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ABSTRACT 

     Parameter estimation is quite important in Statistics. Statisticians are engaged in various 
studies on this problem. Use of optimization methods in the solution of this estimation problem 
have become common especially after 1970’s. The present study has the objective of estimating 
parameters in a random blocks design, completed random block design, balanced-incomplete 
random block design, and random block design in the case of a missing observation model 
equation capitalizing on the significance of optimization methods in statistics. In this study, 
minimum mean absolute deviations (MINMAD) method is defined and suggests the goal 
programming (GP) model for estimation of parameters in the random blocks model equation and 
compares the results obtained with those given by least squares method (LSM) 

Keywords: MINMAD, Goal Programming, Randomize Block Design, Completed Random Block 
Design, Balanced-incomplete Random Block Design, Random Block Design in Case of a 
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1. INTRODUCTION 

     Taking the norms 1 2, ,L L L∞  as the basis, the work 
accomplished can be summarized as follows. 

     The model incorporating the least squares estimator was 
tried to be solved by using the quadratic programming 
algorithm. Later, by using the norm L∞ , the algorithm 
was suggested under the non-negative constraints of β  
(1). 

     There have been many studies conducted for selecting 
the best subset of multiple linear regression models of 
norm 1L  and L∞  Branch-boundary algorithm has been 

used for the norm L∞  (1). 

     For the solution of the MINMAD regression problem 
modeled as a linear programming problem, an algorithm 
based upon simplex algorithm but with some changes is  

given. For ensuring that β  estimations in this algorithm 
remain at the base, changes were introduced to the criteria 
used in the selection of variables entering in and leaving 
out of this base (2). 

     The norm 1L  may be preferred in linear regression 
because of disadvantages such as the assumption of 
normality of the least squares estimator and it’s proneness 
to the impact of extreme values in the data set. Therefore, 
there are quite a few studies where the norm 1L  and 
optimization methods are used together. Following those 
studies conducted with the 1L  norm and simplex 
algorithm, a specific solution has been obtained for the 
dual linear programming program and a very effective 
algorithm has been defined for the solution of primal linear 
programming problem (1,3). 

     A different linear programming problem incorporating 

1L  norm was formulated and discriminate analysis was 
applied (4). 
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     For a multivariate multiple regression model, the 
problem of estimation was formulated by using the 1L   
criterion and was solved as a multi objective linear 
programming problem (5). 

     Eminkahyagil and Apaydın (1997) estimated β  
parameters in the multivariate multiple regression model 
through goal programming. In this model, the problem 
based on the criterion of the least mean absolute deviations 
was formulated as a goal programming problem. 
Algorithm was suggested for the estimation of β  
parameters in the multivariate multiple regression model 
(6). 

     Apaydın (1997) applied a branch-boundary algorithm in 
the selection of the best subset in multiple linear 
regression. The multiple linear regression problem was 
addressed as a linear programming problem considering 
the least absolute difference criterion or 1L  norm. For the 
selection of the best model, the regression problem was 
formulated as a mixed integer programming problem (7). 

     Section 2 of this paper is devoted to the explanation of 
some basic concepts and methods in relation to linear 
programming and simplex process for the regression 
problem modeled as MINMAD and to the MINMAD 
method used for the estimation of parameters in a random 
block model 

     Section 3 will give the definitions of completed block 
design, balanced and incomplete block design and random 
block design in case of missing observation as well as 
equation systems and other definitions for estimation of 
parameters. 

     Finally, Section 4 will engage in a MINMAD 
estimation of parameters in a random blocks model 
equation and in case of a missing observation model 
defined as a goal programming model. The result will then 
be compared to those of the least squares method. 

2. MINIMUM MEAN ABSOLUTE DEVIATION 
METHOD 

     In this section, there will be definitions of the 
MINMAD method for linear and goal programming in the 
context of the regression problem modeled as MINMAD. 
A model will be suggested for estimating parameters in 
linear regression. 

     Arthanari and Dodge (1982) defined the linear 
programming problem as 

1 2

1 2

1 2

P2.1.

