## PAPER DETAILS

TITLE: On the Topological Centers of Banach Algebras

AUTHORS: Hayri AKAY, Danyal SOYBAS

PAGES: 15-19

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/83010



# **On the Topological Centers of Banach Algebras**

Hayri AKAY\*, Danyal SOYBAŞ

Gazi University, Faculty of Education, Department of Mathematics, 06500, Ankara, TURKEY Received:05.04.2005 Accepted:21.10.2005

#### ABSTRACT

Let A be a Banach algebra with a bounded approximate identity. Let  $Z_2$  and  $\widetilde{Z}_2$  be respectively, the topological centers of the algebras A\*\* and (AA\*)\* with respect to the second Arens multiplication. In this paper, we show that  $\widetilde{M}_2$  is isometrically isomorphic to LM(A), where  $\widetilde{M}_2$  is a closed subalgebra of  $\widetilde{Z}_2$  and LM(A) is the set of left multipliers operators of the Banach algebra A.

Key words: Topological center, Arens multiplication, Banach algebra, Left multiplier operator

#### 1. INTRODUCTION, NOTATIONS AND PRELIMINARIES

Let A be a Banach algebra with a bounded approximate identity. By  $A^*$  we denote its normed dual. We always regard A as naturally embedded into its second dual  $A^{**}$ . For a in A and f in  $A^*$ , by  $\langle f, a \rangle$  or  $\langle a, f \rangle$  we denote the natural duality between A and  $A^*$ . The first Arens multiplication is defined in three steps as follows. For  $a, b \in A$ ,  $f \in A^*$  and  $m, n \in A^{**}$ , the elements  $f \cdot a, m \cdot f$  of  $A^*$  and  $m \cdot n$  of  $A^{**}$  are defined as follows:

The second Arens multiplication is defined as follows. For  $a,b \in A$ ,  $f \in A^*$  and  $m, n \in A^{**}$ , the element  $a\Delta f$ ,  $f\Delta m$  of  $A^*$  and  $m\Delta n$  of  $A^{**}$  are defined by the equalities

 We define the subspaces A \* A and AA \* of A \* as  $A * A = \{f \cdot a : f \in A^*, a \in A\},$  $AA^* = \{a\Delta f : a \in A, f \in A^*\}.$ 

It is well-known that these subspaces are norm-closed linear subspaces of  $A^*$  Hewitt &Ross (2). On the other hand, the second dual  $A^{**}$  of A is a Banach algebra with respect to both the first and the second Arens multiplication (1). In the case where  $A = L^1(G)$  and G is a locally compact Abelian group, we denote the spaces  $A^*A$  and  $AA^*$ , respectively, by LUC(G) and RUC(G) as in (3). In the case where A = A(G), the space  $A^*A$ , which is the same as  $AA^*$ , is denoted by  $UCB(\hat{G})$  as in (4). In (5), Lau and Ülger showed that  $\widetilde{Z}_1 \cong RM(A)$ . Terminologies and notations not explained in this section will be explained or referenced in the next section.

#### 2. ARENS MULTIPLICATIONS AND TOPOLOGICAL CENTERS

**Definition 2.1.** Let A be a Banach algebra. A left [right] approximate identity for A is a net  $\{e_{\alpha} : \alpha \in \Lambda\}$ , where  $\Lambda$  is some directed system, such that for all  $a \in A$ ,

<sup>\*</sup> Corresponding authour, e-mail: danyal@gazi.edu.tr

 $\lim_{\alpha} (e_{\alpha} a) = a \quad [\lim_{\alpha} (ae_{\alpha}) = a] \text{ in the norm topology.}$ The approximate identity is said to be *bounded* if  $||e_{\alpha}|| \leq 1$  for all. An approximate identity is said to be two-sided if it is both a right and a left one. An algebra A with a bounded two-sided approximate identity is called 'with a bounded approximate identity'. Every unital Banach algebra has an approximate identity. However, the converse is not true in general.

**Definition 2.2.** Let A be a Banach algebra and consider the natural duality between A and  $A^*$ . We denote the weak topology on A by  $\sigma(A,A^*)$  and the weak\* topology on  $A^*$  by  $\sigma(A^*, A)$ .

