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Abstract 

This paper is concerned with both kinds of the Cauchy numbers and their generalizations. Taking 

into account Mellin derivative, we relate 𝑝-Cauchy numbers of the second kind with shifted 

Cauchy numbers of the first kind, which yields new explicit formulas for the Cauchy numbers of 

the both kind. We introduce a generalization of the Cauchy numbers and investigate several 

properties, including recurrence relations, convolution identities and generating functions. In 

particular, these results give rise to new identities for Cauchy numbers.  
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1. INTRODUCTION 

 

The Cauchy numbers of the first kind (CNFK) 𝑐𝑛 and the Cauchy numbers of the second kind (CNSK) �̂�𝑛 

are given by the integral representations [1] 

 

𝑐𝑛 = ∫

1

0

(𝑥)𝑛𝑑𝑥   and    �̂�𝑛 = ∫

1

0

(𝑥)𝑛𝑑𝑥, 

 

where (𝑥)𝑛 = 𝑥(𝑥 − 1)⋯(𝑥 − 𝑛 + 1) with (𝑥)0 = 1 and (𝑥)𝑛 = 𝑥(𝑥 + 1)⋯ (𝑥 + 𝑛 − 1) with (𝑥)𝑛 =
1. The numbers 𝑐𝑛, also known as Bernoulli numbers of the second kind 𝑏𝑛 with the relation 𝑐𝑛 = 𝑛! 𝑏𝑛 

(see [2, 3]), have the generating function  

 

∑𝑐𝑛
𝑧𝑛

𝑛!

∞

𝑛=0

=
𝑧

ln(1 + 𝑧)
 (1) 

 

and satisfy the combinatorial formula 

 

𝑐𝑛 =∑ [
𝑛
𝑘
]
(−1)𝑛−𝑘

𝑘 + 1

𝑛

𝑘=0

. (2) 
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Here [
𝑛
𝑘
] are the (unsigned) Stirling numbers of the first kind, defined by 

 

ln𝑘(1 + 𝑧)

𝑘!
= ∑

∞

𝑛=𝑘

[
𝑛
𝑘
] (−1)𝑛−𝑘

𝑧𝑛

𝑛!
. (3) 

 

The numbers �̂�𝑛 are generated by the function  

 

∑

∞

𝑛=0

�̂�𝑛
𝑧𝑛

𝑛!
=

𝑧

(1 + 𝑧)ln(1 + 𝑧)
 

 

and have an explicit formula 

 

�̂�𝑛 = (−1)
𝑛∑

𝑛

𝑘=0

[
𝑛
𝑘
]
1

𝑘 + 1
. (4) 

 

It is good to note that the numbers �̂�𝑛 are also called as Nörlund numbers and denoted by 𝐵𝑛
(𝑛)

 [4].  

 

Recently, many studies have been carried out on generalizations of Cauchy numbers, according to the 

generating functions [5, 6], integral representations [7, 8, 9] and explicit formulas [10, 11, 12]. One of the 

generalizations of c𝑛 (resp. �̂�𝑛) is 𝑐𝑛
(𝑞)(𝑎), called shifted poly-CNFK, (resp. �̂�𝑛

(𝑞)(𝑎) shifted poly-CNSK) 

and defined by [13] 

 

𝑐𝑛
(𝑞)(𝑎) = ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(𝑥1⋯𝑥𝑞)
𝑎−1
(𝑥1⋯𝑥𝑞)

𝑛
𝑑𝑥1⋯𝑑𝑥𝑞 , (5) 

�̂�𝑛
(𝑞)(𝑎) = ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(𝑥1⋯𝑥𝑞)
𝑎−1
(𝑥1⋯𝑥𝑞)

𝑛
𝑑𝑥1⋯𝑑𝑥𝑞 . 

 

These numbers have the generating functions 

 

∑

∞

𝑛=0

𝑐𝑛
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= 𝑒𝑞(ln(1 + 𝑧), 𝑎), (6) 

 

and  

 

∑

∞

𝑛=0

�̂�𝑛
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= 𝑒𝑞(−ln(1 + 𝑧), 𝑎), (7) 

 

where 𝑒𝑞(𝑧, 𝑎) is the poly-exponential function defined by [14]  

 

𝑒𝑞(𝑧, 𝑎) = ∑

∞

𝑘=0

𝑧𝑘

𝑘! (𝑘 + 𝑎)𝑞
. 

 

Moreover, these numbers can be written explicitly as [13] 
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𝑐𝑛
(𝑞)(𝑎) = ∑

𝑛

𝑘=0

[
𝑛
𝑘
]
(−1)𝑛−𝑘

(𝑘 + 𝑎)𝑞
 and �̂�𝑛

(𝑞)(𝑎) = (−1)𝑛∑

𝑛

𝑘=0

[
𝑛
𝑘
]

1

(𝑘 + 𝑎)𝑞
. 

 

If 𝑞 = 1 and 𝑎 = 𝑞 = 1, we have shifted Cauchy and Cauchy numbers of the both kinds (CNBK), 

respectively. 

 

Another generalization of Cauchy numbers is the 𝑝-Cauchy numbers. The 𝑝-CNFK 𝑐𝑛,𝑝 and the 𝑝-CNSK 

�̂�𝑛,𝑝 are defined by [15] 

 

𝑐𝑛,𝑝

𝑝 + 1
= ∫

1

0

(1 − 𝑥)𝑝(𝑥)𝑛𝑑𝑥, (8) 

�̂�𝑛,𝑝
𝑝 + 1

= ∫

1

0

(1 − 𝑥)𝑝(𝑥)𝑛𝑑𝑥 

 

and satisfy the explicit formulas  

 

𝑐𝑛,𝑝 =∑

𝑛

𝑘=0

[
𝑛
𝑘
] (−1)𝑛−𝑘 (

𝑘 + 𝑝 + 1

𝑘
)
−1

and   �̂�𝑛,𝑝 = (−1)
𝑛∑

𝑛

𝑘=0

[
𝑛
𝑘
] (
𝑘 + 𝑝 + 1

𝑘
)
−1

. 

 

In particular, we have 𝑐𝑛,0 = 𝑐𝑛 and �̂�𝑛,0 = �̂�𝑛. 
 

This study is composed of two main parts. In the first part, we obtain a relation between 𝑝-CNSK and 

shifted CNFK. This relation gives rise to some new results for the 𝑝-CNBK. In the second part, we introduce 

a further generalization of CNBK, including both shifted poly-CNBK and 𝑝-CNBK. So, we call these 

numbers shifted poly-𝑝-Cauchy numbers of the both kinds. We then examine several properties of the 

shifted poly-𝑝-CNBK, such as recurrence relations, convolution identities and generating functions. In 

particular, we reach new explicit formulas and recurrence relations for shifted poly-Cauchy, 𝑝-Cauchy and 

Cauchy numbers of the both kinds. 

 

2. 𝒑-CAUCHY NUMBERS 

 

In this section, we express 𝑝-Cauchy numbers in terms of Cauchy numbers. Moreover, we relate 𝑝-CNSK 

and shifted CNFK. Then, we obtain new explicit formulas for CNBK. 

