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Highlights 
• A three-parameter generalization of the Gumbel distribution, called Gumbel-geometric distribution.  
• Explicit expressions for the properties of the distribution.  
• Maximum likelihood estimation of the parameters of the distribution.  
• Asymptotic properties examined through simulation experiment. 
• Flexibility of the distribution illustrated by comparing with some existing distributions.  
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Abstract 

A three-parameter generalization of the Gumbel distribution, which we call Gumbel-geometric 
distribution, is defined and investigated. The shape of the density and hazard function is examined 
and discussed. Explicit expressions for the moment generating function, the characteristics 
function and the rth order statistic are obtained. Other properties of the distribution are also 
discussed. The method of maximum likelihood is proposed for the estimation of the parameter of 
the model and discussed. A simulation experiment is carried out to examine the asymptotic 

properties of the distribution. The result shows that the MSE decreases to zero as n  while 

the bias either increases or decreases (depending on the sign) for each of the parameters. The new 
distribution is applied to two datasets and compared to some existing generalization to illustrate 
its flexibility.   
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1. INTRODUCTION 

 
The Gumbel distribution sometimes referred to as the log-Weibull distribution is an extreme value 

distribution of type I, which is particularly useful when the underlying sample is distributed as exponential 

or normal. It is mostly used in modelling of maximum (or minimum) values of random variables, especially 
when the maximum (or minimum) values are collected as a list of observations. This distribution which 

finds usage in engineering and hydrology can be traced back to a discussion on mean largest distance, from 

the origin, of n random points on a straight line having a fixed length, [1, 2]. The distribution function (cdf) 

and the density function (pdf) of the distribution are respectively given by, 
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where     is the location parameter and 0   is the scale parameter.  

The Gumbel pdf is unimodal with mode  and skewed to the right. The distribution may be perceived as an 

extension of the exponential distribution with an increasing or decreasing hazard function [3]. Several 
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generalizations and modifications have been carried out on the distribution to increase its flexibility. One 

of such generalization is the exponentiated Gumbel (EG) distribution introduced by Nadarajah [4] with cdf, 
 

( ) 1 1 exp expEG

x
F x







   
       

   
.                (3) 

 

The distribution (3) possesses some interesting physical interpretation similar to the exponentiated 

exponential distribution, in the sense that it gives the distribution of the lifetime of a system comprising n-
components in series, each independently and identically distributed (iid) according to (1) [4].  Following 

the work of Eugene, Lee and Famoye [5], Nadarajah and Kotz [6] proposed the beta-Gumbel (BG) 

distribution. The BG distribution was found to be a generalization of the arcsine distribution, which arises 

frequently in statistical communication theory. Another interesting modification was constructed by 
Cordeiro, Nadarajah and Ortega [7] using the Kum-G distribution which was obtained from the works of 

Kumaraswamy [8] and Jones [9]. The resulting distribution, called the Kumaraswamy-Gumbel (KG), is the 

time to failure of a system with n independent components. Each component is assumed to have m 
independent sub-components and the failure of sub-component results into the failure of the entire system.  

 

This work introduces another generalization of the Gumbel distribution, which we call Gumbel-geometric 
distribution. In the sense of reliability as expressed by Gupta and Kundu [10], Nadarajah [4] and Cordeiro, 

Nadarajah and Ortega [7], the distribution has a nice physical interpretation and may be constructed from 

reliability studies. The lifetime distribution of a system of ‘n’ iid components arranged in series, each 

component having a cdf G(x) is given by the conditional distribution function, 
 

 ( | ) 1 1 ( )
n

P X x N n G x       Rx , Nn                 (4) 

 

where R is a real number set and N is a set of natural numbers. Since a system with series components 

fails if a component fail, it is assumed that the number of components N at a specific time is a random 
variable having geometric distribution. That is, N is the number of components functioning before the last 

failure, thus the joint probability distribution is given by 
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 .                (5) 

 

