PAPER DETAILS

TITLE: COLOR CHANGING WITH ON THE STAINED WOOD SURFACE WITH WOOD STAINS

AUTHORS: Abdullah SÖNMEZ, Mehmet BUDAKÇI, Ahmet DELIKAN

PAGES: 769-777

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/83384

ISSN 1303-9709

G.U. Journal of Science 16(4):769-777, 2003

AHŞAPBOYALARI İLE RENKLENDİRİLMİŞ AĞAÇ MALZEMEDE RENK DEĞİŞMELERİ

TEKNİK NOT

Abdullah SÖNMEZ*, Mehmet BUDAKÇI

Gazi Üniversitesi, Teknik Eğitim Fakültesi, Mobilya ve Dekorasyon Eğitimi Bölümü, 06500, Ankara, TÜRKİYE

Ahmet Bülent DELİKAN

Sincan Teknik ve Endüstri Meslek Lisesi, Ankara, TÜRKİYE

ÖZET

Bu araştırmada, ağaç boyalarının yaşlanma sonucu renk bozulmasına karşı gösterdikleri performans hızlandırılmış test ile belirlenmeye çalışılmıştır. Bu amaçla, sarıçam (*Pinus sylvestris L.*), kayın (*Fagus orientalis L.*), meşe (*Quercus petreae L.*), ağaç malzemeden hazırlanan örnekler 72 saat süre ile ksenon ark ışınlarına maruz bırakılmıştır. Ahşap boyası olarak Alman ceviz boyası, anilin boya, kimyasal boya, solvent çözücülü boya (eco-color) kullanılmış ve örnek renk olarak kahverengi uygulanmıştır. TS 4460 standardına göre yapılan hızlandırılmış solma deneyi sonrasındaki renk değişimleri, Tristimulus renk ölçme aleti kullanılarak ASTM.D-2244 esaslarına uyularak belirlenmiştir. Sonuç olarak, solmada boya çeşidi ve ağaç türü etkili bulunmuş, en fazla solma eco-color boya ile renklendirilmiş kayında elde edilmiştir. Buna göre, kayın malzemenin renklendirilmesinde eco - color boyaların kullanılmaması önerilebilir.

Anahtar Kelimeler : Hızlandırılmış solma, ağaç işleri üstyüzey işlemleri, ahşap boyası, yaşlandırma, solma, ksenon ark ışınları

COLOR CHANGING WITH ON THE STAINED WOOD SURFACE WITH WOOD STAINS

ABSTRACT

At this research, discoloration performance of wood stains against ageing were determined by the test of accelerated discoloration. For this purpose samples were prepared from pine (Pinus sylvestris L.), beech (Fagus orientalis.L.) and oak (Quercus petreae.L.) wood and than kept under exposure xenon arc lights for 72 hours. After that experimental stains such as Vandyke brown (color of valnut), aniline, chemical and ready mixed solvent stain (eco-color) were applied with considering valnut brown color such a experiment color. After the accelerated discoloration test as to TS 4460, color changing degree was determined by the method of color measure with Tristimulus colorimeter in respect of ASTM.D-2244. As a result of all stains and wood kinds have significant effect on to discoloration and the highest degreasing occured on beech wood stained with ready mixed solvent stain. According to this, it is suggested that ready mixed (eco-color) solvent stain shouldn't use on the beech wood

Key Words: Accelerated discoloration, wood finishing technology, wood stains, ageing, discoloration, xenon arc lights

1. GİRİŞ

Mobilya kalitesinde renk önemli bir değerlendirme kriteridir. Mobilyanın beğenilen renkte renklendirilmesinin yanı sıra renginin uzun süre bozulmaması arzu edilir. Renk bozulması genellikle solma, aşınma, zaman içerisinde koyulaşma vb. değişim şeklinde görülür. Kaliteli ahşap boyaları kullanılarak uygun tekniklerle yapılan renklendirme işlemi ile rengin uzun süre kalıcılığı sağlanabilmektedir (1).

Ağaç malzemenin doğal rengi çoğu zaman kullanıcıların renk talebindeki çeşitliliği karşılayamadığı için mobilyayı renklendirme ihtiyacı duyulur. Mobilyada rengin en az biçim ve ölçü kadar önemli olması sebebiyle, seri üretimde model değiştirmeden farklı görüntüde mobilya hazırlamak için ahşap boyalarından yararlanılabilir. Aynı modeldeki mobilyaların değişik renklerde boyanması çeşit fazlalaştırmanın yaygın bir uygulamasıdır. Ayrıca farklı masif ağaç malzeme ve ağaç kaplamalardan üretilen mobilyalarda da renk uyumu sağlayabilmek için ahşap boyalarından yararlanılmaktadır.

Kullanma ortamındaki iklim şartlarının etkilerine dayanıklılık ölçüsü, ahşap boyaları için önemli bir değerlendirme kriteridir. Ahşap boyaları ışık ve havanın bozucu etkilerine karşı tam olarak dayanıklı olmayıp bir süre sonra solar. Bu durum arzu edilmeyen bir sonuç olup, boyanın uzun süre dayanıklı kalabilmesi istenir (2).