 

Komatsu [13] showed that  

 

𝑐𝑛
(𝑞)(𝑎) = ∑

𝑎−1

𝜇=0

∑

𝑎−𝜇−1

𝑖=0

(
𝑎 − 1

𝑖
) {
𝑎 − 𝑖 − 1

𝜇
}𝑛𝑖𝑐𝑛+𝜇

(𝑞)
, 

 

where {
𝑛
𝑘
} is the Stirling numbers of the second kind, 𝑎 is a positive integer, 𝑛 is a non-zero integer and 

0 ≤ 𝜇 ≤ 𝑎 − 1. In the following theorem, we give a different relation for shifted poly-CNFK.  

 

Theorem 1. For all integers 𝑛, 𝑝 ≥ 0, 𝑞 ≥ 1 and positive real number 𝑎, we have  

 

𝑐𝑛
(𝑞)(𝑎 + 𝑝) = ∑

𝑝

𝑘=0

{
𝑝
𝑘
}∑

𝑘

𝑙=0

(
𝑘
𝑙
) (
𝑛
𝑙
) 𝑙! 𝑐𝑛+𝑘−𝑙

(𝑞) (𝑎). (9) 
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Proof. Since  

 

∑

∞

𝑛=0

(𝑥)𝑛
𝑧𝑛

𝑛!
= (1 + 𝑧)𝑥 , (10) 

 

(5) can be rewritten as 

 

∑

∞

𝑛=0

𝑐𝑛
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(𝑥1⋯𝑥𝑞)
𝑎−1

(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞 . (11) 

 

Applying the Mellin derivative, defined by ((1 + 𝑧)
𝑑

𝑑𝑧
)
𝑝

= ∑
𝑝
𝑘=0 {

𝑝
𝑘
} (1 + 𝑧)𝑘

𝑑𝑘

𝑑𝑧𝑘
 to the both sides of 

(11), we obtain 

 

∑

∞

𝑛=0

𝑐𝑛
(𝑞)(𝑎 + 𝑝)

𝑧𝑛

𝑛!
= ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(𝑥1⋯𝑥𝑞)
𝑎+𝑝−1

(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞 = ((1 + 𝑧)
𝑑

𝑑𝑧
)

𝑝

∑

∞

𝑛=0

𝑐𝑛
(𝑞)(𝑎)

𝑧𝑛

𝑛!

= ∑

∞

𝑛=0

[∑

𝑝

𝑘=0

{
𝑝
𝑘
}∑

𝑘

𝑙=0

(
𝑘
𝑙
) (
𝑛
𝑙
) 𝑙! 𝑐𝑛+𝑘−𝑙

(𝑞) (𝑎)]
𝑧𝑛

𝑛!
, 

 

which give the desired equation. 

 

Setting 𝑎 = 𝑞 = 1 in (9) and comparing with the following formula for 𝑝-CNSK [15] 

 

�̂�𝑛−1,𝑝+1
𝑝 + 2

= ∑

𝑝

𝑘=0

{
𝑝
𝑘
}∑

𝑘

𝑙=0

(
𝑘
𝑙
) (
𝑛
𝑙
) 𝑙! 𝑐𝑛+𝑘−𝑙 

 

give the following relation. 

 

Corollary 2. For 𝑛 ≥ 1 and 𝑝 ≥ 0,  
 

𝑐𝑛(𝑝 + 1) =
1

𝑝 + 2
�̂�𝑛−1,𝑝+1. (12) 

 

It is good to note that taking 𝑝 = 0 in (12) and using the relation [15] 

 

�̂�𝑛+1,𝑝 =
𝑝 + 1

𝑝 + 2
�̂�𝑛,𝑝+1 − (𝑛 + 1)�̂�𝑛,𝑝, 

 

we have the well-known identity for the Cauchy numbers 

 

𝑐𝑛 = �̂�𝑛 + 𝑛�̂�𝑛−1. (13) 

 

Moreover, from (12), we reach new explicit formulas as given in the following corollary. 

 

Corollary 3. For 𝑛, 𝑝 ≥ 0, 
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1

𝑝 + 1
�̂�𝑛,𝑝 =∑

𝑛

𝑘=0

[
𝑛 + 1
𝑘 + 1

]
(−1)𝑛−𝑘

𝑘 + 𝑝 + 1
 (14) 

 

and  

 

𝑐𝑛+1(𝑝 + 1) =
(−1)𝑛

𝑝 + 2
∑

𝑛

𝑘=0

[
𝑛
𝑘
] (
𝑘 + 𝑝 + 2

𝑘
)
−1

. (15) 

 

When 𝑝 = 0, we have 

 

�̂�𝑛 =∑

𝑛

𝑘=0

[
𝑛 + 1
𝑘 + 1

]
(−1)𝑛−𝑘

𝑘 + 1
 (16) 

 

and  

 

𝑐𝑛+1 = (−1)
𝑛∑

𝑛

𝑘=0

[
𝑛
𝑘
]

1

(𝑘 + 1)(𝑘 + 2)
. (17) 

 

Now, we want to express 𝑝-CNFK in terms of CNFK. From (8), we have  

 

1

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
𝑧𝑛

𝑛!
= ∫

1

0

(1 − 𝑥)𝑝(1 + 𝑧)𝑥𝑑𝑥 = ∑

𝑝

𝑘=0

(
𝑝
𝑘
) (−1)𝑘∫

1

0

𝑥𝑘(1 + 𝑧)𝑥𝑑𝑥. 

 

Setting 𝑞 = 1 in (11) and using it in the above equation, we obtain  

 

1

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
𝑧𝑛

𝑛!
= ∑

∞

𝑛=0

[∑

𝑝

𝑘=0

(
𝑝
𝑘
) (−1)𝑘𝑐𝑛(𝑘 + 1)]

𝑧𝑛

𝑛!
, 

 

which can be written 

 

1

𝑝 + 1
𝑐𝑛,𝑝 =∑

𝑝

𝑘=0

(
𝑝
𝑘
) (−1)𝑘𝑐𝑛(𝑘 + 1). (18) 

 

Then, for 𝑎 = 𝑞 = 1, using (9), we have the following theorem. 

 

Theorem 4. For 𝑛, 𝑝 ≥ 0,  
 

1

𝑝 + 1
𝑐𝑛,𝑝 =∑

𝑝

𝑖=0

∑

𝑝

𝑘=𝑖

∑

𝑖

𝑙=0

(
𝑝
𝑘
) {
𝑘
𝑖
} (
𝑖
𝑙
) (
𝑛
𝑙
) 𝑙! (−1)𝑘𝑐𝑛+𝑘−𝑙 . 

 

Now, we want to recall the binomial transform which will be useful in the next theorem: 

 

𝑎𝑛 =∑

𝑛

𝑘=0

(−1)𝑘 (
𝑛
𝑘
)𝑏𝑘  (𝑛 ≥ 0) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑏𝑛 =∑

𝑛

𝑘=0

(−1)𝑘 (
𝑛
𝑘
)𝑎𝑘 . 