The lifetime distribution of the system is therefore given by the marginal of (5) as  
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The marginal distribution function in (6) can be used as a generator of “G-geometric” distribution where 
“G” is the baseline distribution. The generator given in (6) provides a way of generating distributions that 

are geometric extreme stable [11]. The baseline distribution function may be interpreted as the distribution 

of each independent identically distributed component in the system. In this work, we assume that the 

function G(x) is the distribution function of the Gumbel distribution. This is reasonable, especially in 
reliability sense, since the Gumbel distribution models the extremes, and the biggest value of a parallel (or 

smallest value of a series) sub-component determines the strength of the component.  Despite several 

emphases on reliability, the resulting distribution function can be applied as an alternative to other 
generalizations of the Gumbel distribution; such as Kumaraswamy-Gumbel, beta-Gumbel and 

exponentiated exponential Gumbel distributions; with greater flexibility.  
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2. THE GUMBEL-GEOMETRIC DISTRIBUTION 

 

 
(a) 1            (b) 0.5   

Figure 1. The probability density function of GG for 0  and some selected values of  and   

 

A random variable X, with values ( , )x   , is a Gumbel-geometric (GG) random variable with 

parameters ( , )   , (0, )    and [0,1) , if the cdf is given by  
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The probability density function (pdf) of the GG random variable is given by 
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where   is the location parameter and   is the scale parameter inherited from the Gumbel distribution. 

Further flexibility is added by the parameter   as shown in Figure 1.  

 

The distribution (8) reduces to Gumbel distribution when 0  . The cdf and the pdf may be written in the 

series form using the well-known binomial theorems 
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Clearly, the expression,   exp exp ( ) 1x        , has an absolute value smaller than unity, when 

[0,1) . Therefore, the cdf and pdf of GG distribution can be written as 
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where ( )GF x  and ( )Gf x  are as defined in (1) and (2) respectively and 
jS  denotes 
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3. LIMITS AND SHAPE OF THE DISTRIBUTION 

 

The limits of ( )f x , the density function of GG as x  and as x  are both zero. The behaviour of 

( )f x  between the two limit points can be examined by determining the nature of the turning points. Since 

both ( )f x  and  log ( )f x  have the same shape,  log ( )f x  is examined for its simpler mathematical 

tractability.  

The derivative of log  ( )f x , where ( )f x  is the pdf of the GG distribution, is given by, 

 

 log ( ) 1 2 exp( )
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where exp( ( ) )x     . The turning points of the curve ( )f x  are at the points where 

 

( 1)exp( ) ( 1) (1 )        .              (13) 

 

These points correspond to the modes of ( )f x  and the nature of the points are determined by

 2 2log ( ) ( )d f x dx u x , where ( )u x  is given by    
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Figure 2. Shapes of ( )u x  for 0  , 1   and some selected values of   
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Depending on whether 0( ) 0u x  , 0( ) 0u x   0( ) 0u x  , where 0x x  is a solution of (13), the turning points 

can be a local maximum, a local minimum or a point of inflexion. It is worthy of note to mention that when 

0  , x  is a root of (13) and ( ) 0u   . This conforms to the behaviour of Gumbel distribution. Figure 

2 shows the shapes of ( )u x  for 0  , 1   and some selected values of  . 

 

4. HAZARD AND QUANTILE FUNCTIONS 

 

One of the most important quantities for characterizing life phenomena is the hazard rate function. The 
hazard rate function of the GG distribution is given by, 

 

 

     
exp
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1 exp 1 exp

h x
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where  exp ( )x     . 

 

 

 
    (a) 1               (b) 0.5    

Figure 3. Hazard rate function curves of GG for 0  and some selected values of  and   

 

The shape of the hazard rate function is sometimes considered when considering the suitability of a 

distribution function in describing a dataset. This shape which can be increasing, decreasing, or “bath-tube” 

is determined for the GG distribution in a similar manner as that of ( )f x  in section (3). Clearly, ( ) 0h x   

as x  and ( ) 1h x   as x . The shape between the two limit points is determined by examining 

the nature of the roots of  
 

  
1

2 2exp( ) exp( ) 1 1 exp( ) 1      


          .                (15) 

 

The plot of hazard function for various values of the parameters is shown in Figure 3. Increase in the 

parameter  , while other parameters are kept constant, increases the mode of the hazard function. The 

shape parameter   also changes the shape of the hazard function. 
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Another important quantity of a distribution is the quantile function which is generally defined as the 

inverse distribution function and may be used in place of distributions for modelling datasets [9, 12]. The 
quantile function for the GG distribution is defined by 

 

1 ( 1)
( ) ln ln

1

p
F p

p


 




  

    
  

.              (16) 

 

The quantile (16) can be used in the simulation of the GG random variable, if the variable p in (16) is 
assumed to be uniformly distributed and all parameters are fixed as desired. 