, 0

i iMinimum d d

X d d Y

d d

β

+∑ ∑

+ − =

≥

 

         β   unrestricted in sign 

where X  is matrix of known constants, Y is  vector of 
dependent variable and β  is vector of unknown 

parameters to be estimated. 1id  is  negative deviation for  

i. observation and 2id  is positive deviation  for  i. 
observation (1,2,8). 

2.1. Minmad Method for Goal Programming 

     In this case where the system goals are conflicting, a 
satisfactory solution can be found for decision makers by 
using multi-purpose decision making methods. Goal 
programming is one of the most widely used methods in 
decision making with respect to multiple criteria. It has 
been shown in earlier studies that in cases where the 
problem of estimating the parameters of a multivariate 
multiple regression is redefined as a goal programming 
model, the estimation of  β  parameters yield more 
satisfactory results than those obtained from classical 
regression analysis. This method is superior to the classical 
one particularly in cases where the number of observations 
is limited and multiple connections exist. The objective of 
goal programming used in regression analysis is the 
minimization of the difference between observed values 
and estimation values (6,9). 

     Considering the constraints on β , Charnes, Cooper 
and Sueyoshi (1986) defined the goal programming model 
to be the equivalent of 
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which is the non-linear goal programming model (10). 
Narula and Korhonen (1994) made this model linear by 
adding the constraint CBH=D. Eminkahyagil and Apaydın 
(1997) defined the goal programming model as 
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    iβ   unrestricted in sign  i=1, …, m 

     , 0, 1,...,j jd d j n− + ≥ =  

and where 1, 0 1W Wi = ≤ ≤∑ .  d − , d+ are 

negative deviation and positive deviation, respectively (6). 

3. ESTIMATION OF PARAMETERS IN RANDOM 
BLOCK MODELS 

     In cases where experimental units are not fully 
homogenous, the design must be developed by dividing 
these units up into more homogenous sub-units. This will 
eliminate the heterogeneity of experimental units to a 
certain extent. These relatively more homogenous sub-unit 
are called “blocks”. Elimination of excess variance in 
experimental units through the sum of squares amongst 
blocks will allow for a smaller error variance. Since data in 
the design of a random blocks experiment are designed 
with respect to two criteria as “block” and “treatment”, the 
process is also called “double classification” (1, 11). 

     Let (a) signify the number of treatment and (b) the 
number of blocks. The statistical model used for this 
design is a follows: 

1,...,
1,...,

ij i j ijY i a
j b

µ τ β ε= + + + =
=

            [1] 

In the model [1] above, 

ijY  : Any observation, 

µ  : real mean effect, 

iτ  : i. treatment effect, 

jβ  : j. block effect, and 

ijε  : random error term with a normal distribution where 

the mean is 0 and variance is 2σ . 

     Treatment and blocks are considered as the effect of 
fixed factors. Treatment and block effects are defined as 

deviations from the real mean. Then 
1

0
a

i
i
τ

=
=∑  and 

1
0

b

j
j

β
=

=∑  (11,12). 

3.1. Suggested Model 

This section suggests models for estimating parameters in 
random block design. 

Model 1. 

1 2
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θ  is unrestricted in sign 

1 1( , ,..., ; ,..., )a bθ µ τ τ β β=  

where e′  is a unit vector, θ  is random block design 
parameters. 

     In Model 1 above, parameters are given the weight W in 
which case the model turns into the following. 

     Model 2 has been formed considering Model 1. 

Model 2.  
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   θ  is unrestricted in sign. 

