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Highlights 

• This article investigates the impact of image enhancement and DCNN on marine habitat mapping.  

• Various image enhancement techniques have been tested, and CLAHE stands out the most. 

• DenseNet-169 and MobileNet as two different Neural Network models applied for classification. 

• Overall, DenseNet-169 with CLAHE method had the highest accuracy across all four datasets examined. 

Article Info 

 

Abstract 

Marine habitat mapping is primarily done to monitor and preserve underwater ecosystems. 

Images captured in a marine environment suffer from acidification, pollutions, waste chemicals, 

and lighting conditions. Human beings are progressing fast in terms of technology and are also 

responsible for the degradations of ecosystems, both marine and land habitats. Marine biologists 

possess a lot of data for the underwater environment, but it is hard to analyze, and the task 

becomes tiresome. Automating this process would help marine biologists quickly monitor the 

environment and preserve it. Our research focuses on coral reef classification and two critical 

aspects, i.e., Image enhancement and recognition of coral reefs. Image enhancement plays an 

essential role in marine habitat mapping because of the environment in which images are taken. 

The literature contains many image enhancement techniques for underwater. The authors want to 

determine whether a single image enhancement technique is suitable for coral reefs. Four image 

enhancement techniques based on an extensive literature review are selected. We have used 

DenseNet-169 and MobileNet for image classification. It has been reported that DenseNet-169 

has excellent results for coral reefs classification. Histogram techniques combined with 

DenseNet-169 for classification resulted in higher classification rates.  
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1. INTRODUCTION 

 

Ecosystem-based management (EBM) approach manages the entire ecosystem. EBM includes human 

beings in decisions regarding resource management and real interaction within the ecosystem. Large oceans 

and ecosystems use EBM that considers the overall impacts of marine ecosystems due to the challenges 

faced by the environment.  

 

In ecology, a habitat is an underwater ecosystem in which organisms’ dwell. Habitats protect organisms 

from predators, provide food, and help them reproduce. Habitat consists of both physical and biological 

characteristics. There are two types of habitats: terrestrial and marine. For example, swamps, forests, and 

lakes are habitats [1]. As human activity increases, marine ecosystems deteriorate and are damaged, which 

we have only recently identified. Therefore, habitat mapping is used to assess the health of maritime 

ecosystems and their current distribution. A habitat map illustrates the geographic distribution of habitats 

throughout time, assisting marine scientists in evaluating the strength of locales and developing a strategy 

for their preservation [2]. Habitats mapping supports the EBM directly and plays a massive role in assessing 

ecosystems. Marine habitat mapping is the first step in conducting domestic and international waters 

surveys. On the other hand, individual habitat mapping projects are not frequently associated with EBM. 
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Marine habitat mapping is typically done using underwater imagery. However, it suffers from image quality 

degradation due to factors, such as haziness of water, marine litter, the stableness of the equipment during 

the image time to prevent blurriness, to name a few. Underwater and Aerial imagery are cost-effective 

measures for underwater objects monitoring their health, type, abundance and distribution [1]. Due to their 

proximity to the target throughout the image capture process, they achieve a higher spatial resolution than 

other technologies, such as airborne and boat-based sensors. The indicator of species diversity is computed 

using underwater images [3]. Coral colony growth and destruction caused by bleaching or illness can be 

tracked over time. 

 

Humankind is constantly changing the earth’s surface and ecosystems. This process is not new - it has been 

happening for a long – however, it has drastically reached a dangerous level recently. Consistent destruction 

of the planet, ecosystems, and environment are at the top of all the things being the victim of humankind. 

Marine habitats are still at risk on a local scale. Overfishing, marine garbage, anchoring, and divers are only 

a few concerns. In addition, global concerns are causing havoc on these delicate ecosystems. These risks 

include ocean acidity, climate change, etc. All these threats and consistent activities from humankind result 

in the demolishment of ecosystems.  