 

5. OTHER PROPERTIES 

 

5.1. Moments and Generating Functions 

 

The moments of random variables are very important ways of summarizing the random variables in terms 
of their parameters. 

 

Proposition 5.1. Suppose X is a random variable with GG density function defined in (8), then the nth   
moment of X can be written as, 
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Proof. The proof of this proposition follows a similar pattern to section 4, of Nadarajah [4]. Since the 

density function of X is as defined in (8), then the nth moment of X can be written as 
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Setting exp( ( ) )v x     , (18) can be re-expressed as 
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Using the binomial expansion (10) to expand the first bracket in the integral, (19) can be written as 
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where the integral ( )I m  is defined as 
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Further expansion of (21) using the representation (9) and (10), yields   
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Using (2.6.21.1) of Prudnikov, Brychkov and Marichev [13], the integral ( , )I m i  can be evaluated as 
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Combining (20), (22) and (23) completes the proof. 

 

The first few evaluations of (23) for 0,1,2,3m   and 4 which are useful in calculating the first four moments 

are  
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where ( ) ( ) ( )z z z    is the digamma function.  

 
Corollary 5.1. Suppose X is a random variable which follows GG distribution defined in (7), then the mean 

and second moment are given by 
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𝐹2(𝑘) = (6𝜎2𝛹(1)2 − 12log(𝑘 + 1)𝜎2𝛹(1) + 6𝜎2log(𝑘 + 1) + 𝜋2𝜎2 − 12𝜇𝜎𝛹(1)

            +12𝜇𝜎log(𝑘 + 1) + 6𝜇2).
  

 

Proof. It is easy to establish the proof from (17).  
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Other characteristics of the distribution can be calculated from the moments. For example, the variance, 

skewness, and kurtosis can be calculated, respectively, using the relations  

2 2Var( ) E( ) E ( )X X X  ,  
3 2 3

3 3/2

E( ) 3E( )E( ) 2E ( )
( )

Var ( )

X X X X
X

X


 
  and 

 
4 3 2 2 4

4 2

E( ) 4E( )E( ) 6E( )E ( ) 3E ( )
( )

Var ( )

X X X X X X
X

X


  
 .  

 

Table 1. Some descriptive statistic for some values of the parameters 

      E( )X  Var( )X  3( )X  4 ( )X  

0 1 0.1 0.50484 1.59439 0.23255 14.01036 

  0.3 0.33757 1.47490 0.20425 13.55952 

  0.5 0.12563 1.31895 0.13373 13.11875 

 5 0.1 2.52421 39.85983 0.23255 14.01036 

  0.3 1.68785 36.87247 0.20425 13.55952 

  0.5 0.62816 32.97373 0.13373 13.11876 

 10 0.1 5.04842 159.43932 0.23255 14.01036 

  0.3 3.37570 147.48988 0.20425 13.55952 

  0.5 1.25633 131.89489 0.13373 13.11875 

5 1 0.1 5.04842 1.59439 0.23255 127.08818 

  0.3 5.33757 1.47490 0.20425 128.99401 

  0.5 5.12563 1.31895 0.13373 132.56086 

 5 0.1 7.52421 39.85983 0.23255 21.57318 

  0.3 6.68785 36.87247 0.20425 20.23255 

  0.5 5.62816 32.97373 0.13373 18.81087 

 10 0.1 10.04842 159.43932 0.23255 16.85097 

  0.3 8.37570 147.48988 0.20425 15.94980 

  0.5 6.25633 131.89485 0.13373 14.82757 

10 1 0.1 10.50484 1.59439 0.23255 484.32528 

  0.3 10.33757 1.47490 0.20425 447.83202 

  0.5 10.12563 1.31895 0.13370 479.45847 

 5 0.1 12.52421 39.85983 0.23255 36.66236 

  0.3 11.68785 36.87247 0.20425 35.32486 

  0.5 10.62816 32.97373 0.13373 33.60114 

 10 0.1 15.04842 159.43932 0.23255 21.57318 

  0.3 13.37570 147.48988 0.20425 20.37412 

  0.5 11.25633 131.89482 0.13372 18.81087 

 

The values of mean, variance, skewness and kurtosis for some selected values of the parameters are shown 

in Table 1. It is observed from the Table that increasing the value of   increases the value of mean and 

kurtosis but variance and skewness remain unaffected. Also, increasing the value of ,  increases the value 

of mean and variance while skewness remains unaffected. Kurtosis decreases with increase in   for values 

of 0   but is unaffected by   when 0  . Finally, increasing the value of the parameter   results in a 
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decrease in the values of all four properties, when 0.5.   Routine calculations show that the properties 

are unstable for all values of 0.5.   

