# PAPER DETAILS

TITLE: The Riesz Core of a Sequence

AUTHORS: Celal ÇAKAN, Abdullah ALOTAIBI

PAGES: 35-39

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/82969



# The Riesz Core of a Sequence

Celal ÇAKAN<sup>1,♠</sup>, Abdullah M. ALOTAIBI<sup>2</sup>

<sup>1</sup>İnönü University, Faculty of Education, 44280, Malatya, Turkey <sup>2</sup>School of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received: 03/11/2010 Revised: 05/11/2010 Accepted: 08/11/2010

## ABSTRACT

The Riesz sequence space  $\Gamma_c^q$  including the space c has recently been defined in [14] and its some properties have been investigated. In the present paper, we introduce a new type core,  $K_q$ -core, of a complex valued sequence and also determine the required conditions for a matrix *B* for which  $K_q$ -core (*Bx*)  $\subseteq$  *K*-core (*x*),  $K_q$ -

*core* (*Bx*)  $\subseteq$  *st<sub>A</sub>-core* (*x*) and *K<sub>q</sub>-core* (*Bx*)  $\subseteq$  *K<sub>q</sub>-core* (*x*) hold for all  $x \in \ell_{\infty}$ .

Keywords: Matrix transformations, core of a sequence, statistical convergence

### 1. INTRODUCTION

Let *E* be a subset of  $N=\{0,1,2,...\}$ . Natural density  $\delta$  of *E* is defined by

$$\delta(\mathbf{E}) = \lim_{n} \frac{1}{n} |\{\mathbf{k} \le \mathbf{n} : \mathbf{k} \in \mathbf{E}\}|,$$

where the vertical bars indicate the number of elements in the enclosed set. A sequence  $x = (x_k)$  is said to be statistically convergent to the number  $\ell$  if for every  $\mathcal{E}$ ,  $\delta$  {k:  $|x_k - \ell| \geq \mathcal{E}$ } = 0, [9]. By *st* and *st*<sub>0</sub>, we denote the sets of statistically convergent and statistically null sequences.

For a given nonnegative regular matrix  $A=(a_{nk})$ , the number  $\delta_A(F)$  is defined by

$$\delta_{A}(F) = \lim_{n} \sum_{k \in F} a_{nk}$$

and it is said to be the *A*-density of  $F \subseteq N$ , [10]. A sequence  $x=(x_k)$  is said to be *A*-statistically convergent to a number *s* if for every  $\mathcal{E} > 0$  the set  $\delta$  {k:  $|x_k - s| \ge \mathcal{E}$  } has *A*-density zero, [4].

Let  $x=(x_k)$  be a sequence in *C*, the set of all complex numbers, and  $R_k$  be the least convex closed region of complex plane containing  $x_k$ ,  $x_{k+1}$ ,  $x_{k+2}$ ,.... The Knopp Core (or *K*-core) of *x* is defined by the intersection of all  $R_k$  (k=1,2,...), [3, p.137]. In [15], it is shown that

$$K\text{-core}(x) = \bigcap_{z \in C} B_x(z)$$

for any bounded sequence  $x=(x_k)$ , where  $B_x(z) = \{w \in C: |w-z| \le limsup_k |x_k-z|\}$ .

In [8], the notion of the statistical core of a complex valued sequence introduced by Fridy and Orhan [11] has been extended to the *A*-statistical core (or  $st_A$ -core) and it is shown for a *A*-statistically bounded sequence x that

$$st_A - core(x) = \bigcap_{z \in C} C_x(z),$$
  
where  $C_x(z) = \{ w \in C: |w-z| \le st_A - limsup_k |x_k - z| \}.$ 

The inequalities related to the core of a sequence have been studied by many authors. For instance, see [1, 5, 6, ]

In this case, we write  $st_A$ -lim x = s. By st(A) and  $st(A)_0$ , we respectively denote the sets of all A-statistically convergent and A-statistically null sequences.