Renklendirme işlemi, ağaç malzemenin dokusunda kimyasal yollarla yeni renkli bileşikler hazırlamak suretiyle ya da dokusuna renk pigmenti emdirilerek, yüzeye gelen ışığın geri yansıtılan bölümündeki dalga boylarının farklılaştırılması olarak tanımlanmıştır (3).

Literatürde hızlandırılmış test sonuçları ile doğal iklim koşulları karşılaştırıldığında elde edilen benzer sonuçlar sebebiyle, ultraviyole dalga boylarına daha yakın ışıma yapan güneş ışığı karbon lambası, xenon lambası ve floresan lambalarının tercih edilmesi gerektiği bildirilmiştir (4).

Açık hava iklim şartlarında odun renginin çok hızlı değiştiği, genellikle yan bileşikler ve ligninin kimyasal yapısının bozulmasından dolayı sarı ve kahverengi renge dönüştüğü belirtilmiştir (5).

Vernikli ve verniksiz sarıçam örnekleri 12 ay süre ile Ankara iklim şartlarında açık hava etkisine maruz bırakıldıktan sonra İnfrared (IR) spektrum ile ölçümler yapılmış, doğal örneklerin kimyasal yapısında vernikli örneklerden daha fazla bozulma olduğu bildirilmiştir (6).

Ahşap vernikleri, transparent yapıda olup yüzeye gelen ışığı ahşap yüzeyine iletme kabiliyetindedirler. Ahşap yüzey, ahşap boyası ile renklendirildiğinde ise ışığın bir kısım dalga boyları yansıtılır, diğerleri emilir. Görünen gerçek renkte yansıtılan dalga boyları etkili olup, boyadaki pigment bileşenlerinin ışık yansıtma kabiliyeti rengini belirlemektedir. Örtücü özellikteki boyalarda ise ağaç malzemenin renk görünümünde etkili olmadığı bildirilmiştir (1).

Karma renklerin üretilmesinde temel faktör; pigmentlerin atomik ve moleküler yapıları ile elektronların karakteristik titreşimleri ve bunların düzenlenmesidir. Ayrıca renk pigmentlerinin kalitesinin, pigmentin kristal formu, şekli, ölçüsü ve boya içerisindeki dağılım derecesine göre belirlendiği bildirilmiştir(1).

Ahşap boyaları çok çeşitli olup gerçek anlamda kesin bir sınıflandırma yapmak oldukça güçtür. Asıl problem boyaların uygulamaya hazırlanmasında kullanılan çözücülerin çok çeşitli ve birbirlerinden oldukça farklı oluşlarıdır. Bu sebeple boyaların sınıflandırılmasında en geçerli yolun çözücülerine göre yapılan sınıflandırma olduğu bildirilmiştir (7).

Güneş ışığındaki morötesi ışınlar ağaç boyalarını soldurur. Kaliteli ağaç boyaları bu ışınların soldurucu etkisine karşı oldukça dayanıklıdır Boyaların ışınlara dayanımı 1-8 sayıları ile ölçülendirilir. Işınlardan en kolay ve çabuk bozulan boyanın dayanımı 1 ile gösterilir. Suda eriyen toz boyaların normal türlerinin solma katsayısı 5-6 dır. Bazı ahşap boyalarında çözeltiye katılan amonyak boyanın etki derinliğini artırıcı etki yapar. Ağaç malzemenin derinliklerine nüfuz eden boyalarda solma daha az olur (8).

Bu çalışmanın amacı, sarıçam (*Pinus Sylvestris L.*), kayın (*Fagus Orientalis L.*) ve meşe (*Quercus Petreae L.*), ağaç malzeme yüzeylerine, anilin, kimyasal, özel karışım su ve solventlerde çözünen anilin (eco-color) ve Alman ceviz boyası uygulandıktan sonra ksenon ark ışığı kullanılarak hızlandırılmış solma deneyi ile ahşap boyalarında uzun zamanda meydana gelebilecek renk bozulmalarını ve ağaç malzeme farklılaşmasının solmayı geciktirici etkisini belirlemektir.

2. MATERYAL METOT

2.1. Ağaç Malzeme

Araştırmada ağaç işleri endüstrisinde yaygın olarak kullanılan yerli ağaç türlerinden, sarıçam (*Pinus Sylvestris L.*), kayın (*Fagus Orientalis L.*) ve meşe (*Quercus Petreae L.*) kullanılmıştır. Deneylerde kullanılacak ağaç malzemeler, tesadüfi seçilen 1. Sınıf ağaç malzemeden, düzgün lifli, budaksız, çatlaksız, renk ve yoğunluk farkı olmayan, yıllık halkaları yüzeylere dik gelecek şekilde ve diri odun kısımlarından ASTM-D 358 esaslarına uyularak elde edilmiştir (9).

