z, T z′, kt ) ≥ M1(z, z′, t) 

N2(T z, T z′, kt ) ≤ N1(z, z′, t). 

Thus, we see that , 

M1(z, z′, kt) ≥ M1 (z, z′,
t

k2
)  , 

N1(z, z′, kt) ≤ N1 (z, z′,
t

k2
), 

and so z = z′. The uniqueness of w follows in a similar manner. 

Now we shall establish a theorem involving quadratic terms and proof the theorem is basically depends on 

Theorem(2) of this paper. 

Theorem 3. Let (X,M1,N1, ∗,◊) and (Y,M2,N2, ∗,◊) be complete intuitionistic fuzzy metric spaces with 

M1(x, x′, t) → 1 as t → 1 for all x, x′ ∈ X and M2(y, y′, t) → 1 as t → 1 for all y, y′ ∈ Y . Let T :X → Y, 

S :Y→ X be mappings satisfying: 

(3.31)  M1
2(STx, STx′, kt) ≥  min {M1

2(x, x′, t), M1(x, ST x, t) ∗ M1(x′, ST x′, t), M2
2(T x, T x′, t)}  

(3.32)  N1
2(STx, STx′, kt) ≤  max {N1

2(x, x′, t), N1(x, ST x, t) ◊ N1(x′, ST x′, t), N2
2(T x, T x′, t)} 

(3.33)  M1
2(TSy, TSy′, kt) ≥  min {M2

2(y, y′, t), M2(y, TS y, t) ∗ M2(y′, TS y′, t), M1
2(Sy, Sy′, t)} 

(3.34)  N1
2(TSy, TSy′, kt) ≤  max {N2

2(y, y′, t), N2(y, TS y, t) ◊  N2(y′, TS y′, t), N1
2(Sy, Sy′, t)} 

for all x, x′ ∈ X, y, y′ ∈ Y and for all t > 0, where 0 < k < 1. Then ST has a unique fixed point z in X and 

TS has a unique fixed point w in Y. Indeed Tz = w and Sw = z, whenever T is continuous. 

Proof. Let x be an arbitrary point in X. We define the sequences {xn} and {yn} in X and Y respectively by: 

Syn = xn, T xn−1 = yn, 

for n=1, 2, ... Putting x = xn and y = yn for all n. Applying inequality (3.31),(3.32) we get 

(3.35) M1
2(xn+1, xn, kt ) ≥  min {M1

2(xn, xn−1, t), M1(xn, xn+1, t) ∗ M1(xn−1, xn, t), M2
2(yn+1, yn, t)}, 
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(3.36) N1
2(xn+1, xn, kt ) ≤ max {N1