 
Proposition 5.2. Suppose X is a random variable with GG density function defined in (8), then the moment 

generating function of X can be written as, 
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Proof. By definition, the moment generating function of a random variable is defined by 
 

( ) exp( ) ( )XM t tx f x dx  .  

 

Since the density function of X is defined by (8), using the series representation in (11), the moment 

generating function of X can be expressed as 
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where exp( ( ) / )v x      and ( , )I k v  denotes the integral 
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   .                       

 

Using (2.3.3.1) of Prudnikov, Brychkov and Marichev [13], the integral ( , )I k v can be expressed as 

 
( 1)( , ) ( 1) (1 )tI k v k t     .                (28) 

 

Substituting (28) into (27) completes the proof.   
 

Proposition 5.3. Let X be a random variable with GG density function defined in (8), then the 

characteristics function of X is defined by, 
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where 1i   . 

 

Proof. The proof follows a similar procedure as that of Proposition 2.  

 

5.2. Order Statistics 

 
One of the oldest models for ordered random variables, which naturally arises whenever observations are 

listed in increasing order of magnitude, is the order statistics [14]. Order statistics is also quite useful in 

modelling extremes.  

 

Proposition 5.4. Suppose the random variables 1 2, ,..., nX X X  are independent and identically distributed 

GG random variables. The density function : ( )r nf x   of the rth order statistics, for 1,...,r n  is given by, 
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where exp( ( ) )v x     . 

 

Proof. The density function of the rth order statistics with pdf ( )f x  and cdf ( )F x  is generally defined by 
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Since ; 1,...,rX r n  are distributed as GG, replacing ( )f x  and ( )F x  with the density and distribution 

functions in (7) and (8) and simplifying completes the proof.   

 

Corollary 5.2. Suppose 1 2, ,..., nX X X  are random samples from GG distribution. exp( ( ) )v x     , 

then the density function; 

 

a) 1: ( )nf x  of the 1st order statistics is, 
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b) n: ( )nf x  of the nth order statistics is. 
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       .  

  
Proof. The proof of part (a) easily follows by substituting r =1 into (30). Replacing “r” with “n” in (30) 

and using the relation ( )! ( 1) !kk k    (see, Thukral [15]) completes the proof of part (b). 

 

5.3. Entropy 

 
An important measure of the variation of the uncertainty of a random variable is entropy [16, 17]. Several 

measures of entropy exist and the most popular is the Renyi entropy defined as 

 

  1( ) (1 ) log ( )R f x dx       for all 0,   1  .  

       

Proposition 5.5. Suppose ( )f x  is the density function of a random variable X which has GG distribution 

as defined in (7). The entropy of X is defined by, 
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           (31) 

 

for all 0,   1  .  

 

Proof. From the definition, the entropy of the random variable X with a distribution defined in (7) can be 

expressed as  
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Using (9) and (10), the integral ( )I   can be re-expressed as 
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where  ( , )I k   denotes the integral 1

0

( , ) exp( (1 ) )I k k d   



   . 

 

Finally, by (2.3.3.1) in Prudnikov, Brychkov and Marichev [13], ( , )I k   can be written as 

 

 ( , ) (1 ) ( )I k k


  


   .                (34) 

 

Combining (32), (33) and (34) completes the proof. 
 