<sup>\*</sup>Corresponding author, e-mail: ccakan@inonu.edu.tr

7, 8, 11, 15] and the others. The matrix  $R=(r_{nk})$  defined by

$$r_{nk} = \begin{cases} q_k / Q_n , k \le n \\ 0 , k > n \end{cases}$$

is called Riesz matrix and denoted by  $(R, q_k)$  or shortly R, where  $(q_k)$  is a sequence of non-negative numbers which are not all zero and  $Q_n = q_1+q_2+\ldots+q_n$ ,  $n \in N$ ;  $q_1 > 0$ . It is well-known that R is regular if and only if  $lim_n Q_n = \infty$ , [14].

Using the convergence domain of the Riesz matrix, the new sequence spaces  $r_c^q$  and  $r_0^q$  respectively including the spaces *c* and  $c_0$  have been constructed by Malkowsky & Rakòević in [13] and Altay & Başar in [2] and their some properties have been investigated, where *c* and  $c_0$  are the spaces of all convergent and null sequences, respectively.

Let *B* be an infinite matrix of complex entries  $b_{nk}$  and  $x = (x_k)$  be a sequence of complex numbers. Then  $Bx = \{(Bx)_n\}$  is called the *B* transform of *x*, if  $(Bx)_n = \sum_k b_{nk} x_k$  converges for each *n*. For two sequence spaces *X* and *Y* we say that  $B = (b_{nk}) \in (X, Y)$  if  $Bx \in Y$  for each  $x = (x_k) \in X$ . If *X* and *Y* are equipped with the limits *X*-lim and *Y*-lim, respectively,  $B = (b_{nk}) \in (X, Y)$  and *Y*-lim,  $(Bx)_n = X$ -limk *xk* for all  $x = (x_k) \in X$ , then we say *B* regularly transforms *X* into *Y* and write  $B = (b_{nk}) \in (X, Y)_{reg}$ .

In the present paper, we firstly introduce a new type core,  $K_q$ -core, of a complex valued sequence and also determine the necessary and sufficient conditions on a matrix *B* for which  $K_q$ -core  $(Bx) \subseteq K$ -core (x),  $K_q$ -core  $(Bx) \subseteq st_A$ -core (x) and  $K_q$ -core  $(Bx) \subseteq K_q$ -core (x) for all  $x \in \ell_{\infty}$ , where  $\ell_{\infty}$  is the space of all bounded complex sequences. To do these, we need to characterize the classes  $(c, r_c^q)_{\text{reg}}, (r_c^q, r_c^q)_{\text{reg}}$  and  $(st(A) \cap \ell_{\infty}, r_c^q)_{\text{reg}}$ .

#### 2. LEMMAS

In this section, we prove some lemmas which will be useful to our main results. For brevity, in what follows  $\tilde{z}$ 

we write  $b_{nk}$  in place of

$$\frac{1}{Q_n}\sum_{k=0}^n q_k b_{nk} ; (n,k \in N).$$

**Lemma 2.1.**  $B \in (\ell_{\infty}, r_c^q)$  if and only if

$$||\mathbf{B}|_{\mathsf{r}} = \sup_{k} \sum_{k} |\tilde{b}_{nk}| < \infty,$$
(2.1)

 $\lim_{n} \tilde{b}_{nk} = \alpha_{k} \quad \text{for each } k, \tag{2.2}$ 

$$\lim_{n} \sum_{k} |\tilde{b}_{nk} - \alpha_{k}| = 0.$$
(2.3)

*Proof.* Let  $x \in \ell_{\infty}$  and consider the equality

$$\frac{1}{Q_n} \sum_{j=0}^n q_k \sum_{k=0}^m b_{nk} x_k = \sum_{k=0}^m \frac{1}{Q_n} \sum_{j=0}^n q_k b_{jk} x_k ; (m, n) \in N$$
  
which yields as  $m \to \infty$  that  
$$\frac{1}{Q_n} \sum_{j=0}^n q_k (Bx)_j = (Dx)_n; (n \in N), \qquad (2.4)$$
  
where  $D = (d_{nk})$  defined by

$$d_{nk} = \begin{cases} \frac{1}{Q_n} \sum_{j=0}^n q_k b_{jk}, \ 0 \le k \le n \\ 0, \ k > n. \end{cases}$$

Therefore, one can easily see that  $B \in (\ell_{\infty}, r_c^q)$  if and

only if  $D \in (\ell_{\infty}, c)$  (see [13]) and this completes the proof.