3.2. Estimation of Parameters in Completed Random 
Block Model 

     The data used for estimating parameters in a completed 
random block design are given in Appendix A. For the 
Problems 1, 4 and 5 a=4 and b=4 in the equation [1] are 
chosen and for the Problems 2 and 3 a=3 and b=4 are 
chosen. Five problems are solved for Model 1 (M1) and 
Model 2 (M2). In Table 1 parameter estimation values 
obtained by computing LSM, Model 1 (M1) and Model 2 
(M2) for five problems are given. 
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         Table 1. Estimated parameter values for problems related to completed random block design 

  µ̂  1̂τ  2τ̂  3τ̂  4τ̂  1̂β  2β̂  3β̂  4β̂  
Problem 1           
 LSM 0.028 0.0095 -0.0055 -0.003 -0.0005 0.002 0.0045 0.0045 -0.0105 
 
 

M1 
M2 

0.04 
0.04 

-0.01 
-0.01 

0 
0 

0.01 
0.01 

0 
0 

0.02 
0.02 

0 
0 

0 
0 

-0.02 
-0.02 

Problem 2           
 LSM 0.067 -0.002 0.003 0  -0.0013 0.0037 0.001 -0.002 
 
 

M1 
M2 

0.067 
0.067 

-0.0037 
-0.0037 

0.003 
0.003 

0.003 
0.003 

 -0.0005 
-0.0005 

0.0045 
0.0045 

0.0015 
0.0015 

-0.0055 
-0.0055 

Problem 3           
 LSM 19.6 -0.1 -1.8 1.9  -1.9 0.8 -0.3 1.4 
 
 

M1 
M2 

19.6 
19.2 

-0.3 
0.3 

-1.3 
-1.6 

1.7 
1.3 

 -2.3 
-1.5 

1.8 
0.6 

-0.3 
-0.5 

0.8 
1.5 

Problem 4           
 LSM 9.6 -0.1 0 -0.2 0.3 -0.2 -0.2 0.1 0.3 
 
 

M1 
M2 

9.6 
9.6 

-0.1 
-0.1 

0 
0 

-0.2 
-0.2 

0.3 
0.3 

-0.2 
-0.2 

-0.2 
-0.2 

0.1 
0.1 

0.3 
0.3 

Problem 5           
 LSM 9.3 -0.03 0.09 -0.06 0 -0.06 0.04 0 0.02 
 
 

M1 
M2 

9.3 
9.3 

-0.05 
-0.05 

0.05 
0.05 

-0.05 
-0.05 

0.05 
0.05 

-0.15 
-0.15 

0.15 
0.15 

-0.05 
-0.05 

0.05 
0.05 

3.3. Estimation of Parameters in Balanced-incomplete 
Random Block Design 

     In case all possible treatment combinations could not be 
obtained in each block, then the incomplete random block 
design is used. Such cases arise as a result of such reasons as 
shortages in experimental tools and equipment or the large 
size of blocks. Since each and every treatment cannot be 
realized in each and every block, it is possible to use 
incomplete random block design. In cases where the number 
of unrealized observations is equal for all groups, this 
incomplete random block design is called a “balanced” one. 
The statistical model used in balanced-incomplete random 
block design is identical to that given in [1]. 

 

     It is possible to use randomized block design in which 
every treatment is not present in every block. These designs 
are known as randomized incomplete block designs. Such 
situations generally arise from imperfections in experimental 
apparatus, equipment and devices or from the large size of 
blocks. Random block design is used since all treatment 
combinations are not satisfied for each and every block. 
When the number of missing observations is equal for each 
group the completed random block design is named as an 
incomplete-balanced random block design (13,14). Data 
used for estimating parameters in a balanced-incomplete 
random block design are given in Appendix (B). Table 2 
below gives the results of parameter estimations for 
problems relating to the balanced-incomplete random block 
design. Parameters have been estimated through LSM, 
Model 1 (M1) and Model 2 (M2).  