As is mentioned in the previous section, we will explain the basic properties of " $\cdot$ " and " $\Delta$ " Arens multiplications:

For an element *n* fixed in  $A^{**}$ , the mapping  $m \to m \cdot n$  is weak\*-weak\* continuous with respect to the topology  $\sigma(A^{**}, A^*)$  on  $A^{**}$ . However, for an element *m* fixed in  $A^{**}$ , the mapping  $n \to m.n$  is in general not weak\*-weak\* continuous unless *m* is in *A*. Hence ,by making use of these explanations, the topological center of  $A^{**}$  with respect to the first Arens multiplication is defined as follows:

 $Z_1 = \{ m \in A^{**}: \text{ The mapping } n \longrightarrow m.n \text{ is weak*-weak* continuous on } A^{**} \}$ 

$$= \{ m \in A^{**} : m \cdot n = m \Delta n, \text{ for all } n \in A^{**} \}$$

For m fixed in  $A^{**}$ , the mapping  $n \to m\Delta n$  is weak\*-weak\* continuous on  $A^{**}$ . But, for *n* fixed in  $A^{**}$ , the mapping  $m \to m\Delta n$  is in general not weak\*-weak\* continuous unless *n* is in *A*. Whence the topological center of  $A^{**}$  with respect to the second Arens multiplication is defined as follows:

 $Z_2 = \{ n \in A^{**}: \text{ The mapping } m \to m\Delta n \text{ is } \\ \text{weak*-weak* continuous on } A^{**} \}$ 

Recall that the equalities  $\hat{a}.m = \hat{a}\Delta m$  and  $m.\hat{a} = m\Delta\hat{a}$  hold for a in A and m in  $A^{**}$ . Since the mapping  $a \rightarrow \hat{a}$   $(A \rightarrow \hat{A} \subseteq A^{**})$  is an algebraic isometrical isomorphism we can write  $\hat{A}$  instead of A if necessary. It is clear that  $A \subseteq Z_1 \cap Z_2$  and that  $Z_i$ 

(i=1,2) is a closed subalgebra of  $A^{**}$ . For detailed information see (5).

Let  $M_1$  and  $M_2$  be two subspaces of  $A^{**}$  such that

$$M_1 = \left\{ m \in A^{**}: A.m \subseteq A \right\},$$
$$M_2 = \left\{ m \in A^{**}: m.A \subseteq A \right\}.$$

Like preceding subspaces, We define the following sets:

$$\tilde{M}_1 = \left\{ \begin{array}{l} \mu \in (A^*A)^* \colon A.\mu \subseteq A \end{array} \right\}$$
$$\tilde{M}_2 = \left\{ \begin{array}{l} \mu \in (AA^*)^* \colon \mu.A \subseteq A \end{array} \right\}$$

Let A be a Banach algebra with a bounded appoximate identity then  $\widetilde{M}_1$  is a closed subalgebra of  $(A^*A)^*$  and  $\widetilde{M}_1 \subseteq \widetilde{Z}_1$  (5, Proposition 4.1). An algebra A is a subalgebra of all  $A^{**}$ ,  $(A^*A)^*$  and  $(AA^*)^*$  algebras. Note that for  $a \in A$  and  $\mu \in (AA^*)^*$ , the multiplication element  $\mu.a$  is an element of  $(AA^*)^*$ . Morever, if  $\widetilde{\mu}$  is any Hahn-Banach extension of  $\mu$  to  $A^*$  then for  $f \in A^*$ ,  $a \in A$ ,  $\mu \in (AA^*)^*$  and  $\widetilde{\mu} \in A^{**}$  the equalities

$$\langle \tilde{\mu}.a, f \rangle = \langle \hat{a}, f\Delta\hat{\mu} \rangle = \langle f\Delta\hat{\mu}, a \rangle$$

$$= \langle \hat{\mu}, a\Delta f \rangle = \langle \mu, a\Delta f \rangle$$

$$= \langle f\Delta\mu, a \rangle = \langle \hat{a}, f\Delta\mu \rangle$$

$$= \langle \mu\Delta\hat{a}, f \rangle = \langle \mu\Delta a, f \rangle$$

$$= \langle \mu.a, f \rangle$$

hold and hence we have the equalities  $\mu.a = \tilde{\mu}.a$  and  $\mu\Delta a = \tilde{\mu}\Delta a$ . Whence we can consider  $\mu.a$  as an element of  $A^{**}$ .