**Lemma 2.2.**  $B \in (c, r_c^q)_{reg}$  if and only if the conditions (2.1) and (2.2) of the Lemma 2.1 hold with  $\alpha_k = 0$  for all  $k \in N$  and

$$\lim_{n} \sum_{k} \tilde{b}_{nk} = 1.$$
 (2.5)

Since the proof is easy we omit it.

**Lemma 2.3.**  $B \in (st(A) \cap \ell_{\infty}, r_c^q)_{reg}$  if and only if  $B \in (c, r_c^q)_{reg}$ and

$$\lim_{n} \sum_{k \in E} |\tilde{b}_{nk}| = 0$$
(2.6)

for every  $E \subset N$  with  $\delta_A(E) = 0$ .

**Proof (Necessity).** Because of  $c \subset \operatorname{st}(A) \cap \ell_{\infty}$ ,  $B \in \mathcal{C}$ 

 $(c, r_c^{q})_{reg}$ . Now, for any  $x \in \ell_{\infty}$  and a set  $E \subset N$  with  $\delta_A(E) = 0$ , let us define the sequence  $z = (z_k)$  by

$$z_k = \begin{cases} x_k, k \in E \\ 0, k \notin E. \end{cases}$$

Then, since  $z \in st(A)_0$ ,  $Az \in r_0^q$ , where  $r_0^q$  is the space of sequences consisting the Riesz transforms of them in  $c_0$ . Also, since

$$\sum_{k} \tilde{b}_{nk} z_k = \sum_{k \in E} \tilde{b}_{nk} x_k$$

the matrix  $D = (d_{nk})$  defined by  $d_{nk} = \tilde{b}_{nk}$   $(k \in E), = 0$  $(k \notin E)$  is in the class  $(\ell_{\infty}, r_c^q)$ . Hence, the necessity of (2.6) follows from Lemma 2.1.

(Sufficiency). Let  $x \in st(A) \cap \ell_{\infty}$  with  $st_A$ -lim  $x = \ell$ . Then, the set *E* defined by  $E = \{k: |x_k - \ell| \ge \epsilon\}$  has *A*-density zero and  $: |x_k - \ell| \le \epsilon$  if  $k \notin E$ . Now, we can write

$$\sum_{k} \tilde{b}_{nk} x_{k} = \sum_{k} \tilde{b}_{nk} (x_{k} - l) + k \sum_{k} \tilde{b}_{nk} . \qquad (2.7)$$
  
Since  
$$|\sum_{k} \tilde{b}_{nk} (x_{k} - l)| \le ||x|| \sum_{k \in E} \tilde{b}_{nk} + \varepsilon ||B||,$$
  
letting  $n \to \infty$  in (2.7) with (2.6), we have

 $\lim_{n} \sum_{k} b_{nk} x_{k} = \ell.$ 

This implies that  $B \in (\operatorname{st}(A) \cap \ell_{\infty}, r_c^q)_{reg}$  and the proof is completed. When *B* is chosen as the Cesáro matrix in Lemma 2.3, we have the following corollary.

**Corollary 2.4.**  $B \in (\text{st} \cap \ell_{\infty}, r_c^q)_{reg}$  if and only if  $B \in (c, r_c^q)_{reg}$ 

$$\lim_{n} \sum_{k \in E} |\tilde{b}_{nk}| = 0$$
  
for every  $E \subset N$  with  $\delta(E) = 0$ .

**Lemma 2.5.**  $B \in (r_c^q, r_c^q)_{reg}$  if and only if  $(b_{nk}) \in cs$ 

holds and  $C \in (c, r_c^q)$ , where  $C = (c_{nk})$  is defined by

(2.8)

 $c_{nk} = \Delta \left(\frac{b_{nk}}{q_k}\right) Q_k$ 

for all  $n,k \in N$  and cs is the space of all convergent series.