              Table 2. Estimated parameter values for problems related to balanced-incomplete random block design 

  µ̂  1̂τ  2τ̂  3τ̂  4τ̂  1̂β  2β̂  3β̂  4β̂  
Problem 1           
 LSM 3.65 -0.056 0.476 -0.499 0.083 -0.105 -0.3 0.27 0.13 
 
 

M1 
M2 

3.7 
3.7 

0.087 
0.087 

0.538 
0.538 

-0.46 
-0.46 

-0.163 
-0.163 

-0.2 
-0.2 

-0.2 
-0.2 

0.3 
0.3 

0.1 
0.1 

Problem 2           
 LSM 2.5 -0.263 0.176 -0.026 0.113 1.06 0.85 -0.949 -0.964 
 M1 

M2 
2.5 
2.5 

-0.4 
-0.4 

0.2 
0.2 

0.2 
0.2 

0 
0 

0.8 
0.8 

0.9 
0.9 

-0.7 
-0.7 

-1 
-1 

Problem 3           
 LSM 72.5 -1.1 -0.9 -0.5 2.5 0.9 3 -3.9 0 
 M1 

M2 
72.5 
72.5 

-1.5 
-1.5 

-0.5 
-0.5 

-0.5 
-0.5 

2.5 
2.5 

1 
1 

3 
3 

-4 
-4 

0 
0 

Problem 4           
 LSM 8.04 -1.12 -0.405 0.848 0.679 -1.27 0.03 0.536 0.698 
 M1 

M2 
8.15 
8.15 

-0.5 
-0.5 

-0.5 
-0.5 

0.6 
0.6 

0.33 
0.33 

-0.5 
-0.5 

-0.1 
-0.1 

0.1 
0.1 

0.4 
0.4 

Problem 5           
 LSM 73.25 -1 -0.25 0.25 1 0 1.75 -1.24 -0.5 
 M1 

M2 
73 
73 

-1 
-1 

0 
-0.2 

0 
0.1 

1 
1.1 

0 
-0.1 

2 
1.9 

-1 
-0.9 

-1 
-0.9 
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3.4. Estimation of Parameters in Random Block Design 
in Case of A Missing Observation 

     In the research carried out, trials are set up in equation 
and in balance with the observation numbers at the 
beginning. However, sometimes some observations may 
be missing as a result of external factors within the period 
lasting till the end of the treatment. In such cases, analysis 
of the data becomes harder. 

     In spite of the fact that considerable efforts are spent in 
a treatment most of the time, the researcher may be faced 
with undesirable situations in significant applications. 
Among these, the most common is the problem of missing 
observations. Missing observations result from several 
reasons: errors or the reasons out of control, such as death 
of an animal, the experiment area being exposed to flood, 
illness of a worker and his inability to work, and loss of 
recorded data. Then, what are their effects in analysis 
method? Most of the experiments are designed as balanced 
or symmetric and missing observations disturb this  

balance. Thus, the original problem is disturbed and some 
alterations need to be made within the process. 

     If the experiment is being carried out with random 
block design, absence of an observation disturbs the 
orthogonality between the treatment and blocks. In such 
cases, it becomes obligatory to apply very complex 
analysis methods for the observations in different numbers. 
However, when especially missing observations are one or 
two, estimating an approximate value for the unknown 
observation is preferred, rather than applying complex 
analysis methods (13,14). 

     The data used for estimating parameters in the case of a 
missing observation in a random block design are given in 
Appendix (C). In Table 3, parameter estimation results of 5 
Problems for random block design when an observation is 
a missing are shown. Estimation values of the missing 
observation have been found using the result given in 
Table 3 and they are given in Table 4.  

 

           Table 3. Parameter estimations values of the problems related to random block design in case of a single missing 
observation 

  µ̂  1̂τ  2τ̂  3τ̂  4τ̂  1̂β  2β̂  3β̂  4β̂  
Problem 1           
 LSM 0.025 0.0125 -0.0025 0 -0.01 -0.0075 0.0075 0.0075 -0.0075 
 
 

M1 
M2 

0.0275 
0.0275 

0 
0 

0 
0 

0.02 
0.02 

-0.02 
-0.02 

-0.028 
-0.028 

0.003 
0.003 

0.033 
0.033 

-0.0075 
-0.0075 

Problem 2           
 LSM 9.625 -0.05 -0.025 -0.175 0.25 -0.225 -0.2 0.1 0.325 
 M1 