Let the mapping  $\widehat{f.m}: A^{**} \to C$  be defined by  $< \widehat{f.m}, n >=< f, n \Delta m > .$  The functional  $\widehat{f.m}$  belongs to  $A^{***} = A^* \oplus A^{\perp}$  but it does not have to be an element of  $A^*$ . Similarly, let the mapping  $(\mu.f): (AA^*)^* \to C$  be defined by  $< (\mu.f), \lambda >=< f, \lambda \Delta \mu > .$  Although the functional  $(\mu.f)$  belongs to  $(AA^*)^{**}$  it may not be an element of  $A^*$ , see (5) for detail. Now, the following lemma which plays an important role in our study will be given.

**Lemma 2.3:** Let A be a Banach algebra with a bounded appoximate identity. Let m be an element in  $A^{**}$  and  $\mu$  be an element in  $(AA^*)^*$ . Then the following assertions hold:

a) 
$$m$$
 is in  $Z_2$  if and only if, for each  $f$  in  $A^*$ 

the functional  $f \cdot m$  is in  $A^*$ . If this happens,

f.m = m.f and m.f is in  $AA^*$ . b)  $\mu$  is in  $\widetilde{Z}_2$  if and only if, for each g in  $AA^*$ , the functional  $(\mu.g)$  is in  $AA^*$ .

c)  $\mu$  is in  $\widetilde{Z}_2$  if and only if, for each a in A,  $\mu.a$  is in  $Z_2$ .

**Proof:** a) Assume m is in  $Z_2$ , and let f be an element of  $A^*$ . Then, for all n in  $A^{**}$ ,

$$< f.m,n >=< f,n\Delta m >$$
  
=< f,n.m >  
=< m.f,n >

so that  $\hat{f.m} = m.f$ , and  $\hat{f.m}$  is in  $A^*$  since m.f is in  $A^*$ .

Conversely, assume that, for each f in  $A^*$ , the functional  $\hat{f.m}$  is in  $A^*$  and let  $\{n_{\alpha}\}_{\alpha \in \Lambda}$  be a convergent net in  $A^{**}$  that converges to some n in the  $\sigma(A^{**}, A^*)$  topology. Then

$$< f, n_{\alpha} \Delta m > = <$$
  
 $\hat{f.m}, n_{\alpha} > \rightarrow < \hat{f.m}, n > = < f, n \Delta m >$ 

so that m is in  $Z_2$  since, for  $n \in A^{**}$ , the mapping  $n \to n\Delta m$  is  $\sigma(A^{**}, A^*)$ -continuous on  $A^{**}$ .

Now suppose m is in  $Z_2$  and f is in  $A^*$ . Let  $\{a_{\alpha}\}_{\alpha \in \Lambda}$  be a convergent net in A that converges to some m in the  $\sigma(A^{**}, A^*)$  topology. Then, since  $f \cdot m$  is in  $A^*$  and for each n in  $A^{**}$ ,

$$\langle a_{\alpha} \Delta f, n \rangle = \langle f, n.m \rangle = \langle f, n\Delta m \rangle = \langle f.m, n \rangle$$

we see that the net  $\{a_{\alpha}\Delta f\}_{\alpha\in\Lambda}$  converges weakly to the element  $\hat{f.m}$  in  $A^*$ . Since  $AA^*$  is a closed subspace of  $A^*$ , we conclude that  $\hat{f.m}$  is in  $AA^*$ .

b) Suppose that  $\mu$  is in  $\widetilde{Z}_2$ , and let g be in  $AA^*$ . Let  $\{\lambda_{\alpha}\}_{\alpha\in\Lambda}$  be a net in  $(AA^*)^*$  that converges to some  $\lambda$  in  $(AA^*)^*$  in the  $\sigma((AA^*)^*, AA^*)$  topology. Then by the definition of  $\widetilde{Z}_2$ 

 $<(\mu,g), \lambda_{\alpha} >=< g, \lambda_{\alpha} \Delta \mu > \rightarrow < g, \lambda \Delta \mu >=<(\mu,g), \lambda >$ This shows that the functional  $(\mu,g)$  is weak\* continuous on  $(AA^*)^*$ . Since we have the duality  $((AA^*)^*, \sigma((AA^*)^*, AA^*))^* = AA^*, (\mu,g)$  is s in  $AA^*$ .