 

The proposed research work focuses on coral reefs marine habitat ecosystem. Coral reefs, primarily found 

in clean and shallow water, are the essential ecosystems for marine life and human beings. A recent survey 

showed that 40% of coral reefs are being threatened. Thus a direct result of climate change, air and water 

pollution and change in oceans' temperatures [4]. Coral reefs have an extensive taxonomy and are regularly 

updated as more information is obtained. The European Nature Information System (EUNIS) is a standard 

where the taxonomy of habitats is mapped and assigned to species. In addition, the site data is maintained 

to support management decisions such as protected area design under the Natura 2000 programme of the 

European Commission. Coral reefs provide beauty to the ocean. They minimize the effects of hurricanes 

on shorelines and provide tourism opportunities to approximately 500M people. Coral reefs are also used 

in the treatment of cancer and other diseases. The coral reef covers just 2% of the seabed and provides 

shelter to about 30% of marine organisms. These organisms live and die by the coral reef, and their relations 

are inseparable [5]. Coral reefs provide wide biological diversity and are also referred to as rainforests of 

the sea [6]. 

 

Due to the vast hierarchical taxonomy of habitats, the classification of coral reefs is a tiresome task. In 

addition, the same external similarities of coral reefs and different internal characteristics make the 

classification task even harder for marine biologists. Automation of this process would require little effort 

from marine biologists, and they can keep their focus on the main problem. The literature work on coral 

reef classification focuses on automating the task. However, no single approach exists among researchers 

who concentrate on image quality loss due to the marine environment and using state-of-the-art deep neural 

network features. Deep learning has recently taken over the attention of researchers due to big surges in the 

automation process, such as visual recognition and detection. Deep learning applications are critical in 

modern life. Ecosystems are not immune to this wave of deep learning across all domains. Global concerns 

such as environmental degradation, climate change, and growing demand for ecosystem services necessitate 

improved ecological forecasting. Recent advances in data availability, process comprehension, and 

computer capacity have increased the focus on ecosystems in deep learning [1,5,6]. 

 

The purpose of this manuscript is to focus on coral reef classification adhering to the EBM context. 

Underwater imagery suffers quality loss and obfuscation by marine species and litter. The objectives of this 

research work are as follows: 

 

• Image enhancement and restoration techniques play an essential role in classifying marine things. 

Coral reefs are no exception; the coral reefs' environment may contain other species and litter 

during capture. Therefore, the proposed research work targets four publicly available datasets and 

test various underwater algorithms to test the performance of the approach. 

• After conducting the literature (See Section 2), it can be observed that various approaches have not 

exceeded 90% on large datasets of coral reefs [7,8]. Therefore, the proposed research work also 

focuses on improving performances by training state-of-the-art deep neural networks from scratch. 
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This article is organized as follows. In Section 2, we discuss the background study in this field. In Section 

3, a description of the proposed methodology is provided. The experimental setup and the results with 

analysis are described in Section 4. Finally, the discussion and conclusions are placed in Section 5. 

 

2. LITERATURE REVIEW 
 

A marine ecosystem has many zones. Coral reefs, lagoons, and other marine life can be found along the 

beach. The littoral zone is defined as the area between high and low tides. Invertebrates live in the benthic 

zone. Fish and other species live in the ocean zone [2]. Habitat mapping is mainly done to assess the health 

of delicate marine ecosystems. This task is difficult since the images are taken underwater and are prone to 

image quality loss due to various marine environment factors. Sonar imagery and Camera imagery are used 

in marine environments, but sonar imagery is costly; hence, camera imagery is used chiefly [9].  

 

Autonomous Underwater Vehicles (AUVs) is mainly used to monitor the marine environment, studying 

the different parameters (both physical and chemical) to assess the health of endangered ecosystems and 

species [10]. AUVs perform this task automatically as they have a power source and an intelligent control 

system. The navigation system of AUVs is more robust in the marine environment than inland environments 

due to the lack of connected networks. AUVs Imagery is an alternative to towed cameras, trawl nets, and 

grabs for assessing the marine environment. A workflow towards endurable and renewable marine image 

analysis using a multi-terabyte deep-sea data set acquired by autonomous underwater vehicles (AUVs) is 

presented. The proposed data acquisition, curation and management workflow [10]. 