M2 
9.625 
9.625 

-0.1 
-0.1 

0 
0 

-0.2 
-0.2 

0.3 
0.3 

-0.2 
-0.2 

-0.3 
-0.3 

0.08 
0.08 

0.47 
0.47 

Problem 3           
 LSM 9.225 0 0.125 -0.15 0.025 -0.025 0.075 0.025 -0.075 
 M1 

M2 
9.27 
9.27 

0.05 
0.05 

0.15 
0.15 

-0.15 
-0.15 

-0.05 
-0.05 

-0.025 
-0.025 

0.075 
0.075 

0.075 
0.075 

-0.13 
-0.13 

Problem 4           
 LSM -0.89 2.14 0.14 -1.11 -1.17 1.89 0.64 -0.17 -2.36 
 M1 

M2 
-0.85 
-0.87 

2.5 
2.4 

0.5 
-0.1 

-1.5 
-1.1 

-1.5 
-1.1 

1 
2 

1 
0 

0 
0 

-2 
-2 

Problem 5           
 LSM 1.1 -0.39 -0.58 -1.64 2.61 -2.14 -1.89 0.67 3.36 
 M1 

M2 
0.8 
1.1 

-1 
-0.83 

0 
0.17 

-2 
-1.83 

3 
2.5 

-1.8 
-2.3 

-2.8 
-1.3 

1.3 
0.7 

3.3 
2.9 

 

Table 4. Estimation values of missing observation 

 
Problem 1 

LSM    M1     M2 
Problem 2 

LSM      M1         M2 
Problem 3 

LSM       M1        M2 
Problem 4 

LSM      M1      M2 
Problem 5 

LSM    M1     M2 

Ŷ  
0.001  -0.02    -0.02 10.2      10.4        10.4 9          8.99     8.99 -2.17   -2.35     -2 1.2     1.97    1.97 

Y 0.06 10.2 9.5 -3 3 

 

     The data used for estimating parameters in the case of 
two missing observations in a random block design are 
given in Appendix (D). In the case of two missing 
observations, parameter estimation values found with LSM, 
Model 1 (M1) and Model 2 (M2) have been given in Table 

5. Estimation values of missing observations have been 
found using the results given in Table 5 and they are given 
in Table 6. Estimation values of the missing observation are 

shown by Ŷ , and the real values are shown by Y.   
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  Table 5. Parameter estimation values of the problems related to random block design in the case of two missing 
observations 

  µ̂  1̂τ  2τ̂  3τ̂  4τ̂  1̂β  2β̂  3β̂  4β̂  
Problem 1           
 LSM 9.58 -0.08 0.02 -0.13 0.25 -0.18 -0.153 0.147 0.27 
 
 

M1 
M2 

9.625 
9.625 

-0.1 
-0.1 

0 
0 

-0.2 
-0.2 

0.3 
0.3 

-0.2 
-0.2 

-0.125 
-0.125 

0.075 
0.075 

0.275 
0.275 

Problem 2           
 LSM 0.023 0.015 -0.001 -0.006 -0.008 -0.006 0.002 0.0095 -0.0055 
 M1 

M2 
0.025 
0.025 

0.015 
0.015 

0.015 
0.015 

-0.025 
-0.025 

-0.005 
-0.005 

0.01 
0.01 

-0.01 
-0.01 

0.02 
0.02 

-0.02 
-0.02 

                                                  Table 6. Estimation values of the missing observations 

 Problem 1 
LSM       M1           M2 

Problem 2 
LSM        M1          M2 

1

2

ˆ

ˆ
Y

Y
 

 
9.8          9.8            9.8 

10.1        10.2        10.2 

 
0.019       -0.01       -0.01 

0.09          0.03         0.03 

1

2

Y
Y

 

 
10 

10.2 

 
0.05 

0.06 

4. CONCLUSION AND DISCUSSION 

     Considering the importance of parameter estimations 
in statistics, the present study has suggested a goal 
programming model for the estimation of parameters in 
the equations of balanced-incomplete random block 
design and completed random block design as specific 
states of random block design. And parameter 
estimations for various problems have been made 
through this model. 