Conversely, assume that g and  $(\mu.g)$  are in  $AA^*$ and let  $\{\lambda_{\alpha}\}_{\alpha\in\Lambda}$  be a weak\* convergent net in  $(AA^*)^*$  converging to some  $\lambda$  in  $(AA^*)^*$ . Then,

 $\langle g, \lambda_{\alpha} \Delta \mu \rangle = \langle (\mu.g), \lambda_{\alpha} \rangle \rightarrow \langle (\mu.g), \lambda \rangle = \langle g, \lambda \Delta \mu \rangle$ holds which means  $\mu$  is in  $\widetilde{Z}_2$ .

c) Let  $\mu_{\sim}$  is in  $\widetilde{Z}_2$ . Then, for each  $g = a\Delta f$ 

in  $AA^*$ ,  $(\mu.g)$  belongs to  $AA^*$  from assertion b). Given an element *n* of  $A^{**}$ , let  $\tilde{n}$  be its restriction  $AA^*$ . Then the equality  $\tilde{n}\Delta\mu a = n\Delta\mu a$  holds and we have  $(\mu g) = f \cdot \mu a$  by the following equalities

$$<(\mu g \widetilde{)}, n > = <(\mu g \widetilde{)}, \widetilde{n} >$$
$$= < f, \widetilde{n} \Delta \mu a >$$
$$= < f . \mu a, n >.$$

Since  $f \cdot \mu a$  is in  $AA^*$ , we conclude, by assertion a), that  $\mu \cdot a$  is in  $Z_2$ . The converse implication also follows by the same operations. **Proposition 2.4:** Let A be a Banach algebra with a bounded appoximate identity. Then  $\widetilde{M}_2$  is a closed subalgebra of  $(AA^*)^*$  and  $\widetilde{M}_2 \subseteq \widetilde{Z}_2$ .

**Proof:** From the definition of  $\widetilde{M}_2$  we have the inclusion  $\widetilde{M}_2 \subseteq (AA^*)^*$ . Let  $(\mu_n)$  be a sequence in  $\widetilde{M}_2$ . Then for all *n* we have  $\mu_n \cdot A \subseteq A$ . Let  $\mu$  be an element in  $(AA^*)^*$  such that  $\lim_n ||\mu_n - \mu|| = 0$ . For an element *a* in *A*,  $(\mu_n \cdot a)$  is a sequence in *A*. Since *A* is closed and the multiplication is norm-continuous, we have  $||\mu_n \cdot a - \mu \cdot a|| \to 0$ , that is,  $\mu \cdot a$  is in *A*. Hence  $\widetilde{M}_2$  is a closed subalgebra of  $(AA^*)^*$ .

On the other hand, let  $\mu$  be an element in  $\widetilde{M}_2$ . Then, for an element *a* in *A*,  $\mu.a$  is in  $A \subset Z_2$ . By the assertion c) of Lemma 2.3,  $\mu$  is in  $\widetilde{Z}_2$  and hence  $\widetilde{M}_2 \subseteq \widetilde{Z}_2$ .

**Definition 2.5:** Let A be a Banach algebra with a bounded appoximate identity. A bounded linear operator  $T: A \rightarrow A$  is said to be a left multiplier if T(ab) = T(a)b holds for all a, b in A. The set of all left multiplier of A is denoted by LM(A).

**Theorem 2.6:** Let A be a Banach algebra with a bounded appoximate identity. Then the closed algebra  $\widetilde{M}_2$  is isometrically isomorphic to LM(A).

**Proof:** For each element  $\mu$  in  $\widetilde{M}_2$ , let  $T_{\mu} : A \to A$ be the linear operator defined by the rule  $T_{\mu}(a) = \mu a$ , for all a in A. As, for a,b in A,

$$T_{\mu}(ab) = \mu(ab) = (\mu a)b = T_{\mu}(a)b$$

 $T_{\mu}$  is a left multiplier on A. Since  $\|\mu \alpha\| \le \|\mu\| \|a\|$ , it is obvious that  $\|T_{\mu}\| \le \|\mu\|$ . Actually  $\|T_{\mu}\| = \|\mu\|$ . To show the inequality  $\|T_{\mu}\| \ge \|\mu\|$ , let  $(e_{\alpha})_{\alpha \in \Lambda}$  be a bounded appoximate identity. As we can suppose  $\|e_{\alpha}\| \le 1$  for all  $\alpha$  in  $\Lambda$ ,

$$\|T_{\mu}\| \ge \sup_{\alpha} \|T_{\mu}(e_{\alpha})\| = \sup_{\alpha} \|\mu.e_{\alpha}\| = \sup_{\alpha} \sup_{\|a\Delta f\| \le 1} \|\mu.e_{\alpha}(a\Delta f)\|$$
  