 

On the other hand, due to the recent development surges in neural networks, especially Deep Learning 

(DL), the visual recognition systems achieve excellent performances. Computer vision (CV) has 

significantly improved the field of object localization and detection [11,12]. Deep learning popularity is 

attributed to its high-speed parallel computing using graphics processing units (GPUs) that can handle 

massive volumes of data reliably and build various machine learning algorithms that result in ideal 

solutions. The applications are widespread, including financial (e.g., revenue forecasting, OCR) [13], 

business (e.g., discovering insights and trends)[14], medicine (e.g., tumor diagnosis and segmentation, 

virtual nursing)[15], automation (e.g., robotic A.I., robotic vision)[16], military applications (e.g., 

estimating missiles trajectory)[17], communications (speech recognition, data encryption and 

compression)[18] and numerous others [19,20].  

 

Coral reefs classification poses an issue for converging machine learning models [6]. The following cases 

discuss the nature of marine data: 1) The global habitat structure is not included; 2) There is a high degree 

of inter-class similarity. 3) The spatial borders are hard to identify between different classes. Most of the 

literature on coral reef classification employs hand-engineered feature extraction techniques [9-14]. These 

research works include Scale Invariant Feature Transform (SIFT), Local Binary Pattern (ILDP), Maximum 

Response (MR) filter bank, RGB histograms, Discrete Wavelet Transforms (DWTs), Octa-angled Pattern 

for Triangular subregion (OPT) and Color Median Robust Extended Local Binary Pattern (CMRELBP), 

Co-occurrence CMRELBP (CCMRELBP) and Local Distribution Transform (LDT). In addition, the 

authors proposed an enhancement technique called Color Channel Stretching (CCS) using LAB color space 

for enhancement [21–26]. 

 

Moreover, the manual feature extraction technique Maximum Response (MR) filter bank and Support 

Vector Machines (SVM) have obtained an overall accuracy of 74 % on the Moorea Labeled Coral (MLC) 

dataset [21]. A novel feature extraction technique OPT and a novel classifier named Pulse Coupled 

Convolutional Neural Network (PCCNN) is proposed in research work. It is faster on coral datasets than 

CNNs, SVMs and KNNs [24]. Another research suggested CMRELBP and CCMRELBP, two novel feature 

descriptors, combined with LBP classifier to achieve higher classification rates [25]. A fusion of LDT 

feature descriptor with rotation invariant LBP and local variance (VAR) features obtained a set of robust-

to-noise features. These features can detect uniform and non-uniform patterns. The authors claimed to have 

outperformed many feature descriptors by achieving higher classification rates [26]. Another fusion method 

consisting of color histograms, SIFT feature descriptor and Gabor filter response combined with a voting-

based classifier for corals and macroalgae achieved satisfactory results [22]. The authors used discrete 
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wavelet transform combined with KNNs to classify benthic substrates using patches in another effort. The 

results are promising, but their dataset is too small (16 images) for scalability. 

 

Transfer learning has been employed in [11] to extract features from deep residual neural networks [27] 

pre-trained on the ImageNet database [28]. The authors extracted features from different layers and 

combined them to form a feature vector to classify coral reefs. In other efforts [19,29], the authors used the 

Local-SPP approach for feature extraction using deep neural networks. Local-SPP generates scale-invariant 

features to represent efficient representation of neighborhood data points. These works targeted the MLC 

dataset [21] and achieved higher classification rates. VGG [30] have also been used as a feature extractor 

for the binary classification of coral reefs [31]. In another work from the same authors, sub-categories of 

coral reefs are classified using combined hand-crafted features and CNN based features. The authors have 

used the Maximum Response filter bank [21] and SVM to classify coral reefs with excellent accuracy [31]. 

 

Necessary adjustments made in an image for better quality, restoration, and analysis are called image 

enhancement. For instance, an image contrast sharpness is adjusted to make its features enhanced and 

visible. It is the most common preprocessing step in computer vision applications. Image enhancement 

needs to be done not to lose critical information in the image. For instance, in medical imagery, contrast is 

used to increase the quality of an image. Depending on the type of image, color or grayscale, a specific 

enhancement technique is used. Machine learning and computer vision require high-quality input images 

to generate meaningful output. However, images are often taken in specific conditions, like images taken 

in the underwater environment. Therefore, the images need to be preprocessed in machine learning and 

computer vision algorithms. In general, the image enhancement technique “corrects” an idea for a specific 

purpose to make it suitable for machine learning and computer vision algorithms [32].  