 

Using this and (18) give 
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𝑐𝑛(𝑝 + 1) = ∑

𝑝

𝑘=0

(
𝑝
𝑘
)
(−1)𝑘𝑐𝑛,𝑘
𝑘 + 1

. 

 

From (12), the above equation can be written as 

 

1

𝑝 + 2
�̂�𝑛,𝑝+1 =∑

𝑝

𝑘=0

(
𝑝
𝑘
)
(−1)𝑘𝑐𝑛+1,𝑘
𝑘 + 1

, 

 

which is also a new recurrence relation between 𝑝-CNBK. For nonnegative integers 𝑛 𝑎𝑛𝑑 𝑝, utilizing [15, 

Theorem 4.5] 

 

(−1)𝑝

𝑝 + 1
c𝑛,𝑝  = ∑

𝑝

𝑘=0

{
𝑝
𝑘
}∑

𝑘+1

𝑗=0

(
𝑘 + 1

𝑗
) (
𝑛

𝑗
) 𝑗! �̂�𝑛−j+k 

 

in the above equation, we have 

 

1

𝑝 + 2
�̂�𝑛,𝑝+1  = ∑

𝑝

𝑘=0

∑

𝑘

𝑖=0

∑

𝑖+1

𝑙=0

(
𝑝
𝑘
) {
𝑘
𝑖
} (
𝑖 + 1

𝑙
) (
𝑛 + 1

𝑙
) 𝑙! �̂�𝑛+𝑖+1−𝑙. 

 

Since 

 

∑

𝑛

𝑘=𝑖

(
𝑛
𝑘
) {
𝑘
𝑖
} = {

𝑛 + 1
𝑖 + 1

} 

 

we obtain a relation between 𝑝-CNSK and CNSK. 

 

Theorem 5. For 𝑛, 𝑝 ≥ 0, we have 

 

1

𝑝 + 2
�̂�𝑛,𝑝+1 =∑

𝑝

𝑖=0

{
𝑝 + 1
𝑖 + 1

}∑

𝑖+1

𝑙=0

(
𝑖 + 1

𝑙
) (
𝑛 + 1

𝑙
) 𝑙! �̂�𝑛+𝑖+1−𝑙 . 

 

It is known that [13] 

 

(−1)𝑛𝑐𝑛
(𝑞)(𝑎) = ∑

𝑛

𝑚=1

⌊
𝑛
𝑚
⌋ �̂�𝑚
(𝑞)(𝑎), (19) 

 

where ⌊
𝑛
𝑚
⌋ is the Lah numbers [16] defined by ⌊

𝑛
𝑚
⌋ = (

𝑛 − 1
𝑚 − 1

)
𝑛!

𝑚!
. Setting 𝑞 = 1 and 𝑎 = 𝑝 + 1 in (19) 

and using (12), we obtain a relation between 𝑝-CNSK and shifted CNSK. 

 

Corollary 6. For 𝑛, 𝑝 ≥ 0, we have 

 

(−1)𝑛+1

𝑝 + 2
�̂�𝑛,𝑝+1 = ∑

𝑛

𝑚=0

⌊
𝑛 + 1
𝑚 + 1

⌋ �̂�𝑚+1(𝑝 + 1). 
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3. SHIFTED POLY-𝒑-CAUCHY NUMBERS OF THE FIRST KIND 

 

Let 𝑛 ≥ 0, 𝑞 ≥ 1, 𝑝 ≥ 0 be integers. Let 𝑎 be a positive real number. We define a sequence of rational 

numbers 𝑐𝑛,𝑝
(𝑞)(𝑎) by 

 

1

𝑝 + 1
𝑐𝑛,𝑝
(𝑞)(𝑎) = ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎−1
(𝑥1⋯𝑥𝑞)

𝑛
𝑑𝑥1⋯𝑑𝑥𝑞 .  (20) 

 

Since (𝑥)𝑛 = ∑𝑛𝑘=0 [
𝑛
𝑘
] (−1)𝑛−𝑘𝑥𝑘, we obtain the following explicit formula for 𝑐𝑛,𝑝

(𝑞)(𝑎). 

 

Theorem 7. For all integers 𝑛 ≥ 0, 𝑞 ≥ 1, 𝑝 ≥ −1 and a positive real number 𝑎, we have  

 

𝑐𝑛,𝑝
(𝑞)(𝑎) = ∑

𝑛

𝑘=0

[
𝑛
𝑘
] (
𝑘 + 𝑝 + 1

𝑘
)
−1 (−1)𝑛−𝑘

(𝑘 + 𝑎)𝑞−1
. (21) 

 

From (21), it is evident that 

 

𝑐𝑛,𝑝
(1)(𝑎) = 𝑐𝑛,𝑝, 𝑐𝑛,−1

(𝑞) (𝑎) = 𝑐𝑛
(𝑞−1)(𝑎), 𝑐𝑛,0

(𝑞)(1) = 𝑐𝑛
(𝑞)
, 𝑐𝑛,0
(1)(𝑎) = 𝑐𝑛,−1

(2) (1) = 𝑐𝑛, 

 

where 𝑐𝑛
(𝑞)

 is the 𝑛-th poly-CNFK [8]. Because of these relations we may call shifted poly-𝑝-CNFK for 

𝑐𝑛,𝑝
(𝑞)(𝑎). 

 

Using Stirling transform, one can obtain that  

 

∑

𝑛

𝑘=0

{
𝑛
𝑘
} 𝑐𝑘,𝑝

(𝑞)(𝑎) = (
𝑘 + 𝑝 + 1

𝑘
)
−1 1

(𝑘 + 𝑎)𝑞−1
. 

 

We also note that such relations have been obtained for poly-Cauchy numbers in [8], for shifted poly-

Cauchy numbers in [13] and for 𝑝-Cauchy numbers in [15]. Now, we want to generalize these relations 

with the use of generalized Stirling transform [17, Corollary 1]. We then obtain a relation between 𝑟-Stirling 

numbers of the second kind {
𝑛 + 𝑟
𝑚 + 𝑟

}
𝑟
 and shifted poly-𝑝-CNFK.  

 

Corollary 8. For 𝑚 ≥ 0, we have 

 

∑

𝑛

𝑘=0

{
𝑛 + 𝑚
𝑘 +𝑚

}
𝑚
𝑐𝑚+𝑘,𝑝
(𝑞) (𝑎)  = ∑

𝑚

𝑘=0

[
𝑚
𝑘
] (
𝑘 + 𝑛 + 𝑝 + 1

𝑘 + 𝑛
)
−1 (−1)𝑚−𝑘

(𝑘 + 𝑛 + 𝑎)𝑞−1
. 

 

Using (10) and (20), the generating function of the number 𝑐𝑛,𝑝
(𝑞)(𝑎) satisfy the following iterated integrals. 

 

Theorem 9. For all integers 𝑞 ≥ 1, 𝑝 ≥ 0 and a real number 𝑎 ≥ 1, we have 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
1

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎−1
(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞 . 

 

 

(22) 

For integers 𝑝 ≥ −1 and 𝑞 and a positive real number 𝑎, define the function 𝑒𝑝,𝑞(𝑧, 𝑎) by 
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𝑒𝑝,𝑞(𝑧, 𝑎) = ∑

∞

𝑘=0

𝑧𝑘

(𝑝)𝑘(𝑘 + 𝑎)𝑞
. 

 

When 𝑝 = 1, we have 𝑒1,𝑞(𝑧, 𝑎) = 𝑒𝑞(𝑧, 𝑎). Using (21), we have 

 

∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= ∑

∞

𝑘=0

𝑘!

(𝑝 + 2)𝑘(𝑘 + 𝑎)𝑞−1
∑

∞

𝑛=𝑘

[
𝑛
𝑘
] (−1)𝑛−𝑘

𝑧𝑛

𝑛!
 = ∑

∞

𝑘=0

𝑘!

(𝑝 + 2)𝑘(𝑘 + 𝑎)𝑞−1

ln𝑘(1 + 𝑧)

𝑘!
, 

 

which can be stated as the following theorem. 

 

Theorem 10. The number 𝑐𝑛,𝑝
(𝑞)(𝑎) have the following generating function 

 

∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= 𝑒𝑝+2,𝑞−1(ln(1 + 𝑧), 𝑎). (23) 

 

The first few generating functions for 𝑐𝑛,𝑝
(𝑞)(𝑎) (for 𝑝 = 0,1,2) are 

 

∑

∞

𝑛=0

𝑐𝑛,0
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

−1

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
+
𝑒𝑞−1(ln(1 + 𝑧), 𝑎 − 1)

ln(1 + 𝑧)
, 

∑

∞

𝑛=0

𝑐𝑛,1
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

−2

(𝑎 − 2)𝑞−1ln2(1 + 𝑧)
−

2

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
+
2𝑒𝑞−1(ln(1 + 𝑧), 𝑎 − 2)

ln2(1 + 𝑧)
, 

∑

∞

𝑛=0

𝑐𝑛,2
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

−6

(𝑎 − 3)𝑞−1ln3(1 + 𝑧)
−

6

(𝑎 − 2)𝑞−1ln2(1 + 𝑧)
−

3

(𝑎 − 1)𝑞−1ln(1 + 𝑧)

+
6𝑒𝑞−1(ln(1 + 𝑧), 𝑎 − 3)

ln3(1 + 𝑧)
. 

 

In general, we state the following closed formula for the generating function of shifted poly-𝑝-CNFK. 

 

Theorem 11. For integers 𝑞 ≥ 1, 𝑝 ≥ 0 and a real number 𝑎 ≥ 𝑝 + 2, 

 

∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

(𝑝 + 1)!

ln𝑝+1(1 + 𝑧)
𝑒𝑞−1(ln(1 + 𝑧), 𝑎 − 𝑝 − 1) −∑

𝑝

𝑖=0

(𝑝 + 1)𝑖+1

(𝑎 − 𝑖 − 1)𝑞−1ln𝑖+1(1 + 𝑧)
. 

 

 

(24) 

 

Proof. After an integration by parts, (22) can be written as 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
−1

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
+

𝑝

ln(1 + 𝑧)
𝑓𝑝−1,𝑞(𝑧, 𝑎 − 1). (25) 

 

Applying inductively, we obtain 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
𝑝!

ln𝑝(1 + 𝑧)
𝑓0,𝑞(𝑧, 𝑎 − 𝑝) −∑

𝑝

𝑖=1

(𝑝)𝑖−1

(𝑎 − 𝑖)𝑞−1ln𝑖(1 + 𝑧)
. (26) 

 

Setting 𝑝 = 0 and 𝑎 = 𝑎 − 𝑝 in (22), we have 
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𝑓0,𝑞(𝑧, 𝑎 − 𝑝) = ∫

1

0

⋯∫

1

0⏟    
𝑞−1 𝑡𝑖𝑚𝑒𝑠

(𝑥2⋯𝑥𝑞)
𝑎−𝑝−1

[∫

1

0

(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1] 𝑑𝑥2⋯𝑑𝑥𝑞

=
1

ln(1 + 𝑧)
[∑

∞

𝑛=0

𝑐𝑛
(𝑞−1)(𝑎 − 𝑝 − 1)

𝑧𝑛

𝑛!
−

1

(𝑎 − 𝑝 − 1)𝑞−1
]. 

 

Using (6) in the above equation yields the formula. 

 

It is good to note that setting 𝑞 = 1 in (24) gives [15]  

 

∑

∞

𝑛=0

𝑐𝑛,𝑝
𝑧𝑛

𝑛!
=
(𝑝 + 1)! (1 + 𝑧)

ln𝑝+1(1 + 𝑧)
−∑

𝑝

𝑖=0

(𝑝 + 1)𝑖+1

ln𝑖+1(1 + 𝑧)
. (27) 

 

Moreover, we have the following formula as an application of Theorem 11. 

 

Theorem 12. For all integers 𝑝 ≥ 0, 𝑛 ≥ 𝑝 + 1, 𝑞 ≥ 2 and real numbers 𝑎 ≥ 𝑝 + 2, we have 

 

∑

𝑛

𝑘=𝑝+1

(
𝑛
𝑘
) [

𝑘
𝑝 + 1

] (−1)𝑘+𝑝+1𝑐𝑛−𝑘,𝑝
(𝑞) (𝑎)

= 𝑐𝑛
(𝑞−1)(𝑎 − 𝑝 − 1) + (−1)𝑛+1∑

𝑝

𝑖=0

[
𝑛
𝑖
]

(−1)𝑖

(𝑎 + 𝑖 − 𝑝 − 1)𝑞−1
. 

 

 

 

(28) 

 

For 𝑞 = 1, we have 

 

∑

𝑛

𝑘=𝑝+1

(
𝑛
𝑘
) [

𝑘
𝑝 + 1

] (−1)𝑘+𝑝+1𝑐𝑛−𝑘,𝑝 = (−1)
𝑛+1∑

𝑝

𝑖=0

[
𝑛
𝑖
] (−1)𝑖, 𝑛 ≥ 2. (29) 

 

We remark that for 𝑝 = 0 in (29), using the relation 𝑐𝑛 = 𝑛! 𝑏𝑛 and the well-known identity [
𝑛
1
] = (𝑛 − 1)!, 

we have  

 

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘 = 0, 𝑛 ≥ 2. (30) 

 

which was proved by Agoh and Dilcher [2] with a different method.  

 

Proof of Theorem 12. Multiply both sides of (24) by 
ln𝑝+1(1+𝑧)

(𝑝+1)!
 and use (3) to obtain (28). Moreover, 

multiply both sides of (27) by 
ln𝑝+1(1+𝑧)

(𝑝+1)!
 and use (3) to have (29).  