**Proof. (Sufficiency).** Take  $x \in r_c^q$ . Then, the sequence  $\{b_{nk}\}_{k \in N} \in [r_c^q]^{\beta}$  for all  $n \in N$  and thisimplies the existence of the *B*-transform of *x*.

Let us now consider the following equality derived by using the relation,

$$y_k = \sum_{i=0}^k \frac{q_i}{Q_k} x_i$$

from the  $m^{th}$  partial sum of the series  $\sum_k b_{nk} x_k$  ,

$$\sum_{k=0}^{m} b_{nk} x_{k} = \sum_{k=0}^{m-1} \Delta \left( \frac{b_{nk}}{q_{k}} \right) Q_{k} y_{k} + \frac{b_{nm}}{q_{m}} Q_{m} y_{m} (m, n)$$
  
 $\in N$ ). (2.9)

Then, using (2.1), we obtain from (2.9) as  $m \to \infty$  that

$$\sum_{k} b_{nk} x_{k} = \sum_{k} \Delta \left( \frac{b_{nk}}{q_{k}} \right) Q_{k} y_{k} , \qquad (2.10)$$

i.e. Bx = Cy. Since  $x \in r_c^q$  if and only if  $y \in c$ , (2.2) implies that  $B \in (r_c^q, r_c^q)$ .

(Necessity). Conversely, let  $B \in (r_c^q, r_c^q)$ . Then, since  $\{b_{nk}\}_k \in N \in [r_c^{q]\beta}$  for all  $n \in N$ , the necessity of (2.1) is immediate. On the other hand, (2.2) follows from (2.4).

#### 3. K<sub>q</sub>-CORE

Let us write

$$t_n^{q}(x) = A^r(x) = \frac{1}{Q_n} \sum_{k=0}^n q_k x_k$$

Then, we can define  $K_q$ -core of a complex sequence as follows.

**Definition 3.1.** Let  $H_n$  be the least closed convex hull containing  $t_n^q$ ,

 $t_{n+1}^{q}$ ,  $t_{n+2}^{q}$ , .... Then,  $K_q$ -core of x is the intersection of all  $H_n$ , i.e.,

$$K_q$$
-core $(x) = \bigcap_{n=1}^{\infty} H_n$ .

Note that, actually, we define  $K_{q}$ -core of x by the K-core of the sequence  $(t_n^{q})$ . Hence, we can construct the following theorem which is an analogue of K-core, (see [16]).

п

**Theorem 3.2.** For any  $z \in C$ , let  $G_x(z) = \{ w \in C : |w - z| \le \limsup |t_n^q - z| \}.$ 

Then, for any 
$$x \in \ell_{\infty}$$
,  
 $K_q$ -core =  $\bigcap_{z \in C} G_x(z)$ .

Note that in the case  $q_n=1$  for all *n*, the Riesz core is reduced to the Cesáro core.

Now, we may give some inclusion theorems.

**Theorem 3.3.** Let  $B \in (c, r_c^q)_{reg}$ . Then,  $K_q$ -core (Bx)  $\subseteq K$ -core (x) for all  $x \in \ell_{\infty}$  if and only if

$$\lim_{n} \sum_{k} |\tilde{b}_{nk}| = 1.$$
(3.1)

**Proof (Necessity).** Let us define a sequence  $x = x^{(k)} = \{x^{(k)}_n\}$  by

$$x^{(k)}_{n} = sgn \ \tilde{b}_{nk}$$

for all  $n \in N$ . Then, since *limsup*  $x^{(k)} = 1$  for all  $n \in N$ , *K-core*(x)  $\subseteq B_1(0)$ . Therefore, by hypothesis,

$$\left\{ w \in C : |w| \le \limsup_{n} \sum_{k} |\tilde{b}_{nk}| \right\} \subseteq B_{I}(0)$$

which gives the necessity of (3.1).