 

Ocean floor surveys are often conducted using Autonomous Underwater Vehicles (AUVs) equipped with 

acoustic sensors for enhancing remote sensing. This combination is often used for image and video analysis 

for short-range operations. However, image and video quality suffer from floating particles in the ocean, 

causing blur and haze in the captured image [33]. When such quality images and videos are used to train a 

neural network or machine learning model, this results in lower performances of such models. Thereby, 

underwater image enhancement is an essential preprocessing step for analysis.  

 

Underwater images by nature have permeability, low contrast, blurry, low divergence and lessening hues 

[34]. Also, unsupervised digital image color equalization is used [35]. Histogram techniques are also used 

to increase the quality of an underwater image [36–38]. However, histogram techniques are limited because 

they over-enhance and under-enhance the input image based on gray levels. Some algorithms also decrease 

underwater perturbations and increase image quality [39–41]. 

 

Adaptive Histogram Equalization (AHE) is a popular technique that focuses on enhancing local information 

by convolving a kernel sequentially over the image and improving the pixels falling under it. However, 

higher computation power is required, enhancing the noise locally due to the overlapping effect of kernel 

convolving [42]. Contrast Limited Adaptive Histogram Equalization (CLAHE) [43] removes the impact of 

AHE by splitting the image into non-overlapping sections and computing histograms over them. A clip 

limit is also specified for desired contrast expansion, and a transforming function is used to perform the 

grayscale mapping. For edge smoothing, bi-linear interpolation is done at the end. However, small ring 

blobs have emerged at the edges, and over-enhancement at flat regions are expected.  

 

A preprocessing filter is proposed to minimize underwater disturbance and improve image quality. This 

technique consists of several preprocessing steps containing various filters. However, the contribution of 

filters is not defined [39]. A fusion technique is proposed to overcome this issue. A weight measure is used 

for each filter, which considers degraded versions of the image [44].  

 

In an underwater environment, quality is affected by light scattering and absorption, resulting in one color 

domination in the image. A slide stretching approach [36] begins with contrast stretching to balance the 

contrast, followed by saturation and intensity pulling of the HSI to disclose the proper color and eliminate 
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lighting issues. A novel gamma correction is proposed in [45], which increases the overall contrast by 

decreasing the pixel values at low grayscale, increasing at high and maintaining at middle grayscale. 

 

3. PROPOSED METHODOLOGY 

 

Figure 1 illustrates the proposed strategy. The authors mapped MLC, EILAT, EILAT2, and RSMAS four 

publicly-accessible habitat datasets. MLC dataset has three variants corresponding to three years in which 

images are captured in a marine environment. 

 

 

Figure 1. The Proposed Approach 

 

The patches are extracted from these datasets based on the ground truth pixel location and its respective 

label. These patches are extracted from four datasets, resulting in four distinct patches for each dataset. The 

patches have variant sizes for each dataset, as mentioned in Table 1. The patch-size difference among 

datasets is due to the nature of coral reefs classes that they represent. Some classes can be easily 

distinguished, and some classes need more information to be classified. The MLC dataset has the highest 

image resolution compared to other datasets, as it is the dataset with lower accuracies in the literature 

[3,11,23]. However, the datasets are different in capturing the environment and the coral reef class they 

represent. EILAT and EILAT2 are relatively easy for the model to learn compared to the other two datasets, 

namely, RSMAS and MLC. Image enhancement techniques are applied to all the datasets, resulting in four 

datasets per single image enhancement algorithm. The proposed approach tackles the habitat mapping issue 

through pre-trained deep neural networks and training from scratch on Densenet-169 [46]. The output layer 

neurons are changed according to the number of classes in the dataset.  

 

3.1. Datasets 

 

The relative performance of image-enhancing methods has not been evaluated to the best of the author's 

knowledge on standard datasets. Therefore, we propose evaluating four datasets (MLC, EILAT, EILAT2, 

and RSMAS) that depict various demanding scenarios to address this issue. Table 1 summarizes the image 

datasets used in this study. 
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Table 1. Datasets Information 

Datasets Number of Classes Number of Images Image Resolutions RGB? 