 

Now, we want to deal with some recurrence relations of shifted poly-𝑝-CNFK. We first have the following: 

 

Theorem 13. For all integers 𝑛 ≥ 0, 𝑞 ≥ 1 and real numbers 𝑎 ≥ 1, we have 

 

𝑐𝑛+1,𝑝
(𝑞) (𝑎) + 𝑛𝑐𝑛,𝑝

(𝑞)(𝑎) =
−(𝑝 + 1)

𝑝 + 2
𝑐𝑛,𝑝+1
(𝑞) (𝑎 + 1) + 𝑐𝑛,𝑝

(𝑞)(𝑎 + 1), 𝑝 ≥ −1 (31) 
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and  

 

(𝑎 − 𝑝 − 1)𝑐𝑛,𝑝
(𝑞+1)(𝑎) = 𝑐𝑛,𝑝

(𝑞)(𝑎) − (𝑝 + 1)𝑐𝑛,𝑝−1
(𝑞+1)(𝑎), 𝑝 ≥ 0. (32) 

 

Proof. Differentiate both sides of (22) with respect to 𝑧 and multiply it by (1 + 𝑧) to obtain 

 

(1 + 𝑧)
𝑑

𝑑𝑧
𝑓𝑝,𝑞(𝑧, 𝑎) = ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝𝑥1(𝑥2⋯𝑥𝑞)

𝑎
(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞

= −∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝+1(𝑥2⋯𝑥𝑞)

𝑎
(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞

+∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎
(1 + 𝑧)𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞 , 

 

or, equivalently, 

 

(1 + 𝑧)

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛+1,𝑝
(𝑞) (𝑎)

𝑧𝑛

𝑛!
=

−1

𝑝 + 2
∑

∞

𝑛=0

𝑐𝑛,𝑝+1
(𝑞) (𝑎 + 1)

𝑧𝑛

𝑛!
+

1

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎 + 1)

𝑧𝑛

𝑛!
. 

 

After some rearrangement, we obtain (31). 

 

One can obtain that 

 

𝑒𝑝,𝑞(𝑥, 𝑎) =
1

𝑎𝑞
 𝑝𝐹𝑞+1 (

1, 𝑎, … , 𝑎
𝑝, 𝑎 + 1,…𝑎 + 1

; 𝑥), (33) 

 

where  𝑝𝐹𝑞 (
𝑎1, … , 𝑎𝑝
𝑏1, … 𝑏𝑞

; 𝑥) is the generalized hypergeometric function defined by 

 

 𝑝𝐹𝑞 (
𝑎1, … , 𝑎𝑝
𝑏1, … 𝑏𝑞

; 𝑥) = ∑

∞

𝑘=0

(𝑎1)
𝑘⋯(𝑎𝑝)

𝑘

(𝑏1)
𝑘⋯(𝑏𝑞)

𝑘

𝑥𝑘

𝑘!
. 

 

For 𝑝 = 𝑝 + 2 and 𝑥 = ln(1 + 𝑧), we have  

 

(𝑎 − 𝑝 − 1)𝑞+1𝐹𝑞+1 (
1, 𝑎, … , 𝑎
𝑝, 𝑎 + 1,… 𝑎 + 1

; ln(1 + 𝑧))

= 𝑎 𝑞+1𝐹𝑞+1 (
1, 𝑎 + 1, 𝑎… , 𝑎
𝑝, 𝑎 + 1,…𝑎 + 1

; ln(1 + 𝑧))

− (𝑝 − 1)𝑞+1𝐹𝑞+1 (
1, 𝑎… , 𝑎
𝑝 − 1, 𝑎 + 1,…𝑎 + 1

; ln(1 + 𝑧)). 

 

From (23) and (33), we obtain 
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(𝑎 − 𝑝 − 1)∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞+1)(𝑎)

𝑧𝑛

𝑛!
= ∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
− (𝑝 + 1)∑

∞

𝑛=0

𝑐𝑛,𝑝−1
(𝑞+1)(𝑎)

𝑧𝑛

𝑛!
, 

 

which gives (32). 

 

Secondly, we obtain the following recurrence relations which are generalizations of (30). 

 

Theorem 14. For all integers 𝑛 ≥ 1, 𝑞 ≥ 1, 𝑝 ≥ 0 and real number 𝑎 > 1 we have 

 

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘,𝑝

(𝑞) (𝑎) = (𝑝 + 1)𝑐𝑛,𝑝−1
(𝑞) (𝑎 − 1). (34) 

 

In particular, 

 

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘

(𝑞) (𝑎) = 𝑐𝑛
(𝑞−1)(𝑎 − 1) − (𝑎 − 1)𝑐𝑛

(𝑞)(𝑎 − 1), 𝑞 ≥ 2. (35) 

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘,𝑝 = (𝑝 + 1)𝑐𝑛,𝑝−1, 𝑝 ≥ 1. (36) 

 

Proof. Considering (23) and (25) yield 

 

ln(1 + 𝑧)

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= ∑

∞

𝑛=1

𝑐𝑛,𝑝−1
(𝑞) (𝑎 − 1)

𝑧𝑛

𝑛!
. 

 

Then, we have 

 

(𝑝 + 1)∑

∞

𝑛=1

𝑐𝑛,𝑝−1
(𝑞) (𝑎 − 1)

𝑧𝑛

𝑛!
= ∑

∞

𝑘=0

∑

∞

𝑛=0

(−1)𝑘𝑐𝑛,𝑝
(𝑞)(𝑎)

(𝑘 + 1)𝑛!
𝑧𝑛+𝑘+1

= ∑

∞

𝑛=1

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘,𝑝

(𝑞) (𝑎)
𝑧𝑛

𝑛!
. 

 

Comparing the coefficients of 
𝑧𝑛

𝑛!
 in the both sides of the above equation gives (34). 

 

From (32), (34) can be written as 

 

∑

𝑛

𝑘=1

(−1)𝑘+1 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛−𝑘,𝑝

(𝑞) (𝑎) = 𝑐𝑛,𝑝
(𝑞−1)(𝑎 − 1) − (𝑎 − 𝑝 − 2)𝑐𝑛,𝑝

(𝑞)(𝑎 − 1). 

 

Setting 𝑝 = −1 in the above equation yields (35). 

 

Komatsu [18] showed that  

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘

(𝑞)
= 𝑐𝑛 + 𝑛𝑐𝑛−1 − 𝑛∑

𝑞

𝑗=1

(𝑐𝑛
(𝑗)
+ (𝑛 − 1)𝑐𝑛−1

(𝑗)
), (37) 

 

as a generalization of [19] 
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∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘 = −(𝑛 − 1)𝑐𝑛 − 𝑛(𝑛 − 2)𝑐𝑛−1. 

 

We give analogues of those results in the following theorem. 

 

Theorem 15. For all integers 𝑛 ≥ 1, 𝑞 ≥ 1, 𝑝 ≥ 0 and real number 𝑎 > 1, we have 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘,𝑝−1

(𝑞) (𝑎 − 1) =
𝑐𝑛

(𝑎 − 1)𝑞−1
+
𝑛𝑐𝑛−1,𝑝

(𝑞) (𝑎)

𝑝 + 1
. (38) 

 

When 𝑞 = 1, it becomes 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘,𝑝−1 = 𝑐𝑛 +

𝑛

𝑝 + 1
𝑐𝑛−1,𝑝. 