2.2. Ağaç Boyaları

Denemelerde, Alman ceviz boyası, anilin boya, kimyasal boya ve solvent çözücülü boya (ecocolor) kullanılmıştır. Renklendirmede deneme rengi olarak kırmızı kahverengi (ceviz rengi) renk esas alınmış olup renk çözeltileri Çizelge 2.1'deki gibi hazırlanmıştır.

Çizelge 2.1 Boya karışımları

ALMAN CEVİZ BOYASI	ANİLİN BOYA
600 cm ³ Ceviz boyası çözeltisi (% 10 luk)*	(Hazır Karışım)
300 cm ³ Potasyum bikromat (% 5 lik)	% 5 lik çözelti
100 cm ³ Amonyak	
KİMYASAL BOYA	ECO – COLOR
Tanen çözeltisi % 5 lik (İlk boya)	1 Birim konsantre boya
Potasyum bikromat % 3 lük (Son boya)	3 Birim destile su

^{*: 1} L sıcak suda g olarak çözünen pigment miktarı

2.3. Deney Örneklerinin Hazırlanması

Taslak olarak hazırlanan parçalar, sıcaklığı $20 \pm 2^{\circ}$ C ve bağıl nemi $\%65 \pm 3$ olan iklim dolabında değişmez ağırlığa ulaşıncaya kadar bekletilmiştir. Daha sonra makine işlemleri ile $120 \times 40 \times 4$ mm ölçülerine getirilmiştir. Sistireleme işleminden sonra, ilk olarak 80 numara daha sonra 100 numara zımpara kullanılarak yüzeyler düzeltilmiştir. Lif kabarması ihtimali göz önüne alınarak ıslatılıp kurutulan yüzeyler daha sonra 180 numara zımpara ile yeniden zımparalanmıştır. Tozlar yumuşak kıllı bir fırça ve vakum yöntemi ile temizlenerek renklendirmeye hazır hale getirilmiştir (10).

Alman ceviz boyası, anilin boya ve solvent çözücülü boya (eco-color) çözeltileri sünger kullanılarak önce liflere paralel yönde, sonra liflere dik ve daha sonra tekrar liflere paralel yönde ve kenarlara taşırmadan tatbik edilmiştir. Ağaç malzemenin boyayı yeteri kadar çekmesi için birkaç dakika beklenmiş ve sıkılmış bir süngerle boyanın fazlası alınmıştır. Kimyasal boya uygulaması iki aşamalı yapılmıştır. İlk aşamada örneklere ilk boya gereci olarak % 5'lik tanen çözeltisi sürülmüş ve örnekler 24 saat oda sıcaklığında ($\sim 20^{\circ}$ C) bekletilmiştir. İkinci aşamada son boya gereci olarak % 3'lük potasyum bikromat eriği uygulanmıştır. Renklenmeyi tam olarak ve derinlemesine elde edebilmek için, örnekler oda sıcaklığında bir gün bekletilmiştir.

Araştırmada, her bir ağaç türü, metot ve boya çeşidi + kontrol paneli için 10'ar adet olmak üzere $3\times2\times5\times10$ deneme desenine göre 300 deney örneği hazırlanmıştır.

2.4. Deney Metodu

Örnekler renk ölçümü ve soldurma deneyi öncesinde ASTM-D 3924 esaslarına göre; 23±2°C sıcaklık ve %50±5 bağıl nem şartlarındaki iklimlendirme ortamında 16 saat süre ile bekletilerek deneylere hazır hale getirilmiştir (11).

2.4.1. Soldurma deneyi

Soldurma deneyleri TS 4460 esaslarına uyularak (12), XENOTEST 150 S cihazı ile yapılmıştır (13). Cihazın çalışma prensibinde güneş ışığı yayılımı ve küresel yayılım, xenon ark yayılımı ile taklit edilmektedir. Örnekler, test odası içinde, ışık kaynağı-filtre sistemi etrafında dönen taşıyıcılar üzerine yerleştirilmiş, pozlandırılmış xenon ışık kaynağı test odasının merkezine düşey olarak yerleştirilmiştir.

Kontrol (renklendirilmemiş) ve renklendirilmiş deney örneklerinin deney öncesi renk ölçümleri yapılmış, daha sonra soldurma deneyine tabi tutulmuştur. Cihaza yerleştirilen deney panelleri 72 saat süreyle değişik hava şartlarının yaratıldığı ortamda bekletilmiştir. Daha sonra renk değişikliğini belirlemek üzere deney sonrasında tekrar renk ölçümleri yapılmıştır.

2.4.2. Renk ölçümü

Renk ölçümleri, Minolta CR-231 renk ölçme aleti (Tristmulus colorimeter) kullanılarak (14), ASTM D-2244 esaslarına göre yapılmıştır. Deney aleti beyaz renge göre a=4.91, b=-3.45, C=6.00 ve H=324.90 olacak şekilde kalibre edilmiştir (15).