MLC 9 18, 872 312 x 312 Yes 

EILAT 8 1,123 64 x 64  Yes 

EILAT2 5 303 128 x 128 Yes 

RSMAS 14 766 256 x 256 Yes 

 

3.2. Image Enhancement 

 

After carefully conducting the literature review for underwater image enhancement, the authors have used 

four image enhancement techniques. These techniques include Histogram Equalization (HE), Contrast 

Limited Adaptive Histogram Equalization (CLAHE), Gamma Correction (GC) and Integrated Color Model 

(ICM).  

 

- Histogram Equalization (HE) 

 

Histogram brings the distribution of discrete intensity levels of an image within the range [0, L-1]. The 

distribution is a discrete function h associated with each intensity level: rk the pixel number with this 

intensity: nk. Histogram Equalization adjusts the contrast of an image by changing its intensity distribution. 

Essentially provides a linear trend to the cumulative distribution function (cdf) associated with the input 

image. The cdf is a cumulative sum of all the probabilities lying in its domain and defined by: 

 

𝑐𝑑𝑓(𝑥) =  ∑ 𝑃(𝑥)

𝑥

𝑘=−∞

. (1) 

 

The new image is obtained using the following equations: 

 

𝑆𝑘 = (𝐿 − 1)𝑐𝑑𝑓(𝑥). (2) 

 

- Contrast Limited Adaptive Histogram Equalization (CLAHE) 

 

Adaptive histogram equalization (AHE) differs from ordinary HE in that the adaptive method computes 

several histograms, each belonging to a different section of the image. It uses them to redistribute the 

lightness values of the image. It is therefore used local contrast enhancement and edges sharpness. 

However, it tends to over-enhance the noise in homogenous regions of an image. CLAHE is a subclass of 

adaptive histogram equalization that circumvents this by reducing the amplification. The gradient of the 

transformation function determines the contrast enhancement in the neighborhood of a pixel value in 

CLAHE. CLAHE avoids excessive amplification by clipping the histogram at a specified value before 

computing the CDF. The value, referred to as the clip limit, is based on the histogram's normalization and, 

thus, the neighborhood region's size. Common values limit the resulting amplification to between 3 and 4. 

 

- Gamma Correction (GC) 

 

Gamma Correction (GC) control the overall brightness of the image. The image that is too dark or bleached 

out can be changed by varying the amount of gamma parameter. It does not only correct brightness changes 

but also the ratios of red to green to blue. 
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- Integrated Color Model (ICM) 

 

Contrast stretching is used to equalize the contrast, followed by saturation and intensity pulling of the HSI 

to expose the proper color and resolve lighting problems. The contrast stretching algorithm scales the pixel 

values linearly. Each pixel is scaled as follows: 

 

𝑃0 = (𝑃𝑖 − 𝑐) ∗
(𝑏 − 𝑐)

(𝑑 − 𝑐)
+ 𝑎 (3) 

 

where Po denotes the normalized pixel value, Pi the considered pixel value, a minimum value of the desired 

range, b the maximum value of the chosen range, c the lowest pixel value currently present in the image, 

and d the highest pixel value now current in the image. 

 

After contrast stretching, each channel is extended using the same scaling to maintain the correct color 

ratio. Next, RGB is transformed into HIS in the second step to increase brightness and accurate colors. To 

achieve this, stretching saturation and intensity values using the transform function is done. Finally, the 

saturation parameters are used to obtain the correct color for the underwater image. Figure 2 illustrates a 

selection of images from each dataset and four resultant images from image enhancement algorithms for 

each dataset. 

 

 

Figure 2. Samples of EILAT, EILAT2, RSMAS and MLC datasets with image enhancement applied 
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3.3. Transfer Learning in CNNs 

 

Transfer learning refers to the fact that knowledge learned in one setting is transferred to another setting 

for error reduction in the new setting. Figure 3 shows where knowledge learned on a model trained on 

ImageNet [28] dataset is transferred to another model with a small but similar dataset. Knowledge transfer 

means transferring values of parameters that a network learns, i.e., weights(w) and bias(b). In most cases, 

it is undesirable to train a Convolutional Neural Network (CNN) model from scratch. It requires vast 

amounts of data, and data may not be enough to train a CNN model, or if the data is available, it may be 

imbalanced. Transfer learning is done in supervised learning, where inputs are related and labels are 

different. For instance, we may have learnt visual representations, such as cats and dogs in one setting, and 

then learn different visual representations, such as tiger and wolf, in another setting. Transfer learning helps 

reduce time and resources as training a CNN model requires high processing power and time [19]. 