2(xn, xn−1, t), N1(xn, xn+1, t) ◊ N1(xn−1, xn, t), N2
2(yn+1, yn, t)}, 

Using inequalities (3.33),(3.34) we have 

(3.37) M1
2(yn+1, yn, kt ) ≥  min {M2

2(yn, yn−1, t), M2(yn, yn+1, t) ∗  M2(yn−1, yn, t), M1
2(xn, xn−1, t)}, 

(3.38) N1
2(yn+1, yn, kt ) ≤  max {N2

2(yn, yn−1, t), N2(yn, yn+1, t) ◊  N2(yn−1, yn, t), N1
2(xn, xn−1, t)}, 

involve, respectively 

(3.39)               M1
2(xn+1, xn, kt ) ≥  min {M1

2(xn, xn−1, t), M2
2 (yn+1, yn, t)}, 

 (3.40)               N1
2(xn+1, xn, kt ) ≤  max {N1

2(xn, xn−1, t), N2
2(yn+1, yn, t)}, 

and 

(3.41)               M2
2(yn+1, yn, kt ) ≥  min {M2

2(yn, yn−1, t), M1
2(xn, xn−1, t)}, 

 (3.42)               N2
2(yn+1, yn, kt ) ≤  max {N2

2(yn, yn−1, t), N1
2(xn, xn−1, t)}, 

using inequalities (3.31), (3.32) again, it follows that 

(3.43)               M1
2(xn−1, xn, kt ) ≥  min {M1

2(xn−2, xn−1, t), M2
2(yn, yn−1, t)}, 

(3.44)               N1
2(xn−1, xn, kt ) ≤  max {N1

2(xn−2, xn−1, t), N2
2(yn, yn−1, t)}, 

In the similar way, using inequality (3.33),(3.34) we get 

(3.45)           M2
2(yn+1, yn, kt ) ≥  min {M2

2(yn, yn−1, t), M1
2(xn, xn−1, t)}, 

 (3.46)         M2
2(yn, yn−1, kt ) ≥  min {M2

2(yn−1, yn−2, t), M1
2(xn−1, xn−2, t)}, 

and 

(3.47)           N2
2(yn+1, yn, kt )  ≤  max  {N2

2(yn, yn−1, t), N1
2(xn, xn−1, t)}, 

(3.48)           N2
2(yn, yn−1, kt ) ≤  max  {N2

2(yn−1, yn−2, t), N1
2(xn−1, xn−2, t)}, 

Using inequalities (3.39),(3.45) and (3.40),(3.47), we have 

(3.49)               M1
2(xn+1, xn, kt) ≥  min {M1

2(xn, xn−1, t), M2
2(yn, yn−1, t)}, 

(3.50)               N1
2(xn+1, xn, kt) ≤  max {N1

2(xn, xn−1, t), N2
2(yn, yn−1, t)}, 

In a similar way by using inequalities (3.43),(3.46) and (3.44),(3.48), we get 

(3.51)               M1
2(xn+1, xn, kt) ≥  min {M1

2(xn, xn−1, t), M2
2(yn, yn−1, t)}, 

(3.52)               N1
2(xn+1, xn, kt) ≤  max {N1

2(xn, xn−1, t), N2
2(yn, yn−1, t)}, 

It now follows inequalities (3.45),(3.46),(3.49),(3.51) and (3.47),(3.48),(3.50),(3.52) that 

(3.53)               M1
2(xn+1, xn, kt) ≥ M2

2(yn, yn−1, t) , 

(3.54)               M2
2(yn+1, yn, kt) ≥ M1

2(xn, xn−1, t) , 

and 

(3.55)               N1
2(xn+1, xn, kt) ≥ N2

2(yn, yn−1, t) , 

(3.56)               N2
2(yn+1, yn, kt) ≥ N1

2(xn, xn−1, t) . 

Using (3.53),(3.54) and(3.55),(3.56) we have for n=1, 2, 

M1
2(xn+1, xn, t) ≥ M2

2 (yn, yn−1,
t

k2
) , 

M2
2(yn+1, yn, t) ≥ M1

2 (xn, xn−1,
t

k2
) , 

and 
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N1
2(xn+1, xn, t) ≥ N2

2 (yn, yn−1,
t

k2
) , 

N2
2(yn+1, yn, kt) ≥ N1

2 (xn, xn−1,
t

k2
) . 

By lemma 2, it follows that xn and yn are cauchy sequences in X and Y respectively. Hence xn converges to 

z in X and yn converges to w in Y . Now, suppose that T is continuous, then 

lim T xn−1 = T z = lim yn = w 

and so T z = w. Applying inequalities (3.31) and (3.32),we have 

M1
2(STz, STxn−1, kt) ≥  min {M1

2(z, xn−1, t), M1(z, ST z, t) ∗ M1(xn−1, ST xn−1, t), M2
2(T z, T xn−1, t)}, 

N1
2(STz, STxn−1, kt) ≤  max {N1

2(z, xn−1, t), N1(z, ST z, t) ◊ N1(xn−1, ST xn−1, t), N2
2(T z, T xn−1, t)}, 

 

letting n tend to infinity, we have 

M1
2(Sw, z, kt) ≥  min {1, M1

2(z, Sw, t), 1}, 

N1
2(Sw, z, kt) ≤  max {0, N1

2(z, Sw, t), 0}, 

so Sw = z. In the same manner we can show that T z = w. Finally we show that the fixed point is unique. 

Suppose that ST has a second fixed point z′ in X Then, using inequalities (3.31) and (3.32), we have 

(3.57)                   M1
2(z, z′, kt) ≥  min {M1

2(z, z′, t), M2
2(T z, T z′, t)}, 

(3.58)                    N1
2(z, z′, kt) ≤  max {N1

2(z, z′, t), N2
2(T z, T z′, t)}, 

Again, using inequality (3.33) and (3.34) we have 

(3.59)  M2
2(T z, T z′, kt ) ≥  min {M2

2(T z, T z′, t), M2(T z′, T z′, t) ∗ M2(T z, T z, t), M1
2(z, z′, t)} 

(3.60)  N2
2(T z, T z′, kt ) ≤  max {N2

2(T z, T z′, t), N2(T z′, T z′, t) ◊  N2(T z, T z, t), N1
2(z, z′, t)} 

It now follows easily from inequalities (3.57), (3.58 and (3.59), (3.60 that 

M1
2(z, z′, kt) ≥ M2

2(T z, T z′, t)  , 

N1
2(z, z′, kt) ≤ N2

2(T z, T z′, t), 

and 

M2
2(T z, T z′, kt ) ≥ M1

2(z, z′, t) 

N2
2(T z, T z′, kt ) ≤ N1

2(z, z′, t). 

Thus, we see that , 

M1
2(z, z′, kt) ≥ M1

2 (z, z′,
t

k2
)  , 

N1
2(z, z′, kt) ≤ N1

2 (z, z′,
t

k2
), 

and so z = z′. The uniqueness of w follows in a similar manner. 
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