6. PARAMETER ESTIMATION 

 

6.1. Maximum Likelihood Estimation 
 

The parameter estimation by the method of maximum likelihood is considered. Let ( 1,2,..., )ix i n  be a 

random sample of size n drawn from the GG distribution. The logarithm of the likelihood function (log-
likelihood)  is given by 
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   .     (38) 

The maximum likelihood estimates of the parameters are obtained by equating (36) - (38) to zero and 

solving the resulting equations simultaneously. The solution of (36) – (38) is best computed iteratively 

since it does not exist in closed form. Suitable initial estimates of the parameters are obtained by 

transforming the data to Gumbel density and using appropriate values of   and  . The variance of the 

estimates may be computed iteratively through the Fisher’s information matrix,  which is obtained from 

(36)-(38) by taking expectations of the second partial derivatives.  
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6.2. Simulation 

 
Table 2. Biases and MSE of the GG distribution from the simulation experiment 

GG ( , , )     N          

   Bias MSE Bias MSE Bias MSE 

GG(0.5,2.0,1.0)   25 -0.096743 0.153059 -0.047019 0.915716 -0.578120 0.481725 

  50 -0.088382 0.136800  0.006319 0.649567 -0.543854 0.459821 

100 -0.067663 0.122915  0.055731 0.487212 -0.561520 0.493270 

150 -0.063915 0.109565  0.071267 0.372915 -0.548206 0.487465 

GG (0.5,-0.7,0.3)   25 -0.115592 0.156073 -0.008089 0.092022 -0.006297 0.013442 

  50 -0.100965 0.139438 -0.000421 0.066713  0.002255 0.010156 

100 -0.086876 0.127351  0.010349 0.049512  0.007734 0.007503 

150 -0.080416 0.112944  0.015528 0.037216  0.007771 0.005910 

GG(0.9,0.8,1.0)   25 -0.203154 0.160342 -0.170790 0.594653 -0.561002 0.452162 

  50 -0.152186 0.107085 -0.104249 0.464068 -0.549168 0.452693 

100 -0.120414 0.078398 -0.081997 0.367149 -0.549168 0.452693 

150 -0.004411 0.016748 -0.057431 0.169030  0.042555 0.023141 

 

The behaviour of the maximum likelihood estimates (MLEs) of the parameters of GG distribution is 

investigated through a simulation experiment. Different values are assigned to the parameters and samples 

of sizes 25,n   50, 100 and 150 are generated using the quantile function in (16). The MLEs of the 

parameters are computed for each of the sample sizes and the variances are obtained iteratively through the 

information matrices. This experiment is replicated 1,000 times. The mean squared errors (MSE) and the 

biases which are used in the evaluation of the parameters are computed using 

 
1

1ˆ ˆBias( )
r

i

ír
  



    and 2ˆMSE( ) Var( ) Bias( )      

where r,   and ̂  are the number of replications, the parameter being investigated and the estimate of the 

parameter. 

 

The values of the MSE and biases of GG distribution, with different pre-assigned values of parameters ,  

  and ,  from the Monte Carlo experiment are shown in Table 2. It is observed that the MSE decrease to 

zero as n  for each of the parameters, while the biases either increase or decrease depending on the 

sign. 
 

7. APPLICATION 

 

The flexibility of the distribution model in relation to the Gumbel distribution and other existing 
generalization are illustrated using datasets from Hinkley [18] and Changery [19]. In the first instance, the 

appropriateness of the GG distribution in fitting the data is established using the Kolmogorov-Smirnov (K-

S) test. Then, a comparison of the fit of the GG distribution to the Gumbel distribution is carried out using 
the likelihood ratio test.  

 

The three other generalizations of Gumbel distribution, namely (a) the beta-Gumbel (BG), (b) the 

Kumaraswamy-Gumbel (KG) and (c) the exponentiated generalized Gumbel (EGG), are also considered 
and compared with the GG distribution. The density functions of the distributions, respectively,  may be 

written as 
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where exp( ( ) )u x     , 0,   0,   0   and ,x   . 

    
The maximum likelihoods of the parameters and other statistics are computed to illustrate the flexibility of 

the distribution in relation to these generalizations. 

 

7.1. The Precipitation Data 
 

Table 3. Precipitations in March (inches) for Minneapolis/St Paul by Hinkley [18] 

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20 3.00 3.09 1.51 2.10 0.52 

1.62 1.31 0.32 0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05 

 

The data presented in Table 3 consist of 30 successive values of precipitation (inches) in March for the twin 
cities of  Minneapolis-St Paul . The data is obtained from [20] but originally appeared in Hinkley [18].  