 

 

Figure 3. Transfer Learning Idea 

 

There are three transfer learning approaches: Full Train, Fine Tuning, and Feature Extraction. 

 
- Full Train 

 

In this approach, a pre-trained CNN model architecture is adapted. It has achieved adequate results in 

performing tasks similar to the one at hand and training it from scratch by randomly initializing all weights. 

We capitalize on this approach when there is a large amount of data available, different from the data on 

which the pre-trained CNN model was trained [11,19]. 

 

- Fine Tuning 

 

In this approach, a pre-trained CNN model is adapted on a new dataset by continuing backpropagation on 

the last few layers of the network. Since initial layers of the network learn low-level features, such as lines 

and curves, which are the same in almost every dataset, they are kept as they are. Therefore, it is common 

to start with a lower learning rate value. We capitalize on this approach when there is a small amount of 

data available and low similarity to the source data. Another common scenario is when data is large and 

have high similarity. In this case, the model is retrained on original architecture along with its weights to 

suit the task better [11,19].  

 

- Feature Extraction 
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In this approach, classification layers are removed from a pre-trained CNN model and used as a feature 

extractor for our task. After this, a different classifier is trained on extracted features to classify them into 

different classes relating to the task at hand [11,19]. 

 

3.4. Marine Habitat Classification Using Transfer Learning 

 

The authors have used transfer learning for marine habitat classification by employing DAG-Net (cyclic) 

model. DenseNets [46] introduced the idea of feature reuse. They do not sum the output feature maps, as 

in ResNets; instead, they concatenate them. The idea behind DenseNets is that it may be useful to reference 

features from earlier layers, allowing the network to leverage features from earlier layers (See Figure 4a). 

There are three sub-versions, namely DenseNet121, DenseNet169, and DenseNet201. Since each layer has 

direct access to the original input signal and gradients of the loss function, this helps train deep neural 

networks easily. The authors of the DenseNets refers to the number of filters in every convolutional layer 

as growth rate, k, since each layer will have k more feature maps than the previous one. DenseNets uses a 

transition layer that contains 1x1 convolution followed by 2x2 average pooling for size reduction. Figure 

4a is shown a 5-layer Dense block with k = 4. A minimal, faster and efficient neural network architecture 

is proposed in [47].  

 

 

Figure 4a. A 5-layer Dense block with k = 4 [46] 

 

The architecture is named MobileNet because of its faster inference time and usage in mobile and embedded 

vision applications. The main idea behind MobileNet is using depth-wise separable convolutions (See 

Figure 4b) and two hyper-parameters (width and resolution multiplier). Depth-wise separable convolutions 

focus on feature maps resulting from each kernel channel instead of all kernel channels, leading to fewer 

computations. Hyper-parameters allow for faster, smaller and faster MobileNets at the expense of lower 

accuracy. The authors have used it to demonstrate the power of deep neural networks and compensate for 

lower computation resources availability. 
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Figure 4b. Depth-Wise Separable Convolutions [47] 

 

4. EXPERIMENTAL RESULTS 

 

80% of images are used for training throughout all experiments, and 20% are used for testing in all trials. 

The results are presented using k-fold cross-validation, with k =10. We have used accuracy as a 

performance metric. 

 

The authors have used four coral reefs datasets, namely EILAT, EILAT2, RSMAS and MLC2008. We have 

adopted the architecture of DenseNet-169 [46] by getting inspiration from [19]. We have also used 

MobileNets [47] to demonstrate the power of transfer learning on deep neural networks. We have first 

applied four image enhancement techniques on each of these datasets, resulting in four new datasets for 

each dataset. We then resized the images to 224 x 224 x 3 to match the input size requirement of both neural 

network architectures. Finally, the model is trained using a fine-tuning technique with DenseNet-169 and 

MobileNet using hyper-parameters from Table 2. Epochs in Table 2 are different for MLC as it is the most 

challenging dataset to learn for the model. The reason is the nature of the classes that it represents. Also, 

the batch size is smaller for MLC than other datasets. The default MLP classifier is used for classification 

by changing output neurons in the last layer. 