2.4.3. Verilerin değerlendirilmesi

Deney öncesi (DÖ)-deney sonrası (DS) ölçüm farkları veri olarak kullanılmış, varyans analizi testleri ile faktör etkileri tespit edilmiştir. Faktör etkilerinin =0,05 hata payı ile anlamlı olduğu durumlarda Duncan testi ile tekli ve ikili karşılaştırmalar yapılmıştır. LSD (En küçük önemli fark) kritik değerleri kullanılarak yapılan testlere göre bu farklılığın hangi faktörlerden kaynaklandığı belirlenmeye çalışılmıştır.

3. BULGULAR

3.1. Uygulanan Boya Miktarı ve Pigment Tutunma Oranları

Boya ve ağaç türlerine göre uygulanan boya miktarı ile pigment tutunma oranları Çizelge 3.1.'de verilmiştir.

Cize	lae 3 1	Kullanda	in howa milita	ri ve nioment t	utunma oranları
Cize	126 3.1.	Nullanna	iti dova mikla	m ve momenti	лиштта отаптат

BOYA TÜRÜ	AĞAÇ TÜRÜ	UYGULANAN BOYA MİKTARI (g/m²)	PİGMENT TUTUNMA ORANI (g/m²)
ALMAN	SARIÇAM	79	2,1
CEVİZ	KAYIN	73	2,1
BOYASI	MEŞE	65	3,1
ANİLİN	SARIÇAM	74	2,8
BOYA	KAYIN	63	2,8
BOTA	MEŞE	54	2,8
ECO – COLOR	SARIÇAM	76	2,8
BOYA	KAYIN	74	2,8
BOIA	MEŞE	46	2,8
KİMYASAL	SARIÇAM	76	9,5
BOYA	KAYIN	80	12,5
BOTA	MEŞE	60	9,4

Ağaç türlerinin sıvı geçirgenliğinin farklı olması nedeniyle, boya uygulamaları eşit şartlarda yapılmasına rağmen, kullanılan boya miktarları farklı olmuştur. Bu farklılıkta çözeltilerdeki pigment

iriliklerinin de etkisi olmuştur. Pigment tutunma oranları anilin ve eco-color boyada (2,8 g/m2) ağaç türlerine göre farklılık göstermemiştir. Kimyasal boyalarda pigment tutunma oranının yüksek çıkmasında örneklerin ilk boyama ve son boyama olarak iki defa işlem görmesi etkili olmuştur.

3.2. Renk Ölçümleri

Kırmızı renk değeri +a, sarı renk değeri +b ve metrik kroma C'ye ilişkin deney öncesi ve deney sonrası ölçüm farkları ortalama değerleri Çizelge 3.2.'de verilmiştir.

Çizelge 3.2. Kırmızı ve sarı renk değerleri ile metrik kromaya ait aritmetik ortalama farkları

ВОУ	ΆΤ,	AL	MAN BOY	CEVİZ ASI		ANİI BOY		K	İMYA BOY		E	CO-CO	OLOR 'A]	KONT PANI	
AĞAÇ 🛚	Γ,	D,Ö,	D,S,	X (fark)	D,Ö,	D,S,	X (fark)	D,Ö,	D,S,	X (fark)	D,Ö,	D,S,	X (fark)	D,Ö,	D,S,	X (fark)
	+a	12,30	13,41	-1,11	10,10	9,19	0,91	10,92	8,99	1,93	18,76	15,46	3,30	9,28	11,45	-2,17
SARI CAM	+b	15,26	25,77	-10,51	12,73	15,74	-3,01	24,24	25,19	-0,95	24,46	21,09	3,37	17,22	22,18	-4,96
,	C	19,51	29,05	-9,54	16,23	18,34	-2,11	26,59	26,74	-0,15	30,84	26,14	4,70	19,56	24,95	-5,39
	+a	13,28	12,48	0,80	11,16	10,24	0,92	11,60	10,04	1,56	19,18	13,24	5,94	13,15	9,90	3,25
KAYIN	+b	14,82	25,67	-10,85	12,06	15,81	-3,75	20,37	22,38	-2,01	23,28	18,09	5,19	15,27	16,75	-1,48
	C	19,92	28,56	-8,64	16,37	18,82	-2,45	23,45	24,53	-1,08	30,17	22,40	7,77	20,17	19,50	0,67
	+a	10,52	11,77	-1,25	11,56	10,46	1,10	11,74	10,40	1,34	19,04	12,14	6,90	10,52	10,01	0,51
MEȘE	+b	12,04	22,40	-10,36	13,89	17,06	-3,17	20,14	24,54	-4,40	25,75	18,40	7,35	16,55	17,65	-1,10
	C	15,94	25,29	-9,35	18,06	20,02	-1,96	23,31	26,65	-3,34	32,07	22,04	10,03	19,59	20,29	-0,70

Not : Eksi (-) değerler artışı ifade etmektedir.