(Sufficiency). Let  $w \in K_q$ -core(Bx). Then, for any given  $z \in C$ , we can write

$$|w-z| \le \limsup_{n} |t_n^q (Bx)-z|$$
(3.2)

$$= \limsup_{n} |z - \sum_{k} \tilde{b}_{nk} x_{k}|$$
  

$$\leq \limsup_{n} |\sum_{k} \tilde{b}_{nk} (z - x_{k})| + \limsup_{n} |z|| 1 - \sum_{k} \tilde{b}_{nk}|$$

$$= \limsup_{n} |\sum_{k} \tilde{b}_{nk} (z - x_{k})|.$$
  
Now, let  $limsup_{k} |x_{k}-z| = 1$ . Then, for any  $\varepsilon > 0$ ,  $|x_{k}-z| \le 0$   
+  $\varepsilon$  whenever  $k \ge k_{0}$ . Hence, one can write that  
 $\sum \tilde{b}_{k} (z - x_{k}) =$ 

$$\sum_{k} \tilde{b}_{nk} (z - x_{k}) + \sum_{k \ge k_{0}} \tilde{b}_{nk} (z - x_{k}) | \qquad (3.3)$$

$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |b_{nk}| + (\ell + \varepsilon) \sum_{k \ge k_{0}} |b_{nk}|$$
  
$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |\tilde{b}_{nk}| + (\ell + \varepsilon) \sum_{k} |\tilde{b}_{nk}|.$$

Therefore, applying  $limsup_n$  under the light of the hypothesis and combining (3.2) with (3.3), we have

$$|w-z| \leq \limsup_{n} |\sum_{k} \tilde{b}_{nk}(z-x_{k})| \leq \ell + \varepsilon$$

which means that  $w \in K$ -core(x). This completes the proof.

**Theorem 3.4.** Let  $B \in (st(A) \cap \ell_{\infty}, r_c^q)_{reg}$ . Then,  $K_q$ -

*core* (*Bx*)  $\subseteq$  *st*<sub>*A*</sub>*-core* (*x*) for all  $x \in \ell_{\infty}$  if and only if (3.1) holds.

**Proof.**(Necessity). Since  $st_A$ -core  $(x) \subseteq K$ -core (x) for any sequence x [9], the necessity of the condition (3.1) follows from Theorem 3.3.

(Sufficiency). Take  $w \in K_q$ -core (Bx). Then, we can write again (3.2). Now; if  $st_A$ -limsup  $|x_k-z| = s$ , then for any  $\varepsilon > 0$ , the set *E* defined by  $E = \{k: |x_k-z| > s+\varepsilon\}$  has *A*-density zero, (see [9]). Now, we can write

$$\begin{split} &|\sum_{k} \tilde{b}_{nk} (z - x_{k})| = |\sum_{k \in E} \tilde{b}_{nk} (z - x_{k})| \\ &= \sum_{k \notin E} \tilde{b}_{nk} (z - x_{k})| \\ &\leq \sup_{k} |z - x_{k}| \sum_{k \in E} |\tilde{b}_{nk}| + (s + \varepsilon) \sum_{k \notin E} |\tilde{b}_{nk}| \\ &\leq \sup_{k} |z - x_{k}| \sum_{k \in E} |\tilde{b}_{nk}| + (s + \varepsilon) \sum_{k} |\tilde{b}_{nk}|. \end{split}$$

Thus, applying the operator  $limsup_n$  and using the condition (3.1) with (2.6), we get that

$$\limsup_{n} |\sum_{k} \tilde{b}_{nk} (z - x_{k})| \le s + \varepsilon.$$
(3.4)

Finally, combining (3.2) with (3.4), we have  $|w-z| \leq st_A$ -limsup<sub>k</sub>  $|x_k-z|$  which means that  $w \in st_A$ -

core(x) and the proof is completed. As a consequence of Theorem 3.4, we have

**Theorem 3.5.** Let  $B \in (\text{st} \cap \ell_{\infty}, r_c^q)_{\text{reg.}}$  Then,  $K_q$ -core

 $(Bx) \subseteq st$ -core (x) for all  $x \in \ell_{\infty}$  if and only if (3.1) holds.

**Theorem 3.5.** Let  $B \in (r_c^q, r_c^q)_{reg}$ . Then,  $K_q$ -core (Bx)  $\subseteq K_q$  -core (x) for all  $x \in \ell_{\infty}$  if and only if (3.1) holds.