 

Table 2. Hyperparameters for DenseNet169 and MobileNet 

Hyperparameter Value 

Optimizer Adam 

Loss Categorical Cross Entropy 

Epochs 50 for EILAT, EILAT2 and RSMAS. 150 for MLC2008 

Data Augmentation Yes 

Batch Size 16 for EILAT, EILAT2 and RSMAS. 8 for MLC2008 

Input Size 224 x 224 x 3 

 

The overall results are presented in Table 3. The authors have conducted sixteen experiments using four 

image enhancement algorithms. As shown in Table 3, Histogram techniques have better performance than 

all others. Contrast Limited Adaptive Histogram Equalization (CLAHE) has outperformed all other 

techniques regarding the model's accuracy because it works locally and enhances the image using multiple 

histograms. Since the underwater images have low contrast and brightness, CLAHE fixes these locally by 

specifying a kernel size and clip limit for the histogram. In the RSMAS dataset, Histogram Equalization 

(HE) outperformed CLAHE in terms of accuracy because to the fact that RSMAS images are quite clear 
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already in terms of image quality. As a result, CLAHE over-enhances a portion of the image. It is not the 

case with HE, which performs global image improvement. We have used two deep neural networks for the 

experiments, namely, DenseNet and MobileNet. We have inspired DenseNet in the literature section and 

used MobileNet to show that even faster models work efficiently for marine habitat mapping. Among the 

two, DenseNet performed better when paired with CLAHE as an image enhancement technique. The 

number of parameters and slow training time for DenseNet allowed it to learn better on the dataset. 

However, MobileNet did not perform too worse for its size and number of parameters. We can increase the 

performance of MobileNet further by tuning its two hyper-parameters (width and resolution multiplier). 

However, we did not fine-tune due to limited resources and high training time. 

 

Table 3. Results of overall experiments conducted. Computer Vision Algorithm column with “-” represents 

no preprocessing involved. The white rows represent the maximum accuracy achieved for a specific dataset 

Dataset 

Neural 

Network 

Model 

Accuracy – Fine Tuning for Computer Vision Algorithms 

Gamma 

Correction 

Histogram 

Equalization 
CLAHE ICM - 

EILAT 

DenseNet-169 

96.103% 95.370%2 99.074% 96.296% 92.593% 

EILAT2 80.111% 89.286% 96.429% 78.571% 81.351% 

RSMAS 70.003% 92.647% 91.176% 73.529% 72.059% 

MLC2008 78.040% 75.870% 82.143% 70.340% 71.660% 

EILAT 

MobileNet 

91.334% 91.647% 93.008% 89.908% 87.121% 

EILAT2 78.677% 86.000% 91.344% 84.988% 74.566% 

RSMAS 81.980% 87.607% 90.001% 79.111% 78.648% 

MLC2008 68.666% 73.988% 76.475% 69.890% 66.440% 

 

After analyzing the results, the authors conclude that histograms are better suited to underwater image 

enhancement. Many histogram enhancement techniques exist, but CLAHE and HE stand out for underwater 

images. 
 
6. CONCLUSION AND FUTURE WORKS 

 

After conducting an extensive literature review, the authors have tested four image enhancement 

techniques. The results of the experiments outperformed the accuracies of existing systems. With DenseNet, 

we achieved an accuracy of up to 99 % on EILAT. DenseNet accuracy of 96 % was achieved using EILAT2 

and RSMAS. With DenseNet, MLC achieved an accuracy of 82 %, the lowest of the four datasets. The 

reason is that the dataset's nature is highly imbalanced and has higher inter-class similarities among classes.  

 

Among the four enhancement techniques, CLAHE outperformed on all four datasets. Using these 

techniques, we generated preprocessed datasets and used MLP for the classification. We can use the 

attention model with DenseNet and MobileNet for more accurate results for future work. DesneNet 

outperformed MobileNet. The reason is a tradeoff between faster training time and lower accuracy. In the 

end, the combo of a CLAHE technique with a deep neural network yields maximum performance. Thus it 

proves the hypotheses correct in terms of the impact of both (image enhancement technique and DCNN). 

Also, fine-tuning transfer learning techniques can check the resulting accuracy. Image enhancement plays 

a vital role in the classification of marine habitats; therefore, we can also check specific Neural Network-

based image enhancement techniques to check the performance of these systems. 
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