 

It is good to note that for 𝑎 = 2 and 𝑝 = 0 in (38), we have 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘

(𝑞−1)
= 𝑛𝑐𝑛−1,0

(𝑞) (2) + 𝑐𝑛. 

 

Comparing (37) with the above equation, we conclude that 

 

∑

𝑞−1

𝑗=1

(𝑐𝑛
(𝑗)
+ (𝑛 − 1)𝑐𝑛−1

(𝑗)
) = 𝑐𝑛−1 − 𝑐𝑛−1,0

(𝑞) (2). (39) 

 

On the other hand, setting 𝑝 = −1 and 𝑎 = 1 in (31), we obtain 𝑐𝑛+1
(𝑞−1)

+ 𝑛𝑐𝑛
(𝑞−1)

= 𝑐𝑛
(𝑞−1)(2). Using this 

and (39), we have another conclusion as 

 

∑

𝑞−1

𝑗=1

𝑐𝑛
(𝑗)(2) = 𝑐𝑛 − 𝑐𝑛,0

(𝑞)(2). 

 

Proof of Theorem 15. With use of (1), (23) and (25), we have 

 

1

𝑝 + 1
∑

∞

𝑛=0

𝑐𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛+1

𝑛!
+

1

(𝑎 − 1)𝑞−1
∑

∞

𝑛=0

𝑐𝑛
𝑧𝑛

𝑛!
= ∑

∞

𝑘=0

∑

∞

𝑛=0

𝑐𝑘𝑐𝑛,𝑝−1
(𝑞) (𝑎 − 1)

𝑘! 𝑛!
𝑧𝑛+𝑘

= ∑

∞

𝑛=0

[∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛−𝑘,𝑝−1

(𝑞) (𝑎 − 1)]
𝑧𝑛

𝑛!
. 

 

Comparing the coefficients of 
𝑧𝑛

𝑛!
 in the both sides of the above equation completes the proof. 

 

4. SHIFTED POLY-𝒑-CAUCHY NUMBERS OF THE SECOND KIND 

 

Let 𝑎 be a positive real number. We define shifted poly-𝑝-CNSK �̂�𝑛,𝑝
(𝑞)(𝑎) (𝑛 ≥ 0, 𝑞 ≥ 1, 𝑝 ≥ 0) by 
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1

𝑝 + 1
�̂�𝑛,𝑝
(𝑞)(𝑎) = ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎−1
(−𝑥1⋯𝑥𝑞)

𝑛
𝑑𝑥1⋯𝑑𝑥𝑞 . (40) 

 

Then, similar to Theorem 7, �̂�𝑛,𝑝
(𝑞)(𝑎) have the following explicit formula. 

 

Theorem 16. For all integers 𝑛 ≥ 0, 𝑞 ≥ 1, 𝑝 ≥ −1 and positive real number 𝑎, 

 

�̂�𝑛,𝑝
(𝑞)(𝑎) = (−1)𝑛∑

𝑛

𝑘=0

[
𝑛
𝑘
] (
𝑘 + 𝑝 + 1

𝑘
)
−1 1

(𝑘 + 𝑎)𝑞−1
. 

 

In particular, we have  

 

�̂�𝑛,𝑝
(1)(𝑎) = �̂�𝑛,𝑝, �̂�𝑛,−1

(𝑞) (𝑎) = �̂�𝑛
(𝑞−1)(𝑎), �̂�𝑛,0

(𝑞)(1) = �̂�𝑛
(𝑞)
, �̂�𝑛,0
(1)(𝑎) = �̂�𝑛,−1

(2) (1) = �̂�𝑛, 

 

where �̂�𝑛
(𝑞)

 is the n-th poly-CNSK.  

 

The numbers �̂�𝑛,𝑝
(𝑞)(𝑎) have the following generating functions. The proof is similar to that of Theorem 9 

and Theorem 10 and omitted. 

 

Theorem 17. For all integers 𝑞 ≥ 1, 𝑝 ≥ 0 and positive real number 𝑎, 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
1

𝑝 + 1
∑

∞

𝑛=0

�̂�𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= ∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎−1
(1 + 𝑧)−𝑥1⋯𝑥𝑞𝑑𝑥1⋯𝑑𝑥𝑞 , 

 

(41) 

 

and 

 

∑

∞

𝑛=0

�̂�𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
= 𝑒𝑝+2,𝑞−1(−ln(1 + 𝑧), 𝑎) =

1

𝑎𝑞−1
 𝑞𝐹𝑞 (

1, 𝑎, … , 𝑎
𝑝 + 2, 𝑎 + 1,… , 𝑎 + 1

;−ln(1 + 𝑧)). 

 

The first few generating function for �̂�𝑛,𝑝
(𝑞)(𝑎) (for 𝑝 = 0,1) are 

 

∑

∞

𝑛=0

�̂�𝑛,0
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

1

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
−
𝑒𝑞−1(−ln(1 + 𝑧), 𝑎 − 1)

ln(1 + 𝑧)
, 

∑

∞

𝑛=0

𝑐𝑛,1
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=

−2

(𝑎 − 2)𝑞−1ln2(1 + 𝑧)
+

2

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
+
2𝑒𝑞−1(−ln(1 + 𝑧), 𝑎 − 2)

ln2(1 + 𝑧)
. 

 

In general, we have the following closed formula for the generating function of �̂�𝑛,𝑝
(𝑞)(𝑎). 

 

Theorem 18. For integers 𝑞 ≥ 2, 𝑝 ≥ 0 and a real number 𝑎 ≥ 𝑝 + 2, 
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∑

∞

𝑛=0

�̂�𝑛,𝑝
(𝑞)(𝑎)

𝑧𝑛

𝑛!
=
(−1)𝑝+1(𝑝 + 1)!

ln𝑝+1(1 + 𝑧)
𝑒𝑞−1(−ln(1 + 𝑧), 𝑎 − 𝑝 − 1)

+∑

𝑝

𝑖=0

(−1)𝑖(𝑝 + 1)𝑖+1

(𝑎 − 𝑖 − 1)𝑞−1ln𝑖+1(1 + 𝑧)
. 

 

 

 

(42) 

Proof. After an integration by parts, (41) can be written as 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
1

(𝑎 − 1)𝑞−1ln(1 + 𝑧)
−

𝑝

ln(1 + 𝑧)
𝑓𝑝−1,𝑞(𝑧, 𝑎 − 1). (43) 

 

Applying inductively, we obtain 

 

𝑓𝑝,𝑞(𝑧, 𝑎) =
(−1)𝑝𝑝!

ln𝑝(1 + 𝑧)
𝑓0,𝑞(𝑧, 𝑎 − 𝑝) +∑

𝑝

𝑖=1

(−1)𝑖+1(𝑝)𝑖−1

(𝑎 − 𝑖)𝑞−1ln𝑖(1 + 𝑧)
. (44) 

 

Setting 𝑝 = 0, 𝑎 = 𝑎 − 𝑝 in (41) and using (7), we have 

 

𝑓0,𝑞(𝑧, 𝑎 − 𝑝) =
1

ln(1 + 𝑧)
[−𝑒𝑞−1(−ln(1 + 𝑧), 𝑎 − 𝑝 − 1) +

1

(𝑎 − 𝑝 − 1)𝑞−1
]. 