 

The MLEs of the parameters of GG distribution obtained from the data are  = 0.3338130,  = 1.4135194 

and  = 0.800269. The observed information matrix of the data 
0

ˆ ˆ ˆ( , , )I     and the variance-covariance 

matrix 1

0
ˆ ˆ ˆ( , , )I     are respectively given by 

 

0

  91.67922 36.59910      0.64240

ˆ ˆ ˆ( , , ) 36.59910 57.75100 30.13512

   0.64240 30.13512    21.72661

I   

 
 

   
  

  and 1

0

0.08522 0.19075 0.26205

ˆ ˆ ˆ( , , ) 0.19075 0.48963 0.67349

0.26205 0.67349 0.97241

I   

 
 

  
 
 

. 

 

The 99% confidence intervals are [-1.599348, 2.266207], [0.041795, 2.784765] and [0.227983, 1.372319] 

respectively, for each of the parameters ,  and  . The hypotheses,  

 

0 : GGH F F  versus 
1 : GGH F F   

 
are formulated for a test on how well the GG distribution appropriately fits the data. The appropriateness 

of the model is determined using the K-S distances between the empirical and fitted distribution functions. 

The value of the K-S statistic and corresponding p-value are 0.064322 and 0.9997 respectively. The small 
K-S statistic and the large p-value is an indication that the GG distribution appropriately fits the data.  A 

comparison of how well the GG model fits the data in relation to the Gumbel distribution is carried out 

using the likelihood ratio test (LRT). Since the model reduces to the Gumbel distribution when 0,   the 

hypotheses, 
0 : 0 ( )H G   versus 

1 : 0 ( )H GG   are formulated. The likelihood value for the GG 

distribution is given by 38.65111, while the likelihood ratio statistic and the corresponding p-value are 

3.4890 and 0.06174 respectively. The chi-square critical value (3.8415) for this test is greater than the 
calculated LRT statistic. A p-value of 0.06174 is an indication that the null hypothesis cannot be rejected. 

Accordingly, it is concluded that the   is insignificant to the fit of the data at 0.05 level of significance. 

This is an instance where it may be desirous to fits the data with the Gumbel distribution which is a sub-

model of the GG distribution.  

 
The parameter estimates and the goodness of fit statistic for the precipitation data in Table 2 using the GG 

distribution and other generalizations are shown in Table 4. The log-likelihood for the three other 

generalizations (BG, KG and EGG) considered, are respectively 38.34992, 38.35189 and 37.72457. The 
K-S distance between the empirical and the fitted distribution functions are respectively 0.075806 with a 
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p-value of 0.9953, 0.07550 with a p-value of 0.9955 and 0.079419 with a p-value of 0.9915. All 

distributions fit the data appropriately based on the small K-S distance and large p-values. Using other 
criteria such as the AIC, CAIC, and BIC to select the best model, the GG distribution provides the best fits 

for the data, since it has the lowest value of all statistic but the other three distributions compete favourably. 

The plot of the empirical and fitted distributions is given in Figure 4. 

 
Table 4. Estimates and goodness of fit statistic for the Precipitation data  

Dist. BG KG EGG GG 

MLE 

   0.43020    0.42058    0.12707    0.80027 

   0.91299    1.46377    0.13323    1.41352 

   0.83006    0.21064    0.14004    0.33381 

   0.44498    0.43489    2.55665 
 

K-S 0.075806 0.07550 0.079419 0.064322 

P-value 0.9953 0.9955 0.9915 0.9997 

AIC 84.69983 84.70377 83.44915 83.30222 

CAIC 86.29983 86.30377 85.04915 84.22530 

BIC 90.30462 90.30856 89.05394 87.50582 

 

 
Figure 4. The Empirical and fitted distributions for the Precipitation data 

 

7.2. The Maximum Annual Wind Speed Data 
 

The maximum annual wind speed (mph) for Hartford, Connecticut between 1940 and 1979 is taken from 

Changery [19]. The data is historic and has appeared in several articles including Kinnison [21].  This data 

is presented in Table 5.  
 