     In conclusion, problems of completed random block 
design and balance-incomplete random block design 
have been solved though the methods of LMS and 
Model 1 (M1), Model 2 (M2). Table 1 and Table 2 
shows that two methods LSM and Model 1 (M1), 
Model 2 (M2) give close or even equal values in 
parameter estimation. 

     When Table 3 is analyzed, it will be seen that the 
result generated for the parameter estimation values 
with the two methods are approximate or equal. W 
weights given to parameters have been effective. When 
Problem 4 in the Table 4 is analyzed, the real value of 
the missing value is (-3). The Parameter estimation 
value found with LSM is (2.17), the parameter 
estimation value generated with M1 model is (-2.35), 
parameter estimation value found with M2 model is (-
2). The Parameter estimation value found with  

     M1 model is more approximate to the real value. A 
similar comment may be brought to the order problems. 

     When the Problem 1 in Table 5 is analyzed, the real 
value of the first missing observation is (10), the real 
value of the second missing observation is 10.2. 
Estimations of the missing observations have been 
made with LSM and Model 1 (M1), Model 2 (M2) and  

the estimation values found with LSM method are (9.8) 
and (10.1) and the ones found with suggested models 
are (9.8) and (10.2). 

     It is observed that parameter estimation values 
obtained from respective methods are either equal or 
very close to each other. The goal programming model 
suggested here is alternative for the LSM method. 
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APPENDIX 

A-) Problems used to estimate completed random block 
design parameters. 

Problem 1 (Artificial Data) 

 
Treatment 

Block 
    1            2            3             4 .iY  

1 0.05 0.03 0.06 0.01 0.15 
2 0 0.04 0.03 0.02 0.09 
3 0.01 0.05 0 0.04 0.1 
4 0.06 0.01 0.04 0 0.11 

. jY  0.12 0.13 0.13 0.07 0.45 

 
 
 
 
 
 

Problem 2 (Artificial Data) 
 

Treatment 
Block 

     1              2               3              4 .iY  

1 0.06 0.065 0.065 0.07 0.26 
2 0.07 0.075 0.07 0.065 0.28 
3 0.067 0.072 0.069 0.060 0.268 

. jY  0.197 0.212 0.204 0.195 0.808 

 
Problem 3 (Artificial Data) 

 
Treatment 

Block 
     1              2              3               4 .iY  

1 18 21 19 20 78 
2 16 17 19 19 71 
3 19 23 20 24 86 

. jY  53 61 58 63 235 

 
Problem 4 (Montgomery 1997) 

 
Treatment 

Block 
    1              2                 3            4 .iY  

1 9.3 9.4 9.6 10 38.3 
2 9.4 9.3 9.8 9.9 38.4 
3 9.2 9.4 9.5 9.7 37.8 
4 9.7 9.6 10 10.2 39.5 

. jY  37.6 37.7 38.9 39.8 154 

 
Problem 5 (Artificial Data) 

 
Treatment 

Block 
    1               2               3               4 .iY  

1 9.3 9.4 9 9.2 36.9 
2 9.2 9.5 9.3 9.4 37.4 
3 9.1 9 9.2 9.5 36.8 
4 9.2 9.3 9.5 9 37 

. jY  36.8 37.2 37 37.1 148.1 

 
B-) Problems used to estimate balanced-incomplete 
random block design estimated parameters. 
 
Problem 1 (Artificial Data) 

 
Treatment 

Block 
    1            2            3             4 .iY  

1 3.55 3.8 3.3 - 10.65 
2 4 3.5 - 4.6 12.1 
3 3 - 3.5 3.25 9.75 
4 - 3.25 4.5 3.55 11.3 

. jY  10.55 10.55 11.3 11.4 43.8 

 
Problem 2 (Artificial Data) 

 
Treatment 

Block 
    1             2            3           4 .iY  

1 4 3 0.6 - 7.6 
2 3 3.6 - 2.3 8.9 
3 3.5 - 2 1 6.5 
4 - 3.4 1.8 1.5 6.7 

. jY  10.5 10 4.4 4.8 29.7 
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Problem 3 (Montgomery 1997) 
 