DÖ: Deney öncesi

DS: Deney sonrası

Kırmızı ve sarı renk değerleri ile metrik kromaya ait aritmetik ortalamalar ağaç türü ve boya çeşidine göre farklılık göstermektedir (?=0,05).Farklılığın hangi renk tonundan kaynaklandığını belirlemek üzere her bir renk değeri ayrı ayrı ele alınmıştır.

3.2.1. Kırmızı renk değeri (+a)

Örnek rengin kırmızı tonundaki etkisini belirlemek için yapılan varyans analizi sonuçları Çizelge 3.3.'de verilmiştir.

Çizelge 3.3. Örnek rengin kırmızı tonundaki etkisine ilişkin ikili varyans analizi sonuçları

Faktör	Serbestlik Derecesi	Kareler Toplamı	Ortalama Kare	F Değeri	Ρα= 0,05
Ağaç Türü (A)	2	93,959	46,980	162,0868	0,0000
Boya Çeşidi (B)	4	609,062	152,266	525,3405	0,0000
Etkileşim (AB)	8	150,766	18,846	65,0208	0,0000
Hata	135	39,129	0,290		
Toplam	149	892,916			

Örnek rengin kırmızı tonundaki değişimde ağaç türü, boya çeşidi ve bunların etkileşimi anlamlı bulunmuştur (=0,05). Ağaç türü ve boya çeşidi düzeyinde yapılan tekli karşılaştırma sonuçları Çizelge 3.4.'de verilmiştir.

Çizelge 3.4. Ağaç türü ve boya çeşidi tekli karşılaştırma sonuçları

			Ağaç t	ürü							Boya	çeşi	di			
Faktörler	Sarıçam Kayın		ın	Meșe		Alman ceviz		Anilin		Kimyasal		Eco-Color		Kontrol		
	\overline{x}	HG	\overline{x}	HG	\overline{x}	HG	\bar{x}	HG	\overline{x}	HG	$\overline{\mathcal{X}}$	HG	\overline{x}	HG	\bar{x}	HG
Deney	0,569					В	-0,520 E 0,975 C 1,613 B 5,377 A* 0,528								0,528	D
(Soldurma)			LSD ±0,	2130			LSD $\pm 0,2750$									

x: Aritmetik ortalama

HG: Homojenlik grubu

^{*:} Kırmızı renk değerindeki en fazla azalmayı ifade etmektedir.

Ağaç türü düzeyinde rengin kırmızı tonu azalma göstermiştir. En fazla azalma kayın, daha sonra meşe ve sarıçamda görülmüştür. Buna göre kayında, denemelerde kullanılan ahşap boyalarının solma eğiliminin yüksek olduğu söylenebilir.

Boya çeşidi düzeyinde, Alman ceviz boyasında bir miktar artış diğerlerinde ise azalma olmuştur. En fazla azalma eco-color daha sonra sırası ile kimyasal ve anilin boyalarda görülmüştür. Buna göre eco-color boya karışımındaki kırmızı renk tonunu veren pigmentin solmaya karşı duyarlı olduğu söylenebilir. Ağaç türü - boya çeşidi ikili karşılaştırma sonuçları Çizelge 3.5.'de verilmiştir.

Çizelge 3.5. Ağaç türü - boya çeşidi ikili karşılaştırma sonuçları

Boya Çeşidi	Alman	ceviz	An	ilin	Kim	yasal	Eco -	Color	Kont	trol			
Ağaç Türü	\overline{x}			HG	\bar{x}	\overline{x} HG		HG	\bar{x}	HG			
Sarıçam	-1,117	I	0,908	FGH	1,931	D	3,296	С	-2,172	J			
Kayın	0,805	GH	0,920	FGH	1,564	DE	5,943	В	3,247	С			
Meşe	-1,248	I	1,098	EFG	1,345	EF	6,893	A*	0,509	Н			
	$LSD \pm 0,4763$												

^{*:} Kırmızı renk değerindeki en fazla azalmayı ifade etmektedir.

Kırmızı renk değerindeki en fazla azalma eco-color boya ile renklendirilmiş meşede, ikinci sırada kayında ve üçüncü sırada sarıçamda tespit edilmiştir. Kimyasal boya ile renklendirilmiş örneklerin kırmızı renk değerlerindeki solma, anilin ve Alman ceviz boyasından fazla olmuştur. Alman ceviz boyasında, sarıçam ve meşede bir miktar artış, kayında ise solma belirlenmiştir. Kontrol örneklerinde en fazla artış sarıçamda, en fazla azalış (solma) ise kayında olmuştur.

3.2.2. Sarı renk değeri (+b)

Örnek rengin sarı tonundaki etkisini belirlemek için yapılan varyans analizi sonuçları Çizelge 3.6.'da verilmiştir.