**Proof.** (Necessity). Since  $K_q$  -core  $(x) \subseteq K$ -core (x) for

all  $x \in \ell_{\infty}$ , the necessity of the

condition (3.1) follows from Theorem 3.3.

**(Sufficiency).** Let  $w \in Kq$ -core (Bx). Then, we can write (3.2). Now; if  $\limsup_k |t_k^q(x)-z| = v$ , then for any  $\varepsilon > 0$ ,  $|t_k^q(x)-z| \le v + \varepsilon$  whenever  $k \ge k_0$ . Hence, we can write

$$\sum_{k} b_{nk}(x_{k}-z) = \sum_{k < k_{0}} c_{nk}(t_{k}^{q}(x)-z) +$$

$$\sum_{k \ge k_{0}} c_{nk}(t_{k}^{q}(x)-z) = (3.5)$$

$$\leq \sup_{k} |t_{k}^{q}(x)-z| \sum_{k < k_{0}} |c_{nk}| + (v+\varepsilon) \sum_{k \ge k_{0}} |c_{nk}| +$$

$$\leq \sup_{k} |t_{k}^{q}(x)-z| \sum_{k < k_{0}} |c_{nk}| + (v+\varepsilon) \sum_{k} |c_{nk}|,$$
where  $c_{k}$  is defined as in Lemma 2.5

where  $c_{nk}$  is defined as in Lemma 2.5.

Therefore, considering the operator  $limsup_n$  in (3.5) and using the hypothesis, we get that  $|w-z| \le v + \varepsilon$ . This means that  $w \in K_q$ -core (x) and the proof is completed.

#### ACKNOWLEDGEMENT

We are grateful to the referees for their valuable suggestions which are improved the paper considerably.

#### REFERENCES

- Abdullah M. Alotaibi, "Cesáro statistical core of complex number sequences", *Inter. J. Math. Math. Sci.*, Article ID 29869 (2007).
- [2] B. Altay, F. Başar, "Some paranormed Riesz sequence spaces of non-absolute type", *Southeast Asian Bull. Math.* 30(5): 591-608 (2006).
- [3] F. Başar, "A note on the triangle limitation methods", *Firat Univ. Fen & Müh. Bil. Dergisi*, 5(1): 113-117 (1993).
- [4] R. G. Cooke, "Infinite matrices and sequence spaces", *Macmillan*, New York (1950).
- [5] J. Connor, "On strong matrix summability with respect to a modulus and statistical convergence", *Canad. Math. Bull.* 32: 194-198 (1989).
- [6] C. Çakan, H. Çoşkun, "Some new inequalities related to the invariant means and uniformly bounded function sequences", *Applied Math. Lett.* 20(6): 605-609 (2007).
- [7] H. Çoşkun, C. Çakan, "A class of statistical and σconservative matrices", *Czechoslovak Math. J.* 55(3): 791-801 (2005).

- [8] H. Çoşkun, C. Çakan, Mursaleen, "On the statistical and  $\sigma$  –cores", *Studia Math.* 154(1):(2003).
- [9] K. Demirci, "A-statistical core of a sequence", *Demonstratio Math.*, 33: 43-51 (2000).
- [10] H. Fast, "Sur la convergence statisque", Colloq. Math., 2: 241-244 (1951).
- [11] A. R. Freedman, J. J. Sember, "Densities and summability", Pasific J. Math., 95:293-305 (1981).
- [12] J. A. Fridy, C. Orhan, "Statistical core theorems", J. Math. Anal. Appl., 208: 520-527 (1997).
- [13] I. J. Maddox, "Elements of Functional Analysis", *Cambridge University Press*, Cambridge (1970).
- [14] E. Malkowsky, V. Rakoćević, "Measure of noncompactness of linear operators between spaces of sequences that are ( $\overline{N}$ , q) summable or bounded", *Czechoslovac Math. J.*, 51(126): 505-522 (2001).
- [15] G. M. Petersen, "Regular matrix transformations", *McGraw-Hill*, (1966).
- [16] A. A. Shcherbakov, "Kernels of sequences of complex numbers and their regular transformations", *Math. Notes*, 22: 948-953 (1977).