Treatment 
Block 

    1            2            3            4 .iY  

1 73 74 - 71 218 
2 - 75 67 72 214 
3 73 75 68 - 216 
4 75 - 72 75 222 

. jY  221 224 207 218 870 

 
Problem 4 (Artificial Data) 

 
Treatment 

Block 
    1            2            3            4 .iY  

1 4.37 - 8.32 8.03 20.72 
2 - 8.3 7.82 8.05 24.17 
3 8.32 8.73 8.91 - 25.96 
4 8.03 8.31 - 9.28 25.62 

. jY  20.72 25.34 25.05 25.36 96.47 

 
Problem 5 (Artificial Data) 

 
Treatment 

Block 
   1             2            3            4 .iY  

1 73 74 - 71 218 
2 - 75 72 72 219 
3 73 75 73 - 221 
4 74 - 72 75 221 

. jY  220 224 217 218 879 

 
C-) Problems used to estimate random block design 
parameters in the case of a single missing observation. 
 
Problem 1 (Artificial Data) 

 
Treatment 

Block 
     1            2          3          4 .iY  

1 0.05 0.03 0.06 0.01 0.15 
2 0 0.04 0.03 0.02 0.09 
3 0.01 0.05 0 0.04 0.1 
4 y 0.01 0.04 0 0.05+y 

. jY  0.06+y 0.13 0.13 0.07 0.39+y 

 
Problem 2 (Montgomery 1997) 

 
Treatment 

Block 
    1               2              3              4 .iY  

1 9.3 9.4 9.6 10 38.3 
2 9.4 9.3 9.8 9.9 38.4 
3 9.2 9.4 9.5 9.7 37.8 
4 9.7 9.6 10 y 29.3+y 

. jY  37.6 37.7 38.9 29.6+y 143.8+y 

 
Problem 3 (Artificial Data) 

 
Treatment 

Block 
    1              2              3               4 .iY  

1 9.3 9.4 9 9.2 36.9 
2 9.2 9.5 9.3 9.4 37.4 
3 9.1 9 9.2 y 27.3+y 
4 9.2 9.3 9.5 9 138.6+y 

. jY  36.8 37.2 37 27.6+y 148.1 

 
 
 
 

Problem 4 (Artificial Data) 
 

Treatment 
Block 

     1              2               3              4 .iY  

1 4 1 0 0 5 
2 1 1 0 -5 -3 
3 -1 -1 y -4 y-6 
4 0 -2 -2 -4 -8 

. jY  4 -1 y-2 -13 y-12 

 
Problem 5 (Montgomery 1997) 

 
Treatment 

Block 
     1               2              3              4 .iY  

1 -2 -1 1 5 3 
2 -1 -2 y 4 1+y 
3 -3 -1 0 2 -2 
4 2 1 5 7 15 

. jY  -4 -3 6+y 18 17+y 

 
D-) Problems used to estimate random block design 
parameters in the case of two missing observations. 
 
Problem 1 (Montgomery 1997) 

 
Treat
ment 

Block 
    1            2            3                  4 .iY  

1 9.3 9.4 9.6 
1y  128.3 y+  

2 9.4 9.3 9.8 9.9 38.4 
3 9.2 9.4 9.5 9.7 37.8 
4 9.7 9.6 10 

2y  229.3 y+  

. jY  37.6 37.7 38.9 
1 2

19.6 y y+ +  1 2133.8 y y+ +
 

 
Problem 2 (Artificial Data) 
Treat
ment 

Block 
     1                  2                3          4 .iY  

1 0.05 0.03 0.06 0.01 0.15 
2 0 0.04 0.03 0.02 0.09 
3 0.01 

1y  0 0.04 
10.05 y+  

4 
2y  0.01 0.04 0 

20.05 y+  

. jY  20.06 y+
 

10.08 y+
 

0.13 0.07 
1 20.34 y y+ +

 
 
 
 