Table 5. Maximum Annual Wind Speed for Hartford, Connecticut from 1940 - 1979 

31 22 12 25 32 55 27 21 31 34 57 54 48 46 49 40 

44 40 34 45 22 16 20 18 32 21 42 19 26 29 43  
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The MLEs of the parameters of the GG model that fits the data are  = 8.0784187,   = 49.3806330 and 

 = 0.8126432. The observed information matrix of the data 
0

ˆ ˆ ˆ( , , )I     and the variance-covariance 

matrix 1

0
ˆ ˆ ˆ( , , )I     are respectively given by 

 

0

  2.57574 1.62437 14.38917

ˆ ˆ ˆ( , , ) 1.62437     1.47604 20.54154

14.38917 20.54154 380.28214

I   

 
 

   
  

 and 1

0

13.68708 31.63956 1.19117

ˆ ˆ ˆ( , , ) 31.63956 75.86799 2.90095

  1.19117 2.90095 0.11426

I   

 
 

  
 
 

 . 

 
The 99% confidence intervals are[0.140483, 1.486047], [31.996970, 66.799017] and [0.698382, 

15.468667] respectively, for each of the parameters ,    and  . The hypotheses,  

 

0 : GGH F F  versus 
1 : GGH F F   

 

are formulated for a test on how well the GG distribution appropriately fits the data. Similar to the 
precipitation data, the appropriateness of the model is determined using the K-S distances between the 

empirical and fitted distribution functions. The value of the K-S statistic and corresponding p-value are 

0.12657 and 0.5434 respectively. The small K-S statistic and the large p-value is an indication that the GG 

distribution fits the data appropriately. Similar to the precipitation data, the hypotheses 
0 : 0 ( )H G   

versus 
1 : 0 ( )H GG   are formulated for comparing how well the GG model fits the data in relation to 

the Gumbel distribution. The likelihood value for the GG distribution is given by 132.1358, while the 

likelihood ratio statistic and the corresponding p-value are 349.79 and  
162.2 10  respectively. It is noted 

that the chi-square critical value (3.8415) for this test is lesser than the calculated LRT statistic. A p-value 

of 
162.2 10  indicates that the null hypothesis should be rejected. Accordingly, it is concluded that the    

significantly contributes to the appropriateness of the fit of the data at 0.05 level of significance. In this 

case, the GG distribution provides a better fit to the data than the Gumbel distribution. The parameter 

estimates and the goodness of fit statistics using the GG distribution and other generalizations are presented 
in Table 6. 

 

Table 6. Estimates and goodness of fit statistic for the maximum Annual wind speed data  

Dist. BG KG EGG GG 

MLE 

   4.75179    4.30621    14.83043    8.078419 

   52.85498    41.75345    17.32013    49.380633 

   0.10331    0.83304    2.13788    0.812643 

   0.62021    0.65629    45.14888 
 

K-S 0.12069 0.12916 0.13212 0.12657 

P-value 0.60480 0.51690 0.48740 0.5434 

AIC 272.4618 272.8937 279.10270 270.2716 

CAIC 273.6046 274.0366 280.24550 270.9382 

BIC 279.2173 279.6493 285.85820 275.3382 

 

The log-likelihood for the three generalizations; BG, KG and EGG, are 132.2309, 132.4469 and 135.5513 

respectively. The K-S distance between the empirical and the fitted distribution functions are respectively 

0.12069, 0.12916 and 0.13212 while the p-values are 0.60480, 0.51690 and 0.48740 respectively. All 
distributions are likely fit for the data since the p-values are all greater than 0.05. The best model for the 

data based on the three criteria of AIC, CAIC and BIC is the GG distribution since it has the lowest value 

of all criteria while the EGG can be said to be the least appropriate for the data. The plot of the empirical 
and fitted distributions is given in Figure 5. 
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Figure 5. The Empirical and fitted distributions for the maximum Annual wind speeds data 
 

8. CONCLUSION 

 
A generalization of the Gumbel distribution, called the Gumbel-geometric, is defined and investigated. 

Several properties of the distribution such as the moments, hazard function, quantile function and the 

characteristics function are derived and studied. The shapes of the function are also investigated. This 

distribution which has a nice physical interpretation is quite flexible and has only three parameters unlike 
several other generalizations such as the beta-Gumbel, Kumaraswamy-Gumbel and exponentiated 

exponential Gumbel with four parameters. A simulation experiment conducted to examine the asymptotic 

properties of the distribution shows that the MSE decreases to zero as nwhile the bias either increases 

or decreases (depending on the sign) for each of the parameters. The model is applied to two real datasets 

and compared to these other generalizations to illustrate its flexibility. 
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