Since, for f in  $A^*$  a in A and

 $\begin{aligned} \|a\Delta f.e_{\alpha} - a\Delta f\| &= \|a\Delta(f.e_{\alpha} - f)\| \le \|a\| \|f.e_{\alpha} - f\| \to 0, \\ \sup_{\alpha} |\mu e_{\alpha} (a\Delta f)| \ge \lim_{\alpha} |\mu (e_{\alpha} . (a\Delta f))| = |\mu . (a\Delta f)| \\ \text{Hence} \sup_{\alpha} \sup_{\|a\Delta f\| \le 1} \|\mu . e_{\alpha} (a\Delta f)\| \ge \sup_{\|a\Delta f\| \le 1} |\mu (a\Delta f)| = \|\mu\| \end{aligned}$ 

so that  $||T_{\mu}|| \ge ||\mu||$ . Since we have the equality  $||T_{\mu}|| = ||\mu||$ , it follows that the mapping  $S: \widetilde{M}_2 \to LM(A)$  defined by  $S(\mu) = T_{\mu}$  is an isometry. To show that S is a Banach algebra homomorphism, let  $\mu_1, \mu_2$  be in  $\widetilde{M}_2$  and a in A. Indeed,

 $S(\mu_1.\mu_2)(a) = T_{\mu_1.\mu_2}(a) = (\mu_1.\mu_2)a = \mu_1(\mu_2.a) = \mu_1(T_{\mu_2}(a))$  $= T_{\mu_1}(T_{\mu_2}(a)) = T_{\mu_1}.T_{\mu_2}(a) = S(\mu_1).S(\mu_2)(a).$ 

To complete the proof, it is enough to show that S is onto. Let T be any element in LM(A). Since we can consider A as a subalgebra of  $(AA^*)^*$ , the net  $(T(e_{\alpha}))_{\alpha \in \Lambda}$  is in  $(AA^*)^*$  and, for each *f.a* in  $(AA^*)^*$ , it follows

 $\langle a\Delta f, T(e_{\alpha}) \rangle = \langle f, T(e_{\alpha}).a \rangle = \langle f, T(e_{\alpha}.a) \rangle \rightarrow \langle f, T(a) \rangle$ This shows that the net  $(T(e_{\alpha}))_{\alpha \in \Lambda}$  is a weak\*-Cauchy in  $(AA^*)^*$ . Hence it converges to some element  $\mu$  of  $(AA^*)^*$  in the weak\* topology of this space. The above equalities

$$\langle a\Delta f, \mu \rangle \rangle = \langle f, T(a) \rangle$$

for all f in  $A^*$  and a in A. Then  $\langle a\Delta f, \mu \rangle \rangle = \langle f, \mu.a \rangle \rangle = \langle f, T(a) \rangle$ , which means  $\mu.a = T(a)$  so that  $T = T_{\mu}$ . Since, for each T in LM(A), there is an element  $\mu$  in  $\widetilde{M}_2$  such that  $S(\mu) = T_{\mu} = T$ , the mapping S is onto.

**Corollary 2.6:** Let A be a Banach algebra with a bounded appoximate identity. If  $Z_2A \subseteq A$  then,  $\tilde{M}_2 = \tilde{Z}_2 \cong LM(A)$ .

### REFERENCES

- 1) Arens, R., "The adjoint of a bilinear operation", *Proc. Amer. Math. Soc.*, 2, 839-848, (1951).
- 2) Hewitt, E. and Ross, K., "Abstract Harmonic Analysis", Volumes I and II, Newyork, (1970).
- Lau, A.T., "Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups", Math. Proc. Camb. Philos. Soc., 99, 273-283, (1986).
- Lau, A.T. and Losert, V., "The C\* algebra generated by operators with compact support on a locally compact group", J. Functinal Analysis, 112, 1-30, (1993).
- Lau, A.T. and Ülger, A., "Topological centers of certain dual algebras", Trans. Amer. Math. Soc., 348 (3), 1191-1212, (1996).