Çizelge 3.6. Örnek rengin sarı tonundaki etkisine ilişkin ikili varyans analizi sonuçları

Faktör	Serbestlik Derecesi	Kareler Toplamı	Ortalama Kare	F Değeri	Ρα= 0,05
Ağaç Türü (A)	2	20,211	10,105	9,4457	0,0001
Boya Çeşidi (B)	4	3798,179	949,545	887,5527	0,0000
Etkileşim (AB)	8	216,211	27,026	25,2620	0,0000
Hata	135	144,429	1,070		
Toplam	149	4179,030			

Sarı renk tonundaki değişimde ağaç türü, boya çeşidi ve bunların etkileşimi anlamlı bulunmuştur ($\alpha = 0.05$). Ağaç türü ve boya çeşidi düzeyinde yapılan tekli karşılaştırma sonuçları Çizelge 3.7.'de verilmiştir.

Çizelge 3.7. Ağaç türü ve boya çeşidi tekli karşılaştırma sonuçları

			Ağaç t	ürü							Boya	çeşi	di			
Faktörler	Sarıçam I		Kayı	Kayın		Meşe		Alman ceviz		Anilin		asal	Eco-Color		Kontrol	
	\bar{x}	HG	\bar{x}	HG	\overline{x}	HG	\overline{x}	HG	\overline{x}	HG	\bar{x}	HG	\bar{x}	HG	\bar{x}	HG
Deney	-3,210	В	-2,578	A*	-2,340	A*	-10,58	D	-3,310	С	-2,450	В	5,306	A**	-2,515	В
(Soldurma)			LSD ±0,	4091			LSD ±0,5282									

 $[\]overline{\mathbf{x}}$: Aritmetik ortalama

HG: Homojenlik grubu

^{*:} Sarı renk değerindeki en az artışı ifade etmektedir.

^{**:} Sarı renk değerindeki en fazla azalmayı ifade etmektedir.

Her üç ağaç türünde de rengin sarı tonunda artış olmuştur. En fazla artış sarıçam ve kayında, daha sonra meşede elde edilmiştir. Eco-color boyanın sarı renk tonunda azalma görülürken, diğer boya çeşitlerinde artış olmuştur. Sarı renk tonundaki en fazla artış Alman ceviz boyasında, en düşük artış ise kimyasal boyada ve kontrol örneklerinde görülmüştür. Ağaç türü-boya çeşidi ikili karşılaştırma sonuçları Çizelge 3.8.'de verilmiştir.

Çizelge 3.8. Ağaç türü - boya çeşidi ikili karşılaştırma sonuçları

, ,	٠,	,	,	,	,								
Boya Çeşidi	Alman	ceviz	Ani	lin	Kimya	sal	Eco - C	olor	Kon	trol			
Ağaç Türü	\overline{x}			HG	\overline{x}	HG	\overline{x}	HG	\overline{x}	HG			
Sarıçam	-10,510	I	-3,010	F	-0,941	D	3,372	С	-4,559	Н			
Kayın	-10,854	I	-3,745	FG	-2,009	Е	5,198	В	-1,480	DE			
Meşe -10,366 I -3,174 F -4,399 GH 7,348 A* -1,107 DE													
	$LSD \pm 0.9149$												

^{*:} Sarı renk değerindeki en fazla azalmayı ifade etmektedir.

En fazla solma eco-color boya ile renklendirilmiş örneklerde olmuştur. Diğerlerinde ise, solma daha düşük bulunmuştur. Kimyasal boya ile renklendirilmiş sarıçam ve kayındaki solma, anilin boya ile renklendirilenlerden daha fazla, kimyasal boya ile renklendirilmiş meşedeki solma ise anilin boya ile renklendirilenlerden daha az olmuştur. Alman ceviz boyası ile renklendirilmiş örneklerdeki solma, aynı düzeyde olmak üzere en az solma bunlarda olmuştur.

Kontrol örneklerinde ise, kayın ve meşede yüksek, sarıçamda ise eco-color, kimyasal ve anilin boyadan daha düşük solma tespit edilmiştir.

3.2.3. Metrik kroma değeri (C)

Soldurma deneyinin metrik kroma değeri üzerindeki etkisini belirlemek için yapılan varyans analizi sonuçları Çizelge 3.9.'da verilmiştir.

Çizelge 3.9. Soldurmanın metrik kroma değerine etkisine ilişkin ikili varyans analizi sonuçları

Faktör	Serbestlik Derecesi	Kareler Toplamı	Ortalama Kare	F Değeri	Ρα= 0,05
Ağaç Türü (A)	2	87,076	43,538	35,9566	0,0000
Boya Çeşidi (B)	4	4212,711	1053,178	869,7846	0,0000
Etkileşim (AB)	8	317,791	39,724	32,8066	0,0000
Hata	135	163,465	1,211		
Toplam	149	4781,043			

Rengin metrik kroma değerlerindeki değişimde ağaç türü, boya çeşidi ve bunların etkileşimi anlamlı bulunmuştur (=0,05). Ağaç türü ve boya çeşidi düzeyinde yapılan karşılaştırma sonuçları Çizelge 3.10.'da verilmiştir.