 

Utilizing the above equation in (44) completes the proof. 

 

We note that for 𝑞 = 1 in (42), we have [15] 

 

∑

∞

𝑛=0

�̂�𝑛,𝑝
𝑧𝑛

𝑛!
=

(−1)𝑝+1(𝑝 + 1)!

(1 + 𝑧)ln𝑝+1(1 + 𝑧)
+∑

𝑝

𝑖=0

(−1)𝑖(𝑝 + 1)𝑖+1

ln𝑖+1(1 + 𝑧)
. (45) 

 

Multiplying both sides of (42) with 
ln𝑝+1(1+𝑧)

(𝑝+1)!
 and then applying the method used in the proof of Theorem 

12, we arrive at the following:  

 

Theorem 19. For integers 𝑞 ≥ 2, 𝑛 ≥ 𝑝 + 1, 𝑝 ≥ 0 and a real number 𝑎 ≥ 𝑝 + 2, 

 

∑

𝑛

𝑘=𝑝+1

(
𝑛
𝑘
) [

𝑘
𝑝 + 1

] (−1)𝑘�̂�𝑛−𝑘,𝑝
(𝑞) (𝑎) = �̂�𝑛

(𝑞−1)(𝑎 − 𝑝 − 1) + (−1)𝑛+1∑

𝑝

𝑖=0

[
𝑛
𝑖
]

1

(𝑎 + 𝑖 − 𝑝 − 1)𝑞−1
 

 

(46) 

 

For 𝑞 = 1, we have 

 

∑

𝑛

𝑘=𝑝+1

(
𝑛
𝑘
) [

𝑘
𝑝 + 1

] (−1)𝑘�̂�𝑛−𝑘,𝑝 = (−1)
𝑛𝑛! + (−1)𝑛+1∑

𝑝

𝑖=0

[
𝑛
𝑖
] , 𝑛 ≥ 1. (47) 

 

Remark that for 𝑝 = 0, (47) becomes  

 

∑

𝑛−1

𝑗=0

(−1)𝑗

𝑛 − 𝑗

𝐵𝑗
(𝑗)

𝑗!
= 1, 𝑛 ≥ 1, (48) 

 

proved by Nörlund [4]. Moreover, using (12) in (47) yield (𝑛 ≥ 𝑝 + 1, 𝑝 ≥ 1) 
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∑

𝑛

𝑘=𝑝+1

(
𝑛
𝑘
) [

𝑘
𝑝 + 1

] (−1)𝑘𝑐𝑛−𝑘+1(𝑝) =
(−1)𝑛𝑛!

𝑝 + 1
+
(−1)𝑛+1

𝑝 + 1
∑

𝑝

𝑖=0

[
𝑛
𝑖
]. (49) 

 

Setting 𝑝 = 1 in (49) and using the well-known identity  

 

[
𝑛
2
] = (𝑛 − 1)!𝐻𝑛−1, 

 

where 𝐻𝑛 = 1 +
1

2
+⋯+

1

𝑛
 is the harmonic number, we deduce an analogue of  

 

∑

𝑛−2

𝑘=0

(−1)𝑘

𝑘! (𝑛 − 𝑘)
𝐻𝑛−𝑘−1c𝑘 =

1

2(𝑛 − 1)
, 

 

recorded by Agoh and Dilcher [2].  

 

Corollary 20. For 𝑛 ≥ 2,  

 

∑

𝑛−2

𝑘=0

(−1)𝑘

𝑘! (𝑛 − 𝑘)
𝐻𝑛−𝑘−1𝑐𝑘+1 =

(𝑛 − 1)

2𝑛
. (50) 

 

The following theorem relates both kinds of the shifted poly-𝑝-Cauchy numbers. 

 

Theorem 21. Let 𝑞 be an integer and 𝑎 be a positive real number. For 𝑛 ≥ 1 and 𝑝 ≥ −1, we have 

 

(−1)𝑛�̂�𝑛,𝑝
(𝑞)(𝑎) = ∑

𝑛

𝑘=1

⌊
𝑛
𝑘
⌋ 𝑐𝑘,𝑝
(𝑞)(𝑎) (51) 

 

and  

 

(−1)𝑛𝑐𝑛,𝑝
(𝑞)(𝑎) = ∑

𝑛

𝑘=1

⌊
𝑛
𝑘
⌋ �̂�𝑘,𝑝
(𝑞)(𝑎). (52) 

 

Proof. With the use of (−𝑥)𝑛 = (−1)𝑛(𝑥)𝑛 and (𝑥)𝑛 = ∑𝑛𝑘=1 ⌊
𝑛
𝑘
⌋ (𝑥)𝑘 in (40), we have 

 

(−1)𝑛

𝑝 + 1
�̂�𝑛,𝑝
(𝑞)(𝑎)  = ∑

𝑛

𝑘=1

⌊
𝑛
𝑘
⌋∫

1

0

⋯∫

1

0⏟    
𝑞 𝑡𝑖𝑚𝑒𝑠

(1 − 𝑥1)
𝑝(𝑥2⋯𝑥𝑞)

𝑎−1
(𝑥1⋯𝑥𝑞)

𝑘
𝑑𝑥1⋯𝑑𝑥𝑞 . 

 

Then, from (20), we have the first identity. Moreover, let (𝑎𝑛)𝑛=0
∞  and (𝑏𝑛)𝑛=0

∞  be sequences of complex 

numbers. Then 𝑏𝑛 = ∑
𝑛
𝑘=1 ⌊

𝑛
𝑘
⌋ 𝑎𝑘 if and only if 𝑎𝑛 = ∑

𝑛
𝑘=1 ⌊

𝑛
𝑘
⌋ (−1)𝑛−𝑘𝑏𝑘. Using this relation in the first 

identity yields the second formula. 

 

These relations enable us to examine some properties of �̂�𝑛,𝑝
(𝑞)(𝑎) from 𝑐𝑛,𝑝

(𝑞)(𝑎). For instance, the following 

recurrence relations holds for shifted poly-𝑝-CNSK. 

 

Corollary 22. For all integers 𝑛 ≥ 0, 𝑞 ≥ 1 and real numbers 𝑎 ≥ 1, we have 
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�̂�𝑛+1,𝑝
(𝑞) (𝑎) + 𝑛�̂�𝑛,𝑝

(𝑞)(𝑎) =
(𝑝 + 1)

𝑝 + 2
�̂�𝑛,𝑝+1
(𝑞) (𝑎 + 1) + �̂�𝑛,𝑝

(𝑞)(𝑎 + 1), 𝑝 ≥ −1 (53) 

 

and  

 

(𝑎 − 𝑝 − 1)�̂�𝑛,𝑝
(𝑞+1)(𝑎) = �̂�𝑛,𝑝

(𝑞)(𝑎) − (𝑝 + 1)�̂�𝑛,𝑝−1
(𝑞+1)(𝑎), 𝑝 ≥ 0. (54) 

 

Proof. Multiply both sides of (31) by ⌊
𝑚
𝑛
⌋ and sum over 𝑛 from 1 to 𝑚 to obtain 

 

∑

𝑚

𝑛=1

⌊
𝑚
𝑛
⌋ 𝑐𝑛+1,𝑝
(𝑞) (𝑎) +∑

𝑚

𝑛=1

⌊
𝑚
𝑛
⌋𝑛𝑐𝑛,𝑝

(𝑞)(𝑎) =
−(𝑝 + 1)

𝑝 + 2
∑

𝑚

𝑛=1

⌊
𝑚
𝑛
⌋ 𝑐𝑛,𝑝+1
(𝑞) (𝑎 + 1) +∑

𝑚

𝑛=1

⌊
𝑚
𝑛
⌋ 𝑐𝑛,𝑝
(𝑞)(𝑎 + 1). 