Çizelge 3.10. Ağaç türü ve boya çeşidi karşılaştırma sonuçları

			Ağaç t	ürü							Boya q	eşidi				
Faktörler	Sarıça	am Kayın		n	Meșe		Alman ceviz		Anilin		Kimyasal		Eco-Color		Kontrol	
	\overline{x}	HG	\bar{x}	HG	\overline{x}	HG	\bar{x}	HG	\bar{x}	HG	\bar{x}	HG	\overline{x}	HG	\bar{x}	HG
Deney	-2,499	2,499 B -0,748 A* -1,064 A					-9,178	-9,178 D -2,177 C -1,523 B 7,497 A** -1,80							-1,804	BC
(Soldurma)			LSD ±0,	4353			$LSD \pm 0,5619$									

 $[\]bar{\mathbf{x}}$: Aritmetik ortalama

HG: Homojenlik grubu

Ağaç türü düzeyinde en fazla artış sarıçam ve meşede daha sonra kayında tespit edilmiştir. Boya çeşidi düzeyinde ise eco-color boya haricindeki boyalarda artış belirlenmiştir. Eco-color boyada

^{*:} Metrik kroma değerindeki en az artışı ifade etmektedir.

^{**:} Metrik kroma değerindeki en fazla azalmayı ifade etmektedir.

yüksek seviyede azalma olmuştur. En fazla artış sırası ile Alman ceviz boyasında daha sonra anilin boyada, kontrol örnekleri ve kimyasal boyada elde edilmiştir. Ağaç türü - boya çeşidi ikili karşılaştırma sonuçları Çizelge 3.11.'de verilmiştir.

Boya Çeşidi	Alman ceviz		Anilin		Kimyasal		Eco - Color		Kontrol	
Ağaç Türü	\overline{x}	HG	\overline{x}	HG	\bar{x}	HG	$\overline{\mathcal{X}}$	HG	\overline{x}	HG
Sarıçam	-9,541	J	-2,110	G	-0,150	DE	4,695	С	-5,388	I
Kayın	-8,640	J	-2,459	GH	-1,077	EF	7,770	В	0,668	D
Meşe	-9,352	J	-1,961	FG	-3,342	Н	10,03	A*	-0,693	Е
$LSD \pm 0.9733$										

Cizelge 3 11 Ağac türü - boya çesidi ikili karsılaştırma sonuçları

Eco-color boya ile renklendirilmiş meşe, kayın ve sarıçamın metrik kroma değerlerinde yüksek oranda, kayın kontrol örneklerinde çok az bir azalma, diğer örneklerde ise artış olmuştur. Anilin boya ile renklendirilmiş sarıçam ve kayındaki artış, kimyasal boya ile renklendirilmiş sarıçam ve kayındaki artışlardan daha fazladır. Diğer taraftan kimyasal boya ile renklendirilmiş meşedeki artış, anilin boya ile renklendirilenlerdeki artıştan daha fazla olmuştur. En fazla artış Alman ceviz boyası ile renklendirilmiş örneklerde elde edilmiştir.

Kontrol örneklerinde ise, meşede az bir artış görülürken, sarıçamdaki artış, kimyasal ve anilin boyadakilerden daha fazla olmuştur.

4. SONUÇLAR ve TARTIŞMA

Kırmızı renk değerinde en fazla azalma ağaç türü düzeyinde kayında, boya çeşidi düzeyinde ise eco-color boyada tespit edilmiştir. Alman ceviz boyasında artış belirlenirken diğer boya çeşitlerinde azalma olmuştur. Sarıçamdaki azalma düşük çıkmıştır. Kırmızı renk değerindeki azalmanın solmada büyük etkisi olduğu varsayılarak, ağaç türü olarak kayın, boya çeşidi olarak eco-color boyanın solmaya dayanıklı olmadıkları söylenebilir.

Sarı renk değerlerinde, kırmızı renk değerlerinin tersine genel olarak artış olmuştur. Eco-color boya dışında diğer boyalarda artış belirlenirken, bu boyanın kırmızı renk değerlerinde olduğu gibi sarı renk değerlerinde de azalma tespit edilmiştir. Ağaç türü düzeyinde en fazla sarıçamda olmak üzere sarı renk değerlerinde artış belirlenmiştir. Sarıçamın doğal yapısında sarı renk tonunun fazla oluşu bu artışta etkili olabilir.

Metrik kroma değerlerinde, ağaç türü düzeyinde artış görülürken boya çeşidi düzeyinde ecocolor boyada azalma, diğer boyalarda artış olmuştur. En fazla artış ağaç türü düzeyinde sarıçamda, boya çeşidi düzeyinde ise Alman ceviz boyasında tespit edilmiştir.

Sonuç olarak, kırmızı ve sarı renk değeri ile metrik kroma değerleri bir bütün olarak ele alındığında örnek renk olarak belirlenen kahverengi (ceviz rengi) renkte, kırmızı rengin daha etkili olduğu söylenebilir. Buna göre harici ortamlarda kullanılacak ve ahşap boyaları ile renklendirilecek işlerde sarıçam malzemenin daha çok kullanıldığı göz önüne alınırsa, renklendirmede Alman ceviz boyasını kullanmanın daha uygun olacağı söylenebilir.

Solmanın en az olduğu Alman ceviz boyasında boya çözeltisine katılan amonyağın, literatürde belirtildiği gibi, boyanın etki derinliğini artırdığı için solmayı azaltıcı etkisi olduğu düşünülmektedir. Ayrıca sarıçamın boşluk oranının fazla olması, daha fazla boya emmesi ve pigmentlerinin UV ışınlarına dayanıklı olmasının solma direncini arttırdığı söylenebilir.

Anilin boya ile renklendirilmiş sarıçam, kayın ve meşeden yapılmış işlerde solmanın, Alman ceviz boyasına göre biraz daha fazla olmasına rağmen diğer boya çeşitlerinden daha az olduğu söylenebilir.

Solmanın en fazla olduğu eco-color boyada, yeterli miktarda çözelti emilmesi ve pigment tutunma

^{*:} Metrik kroma değerindeki en fazla azalmayı ifade etmektedir.

oranlarının yüksek olmasına rağmen özellikle kırmızı renk pigmentlerinin UV ışınlarına dayanıklı olmadığı belirlenmiştir. Bunun yanı sıra pigmentin irilik ve geometrik şeklindeki bozulmalardan dolayı solmanın yüksek oranda gerçekleşmiş olduğu düşünülmektedir. Ayrıca, kırmızı renk tonunun azalmasında ve solmada açık hava iklim şartlarına maruz bırakılan ağaç malzemenin önemli bileşenlerinden olan ligninin kimyasal yapısındaki bozulmadan dolayı sarı renge dönüşmesinin de etkisi olduğu söylenebilir (5).

Araştırmada kullanılan boyalar sürüldükleri yüzeyde koruyucu bir katman oluşturmayıp sadece renk ve ton değişikliği yapmaktadır. Ahşap yüzeyler boyası ile renklendirildikten sonra vernik ve benzeri koruyucu bir katmanla kaplanması önerilebilir.

KAYNAKLAR

- 1. Payne, H.F., "Organic coating technology, volume II", John Wiley & Sons Inc., New York, 679-685 (1967).
- 2.Delikan, A. B., "Ağaç boyaları ile renklendirilmiş ağaç malzemede hızlandırılmış solma deneyleri", Yüksek lisans tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, 1-4 (2001).
- Sönmez, A., "Ağaç İşleri üstyüzey işlemleri 1, hazırlık ve renklendirme", Çizgi Matbaacılık, Ankara, 70-73
 (2000).
- Sherbondy, V. D., "Accelerated weathering, Paint and coating testing manual, chapter 53", ASTM Special Technical Publication, Philadelphia, P.A., 643-653 (1995).
- Anderson, E.L., Pawlak, Z., Owen, N.L., Feist, W.C., "Infrared studies of wood weathering", Applied spectroscopy, 45: 641-647 (1991).
- 6. Sönmez, A., Budakçı, M., "Vernikli ve verniksiz ağaç malzeme kimyasal yapısına açık hava iklim şartlarının etkisi", *Politeknik Dergisi*, Gazi Üniversitesi Teknik Eğitim Fakültesi, Ankara, 2 (4):73-78 (1999).
- Newel, A.C., Holtrop, W.F., "Coloring finishing and painting wood", Chas.A. Benett Co. Inc., Peoria, Illinois, 84-109 (1961).
- 8.Şanıvar, N., "Ağaçişleri üstyüzey işlemleri", Milli Eğitim Basımevi, İstanbul, 104-106 (1978).
- 9.ASTM D-358., "Standard specification for wood to be used as panels in weathering test of coatings", American Society for Testing and Materials, USA (1998).
- 10.TS 2470., "Odunda fiziksel ve mekaniksel deneyler için numune alma metodları ve genel özellikler", *Türk Standartları Enstitüsü*, Ankara (1976).
- 11. ASTM D-3924., "Standart specification for standard environment for conditioning and testing point varnish, lacquer and related materials", *American Society for Testing and Materials*, USA(1991).
- 12.TS 4460., "Hava şartlarına karşı renk haslığı tayini metodu-Ksenon ark lambası metodu", *Türk Standartları Enstitüsü*, Ankara (1985).
- 13.XENOTEST 150 S., Kullanma talimatı (1999).
- 14. Minolta CR-231., Chroma meter, ver. 3.0. Kullanma talimatı (1994).
- 15.ASTM.D-2244., "Standard test method for calculation of color differences from instrumentally measured color coordinates", *American Society for Testing and Materials*, USA(1993).

Geliş Tarihi:18.06.2001 Kabul Tarihi:27.06.2003