 

Using (51) and the recurrence relation of Lah numbers 

 

⌊
𝑚 + 1
𝑛

⌋ = ⌊
𝑚

𝑛 − 1
⌋ + (𝑚 + 𝑛) ⌊

𝑚
𝑛
⌋, 

 

we obtain (53). Similarly, using (32) and (51) gives (54). 

 

Using (41) and (43) and applying the same method used for the proof of Theorem 14, we obtain the 

following recurrence relations which are the analogues of (48). 

 

Theorem 23. For all integers 𝑛 ≥ 1, and real number 𝑎 > 1, we have 

 

∑

𝑛

𝑘=1

(−1)𝑘 (
𝑛
𝑘
) (𝑘 − 1)! �̂�𝑛−𝑘,𝑝

(𝑞) (𝑎) = (𝑝 + 1)�̂�𝑛,𝑝−1
(𝑞) (𝑎 − 1), 𝑞 ≥ 1, 𝑝 ≥ 0. (55) 

 

In particular, 

 

∑

𝑛

𝑘=1

(−1)𝑘 (
𝑛
𝑘
) (𝑘 − 1)! �̂�𝑛−𝑘

(𝑞) (𝑎) = �̂�𝑛
(𝑞−1)(𝑎 − 1) − (𝑎 − 1)�̂�𝑛

(𝑞)(𝑎 − 1), 𝑞 ≥ 2, (56) 

∑

𝑛

𝑘=1

(−1)𝑘 (
𝑛
𝑘
) (𝑘 − 1)! �̂�𝑛−𝑘,𝑝 = (𝑝 + 1)�̂�𝑛,𝑝−1, 𝑝 ≥ 1. (57) 

 

On the other hand, using (12) and (57), we have 

 

∑

𝑛

𝑘=1

(−1)𝑘 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛+1−𝑘(𝑝) = �̂�𝑛,𝑝−1. 

 

Setting 𝑝 = 1 in the above equation gives a new relation between CNBK. 

 

Corollary 24. For 𝑛 ≥ 1, we have 

 

∑

𝑛

𝑘=1

(−1)𝑘 (
𝑛
𝑘
) (𝑘 − 1)! 𝑐𝑛+1−𝑘 = �̂�𝑛. (58) 

 

Note that Howard [20] gave the relation  



 
472 Levent KARGIN / GU J Sci, 33(2): 456-474 (2020) 

 

 

𝐵𝑛
(𝑛)
= 𝑛!∑

𝑛

𝑘=0

(−1)𝑛−𝑘𝑏𝑘. 

 

Using the relation 𝑐𝑛 = 𝑛! 𝑏𝑛, one can easily see that (58) can be written in the following form 

 

𝐵𝑛
(𝑛)
= 𝑛!∑

𝑛

𝑘=1

(−1)𝑛−𝑘−1𝑘

𝑛 + 1 − 𝑘
𝑏𝑘. 

 

Komatsu [18] gave  

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘 �̂�𝑛−𝑘

(𝑞−1)
= �̂�𝑛 − 𝑛∑

𝑞−1

𝑗=1

(�̂�𝑛
(𝑗)
+ (𝑛 − 1)�̂�𝑛−1

(𝑗)
) (59) 

 

to generalize [19] 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘 �̂�𝑛−𝑘 = −(𝑛 − 1)(�̂�𝑛 + 𝑛�̂�𝑛−1). 

 

Now, we want to generalize these formulas. The proof is similar to that of Theorem 15 with the use of (41) 

and (43), so it is omitted. 

 

Theorem 25. For all integers 𝑛 ≥ 1, 𝑞 ≥ 1, 𝑝 ≥ 0 and real number 𝑎 > 1, we have 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘 �̂�𝑛−𝑘,𝑝−1

(𝑞) (𝑎 − 1) =
𝑐𝑛

(𝑎 − 1)𝑞−1
−
𝑛�̂�𝑛−1,𝑝

(𝑞) (𝑎)

𝑝 + 1
. (60) 

 

When 𝑞 = 1, we obtain 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘 �̂�𝑛−𝑘,𝑝−1 = 𝑐𝑛 −

𝑛

𝑝 + 1
�̂�𝑛−1,𝑝. (61) 

 

It is good to note that for 𝑎 = 2 and 𝑝 = 0 in (60), we have 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘 �̂�𝑛−𝑘

(𝑞−1)
= 𝑐𝑛 − 𝑛�̂�𝑛−1,0

(𝑞) (2). 

 

Comparing (59) with the above equation and using (13), we conclude that 

 

∑

𝑞−1

𝑗=1

(�̂�𝑛
(𝑗)
+ (𝑛 − 1)�̂�𝑛−1

(𝑗)
) = �̂�𝑛−1,0

(𝑞) (2) − �̂�𝑛−1. (62) 

 

On the other hand, setting 𝑝 = −1 and 𝑎 = 1 in (53) and using it in the above equation, we arrive at  

 

∑

𝑞−1

𝑗=1

�̂�𝑛
(𝑗)(2) = �̂�𝑛,0

(𝑞)(2) − �̂�𝑛. 
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Moreover, utilizing (12), (61) can be written as 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛+1−𝑘(𝑝 − 1) =

𝑐𝑛
𝑝
−
𝑛𝑐𝑛(𝑝)

𝑝
. 

 

From (9), we have 𝑐𝑛(2) = 𝑐𝑛+1 + 𝑛𝑐𝑛. Thus, we obtain a new convolution identity for CNFK. 

 

Corollary 26. For 𝑛 ≥ 0 

 

∑

𝑛

𝑘=0

(
𝑛
𝑘
) 𝑐𝑘𝑐𝑛+1−𝑘 =

(1 − 𝑛2)𝑐𝑛 − 𝑛𝑐𝑛+1
2

. 

 

5. CONCLUSUIONS 

 

In this paper, a new generalization of Cauchy numbers is introduced, and some arithmetical properties are 

discussed. In particular, new identities for Cauchy numbers are achieved. In the recent paper [21], Hurwitz-

Lerch type multi-poly-Cauchy numbers are studied. For the further research, considering this paper with 

our results, one can introduce the concept of Hurwitz-Lerch type multi-poly-𝑝-Cauchy numbers. 
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