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Abstract  
Although sampling methods are various, most frequently used method is Stratified Random Sampling in 
practice, especially, in case of heterogeneous population structure. One of the most important points, which 
should be considered, in the use of stratified random sampling method is how many units of samples should be 
selected from which stratum. Determination of optimum sample size to be selected from strata allows the 
sample to represent the population properly and increases precision of the obtained estimations. Kuhn-Tucker 
Method, which is accepted as a basic method for determination of sample sizes to be selected from strata in 
stratified random sampling, and the goal programming method, which can take into consideration the 
researcher’s multi-objectives, will be used in this study. It will be tried to minimize variance of sample mean 
statistics by using these methods under the non-linear cost constraint and superiorities of these methods over 
each other will be discussed under the light of the results obtained from the conducted simulation study.  
 
Keywords: Goal programming, Kuhn-Tucker Method, nonlinear cost function, stratified random sampling. 

 
1. INTRODUCTION 
 
A well established sampling plan plays an important 
role to make the results obtained from statistical 
studies useful and reflect the reality. A well established 
sampling plan and samples representing population 
well produce more reliable statistical results.  

 
Although sampling methods are various, most 
frequently used method is stratified random sampling 
in practice, especially, in case of heterogeneous 
population structure. The most important problem in 
stratified random sampling method is to allocate the 
specified sample size ( n ) for strata and to decide how 
many units of sample are selected from which stratum. 
In fact, the problem under consideration is an 
optimization problem. Many studies were conducted to 
specify sample size to be selected from strata under the 
linear cost constraint with a fixed budget. First of these 
studies was conducted by Neyman in 1934 [1]. 
Neyman used the Lagrange multiplier method to find 

the sample sizes to minimize variance of sample mean 
statistics in stratified random sampling under the linear 
cost constraint given in Equation (1). 

∑
=
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h
hhntcc

1
0                                                (1) 

In Equation (1), c  stands for the total budget allocated 

for the research while 0c  represents fixed costs and 

ht  represents the cost for selecting a unit from h th 
stratum. This cost function is the linear cost function in 
which travel to each stratum has an effect on the cost 
function as an increase of one unit. 
 
The method of Lagrange multiplier is generally used in 
specifying sample sizes to be selected from strata. 
However, the use of the method of Lagrange multiplier 
causes certain negative effects from the point of view 
of sampling. They are the fact that the constraint of 
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h hn N≤  is neglected in the method of Lagrange 

multiplier and the fact that the results like h hn N>  

or n N>  are encountered in the solutions. In this 
study, Kuhn-Tucker method was accepted as basic 
method to eliminate such negative effects. When our 
cost function is linear, specifying values of hn , which 
will minimize variance of sample mean statistics, is 
very easy. If the cost function is not linear, in other 
words, if travel to each stratum does not cause an 
increase of one unit in cost function, specifying values 
of hn  will be quite complex.  
 
The literature contains numerous nonlinear optimization 
techniques that could be used to minimize variance of 
sample mean statistics in stratified random sampling 
under nonlinear cost constraints. Various nonlinear 
optimization methods such as the Kuhn-Tucker method, 
Geometric Programming, Dynamic Programming and 
Separable Programming could be used to solve the 
problem. However, all these methods allow the 
minimization or maximization of only single objective. 

 
In this study, Kuhn-Tucker and goal programming 
methods were used for optimum allocation of the 
sample size of n  selected from the population for 
strata under non-linear cost constraint.  

 
The reason for the use of the Kuhn-Tucker method: In 
stratified random sampling, the Lagrange multipliers is 
the classical method used in allocating the sample size 
into strata. The Lagrange multipliers method is used in 
solving optimization methods with equal constraints. 
Since it doesn’t take unequal constraints into 
consideration, the Lagrange multipliers method has 
certain negative effects concerning sampling. For 
instance, the use of the Lagrange multiplier method 
might yield results such as nh > Nh  or Nn > . 
The Kuhn-Tucker method takes unequal constraints, 
which cannot be included in the Lagrange multipliers 
method, into account. Therefore the use of this method 
eliminates such negative results as hh Nn >  and 

Nn > . Moreover, the Kuhn-Tucker method 
encompasses the Lagrange multipliers method. As a 
result, this study uses the Kuhn-Tucker method as its 
principal method for comparison. The Kuhn-Tucker 
method is one of the leading methods that have a 
single objective function (the variance of sample mean 
statistics for this study). 

 
The reason for the use of Goal Programming: In 
general, nonlinear programming or nonlinear 
optimization deals with the solution of single-objective 
models (models in which a single objective is best 
accomplished under given constraints). Goal 
programming, however, focus on multi-objectives. 
Basic consideration in goal programming technique is 
to convert a multi-objective problem into a problem 
with a single objective to solve it. Within the 
framework of the problem at hand, our first goal is to 
minimize the variance of mean sample statistics, the 

second goal is to minimize the part of the budget used 
for the research and the third and final goal is to make 
sure that the sum of sizes of samples selected from 

strata equals the total sample size ( ∑
=

=
L

h
hnn

1
).  

 
Solutions of the models, which were created by using 
these methods, were obtained with simulation study. 
Variances of sample mean statistics obtained from 
these two methods were compared and superiorities of 
these methods over each other were discussed.  
 
Non-linear cost function is in the form of 

0
1

L

h h
h

c c t nα

=

= +∑ , 0α >  [2, 3, 4]. Herein, c  

stands for total budget allocated for the research. 0c  

represents fixed costs. ht  represents the cost for 

selecting a unit from h th stratum. α  represents effect 
of travel to strata on the cost function. 
  
Specifying size of the sample to be selected from strata 
is the most frequently considered problem in the 
literature. However, most of the conducted studies are 
on specifying sample size to minimize variance of 
sample mean statistics under linear cost constraint [5-
14].  
 
2. KUHN-TUCKER METHOD 
 
Kuhn-Tucker method is used in solving non-linear 
optimization problems by including both of equity and 
inequity constraints into the model. Every constraint is 
made an equity constraint to create a general Lagrange 
function while the model is solved by this method. 
General structure of the problem is as seen in Model 
(2). 
 

( )Max f x  

( ) 0i ig x b− ≤             1, 2,  . . . , i m=           (2) 
 
Kuhn-Tucker(K-T) conditions are used in solution of 
Model (2). First of all, constraints in Model (2) are put 

into equity form by using slack variable ( 2 0is ≥ ).  
Suitable points are obtained from the required 
conditions of this function. The problem of specifying 
sizes of sample to be selected from strata to minimize 
variance of sample mean statistics are modeled 
according to Kuhn-Tucker method in the form of (3). 
Value of objective function of Model (3) may be 
converted into the maximum problem to make Model 
(3) similar to Model (2). 
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As seen, there are 1L +  constraints in total. General 
Lagrange function is expressed as seen in Equation (4).  

( )
2 2 2 2

2
1 1

1 1 1 1

( , , )
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h h h h
h h h h h h h

h h h hh h

W S W SL n s t n c n s N
n N

αλ λ λ +
= = = =

⎛ ⎞= − + − − − + −⎜ ⎟
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∑ ∑ ∑ ∑                          (4) 

 
Required conditions for Kuhn-Tucker method are 
expressed as the following: 
 

1. 
2 2

1
1 12

( , , ) 0h h h
h h h

h h

L n s W S t n
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αλ λα λ−
+

∂
= − − =
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2( , , ) 0h
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L n s n s Nλ
λ

∂
= + − =

∂
 or 

i in N≤     2,...., 1i L= +  

3. 1 1
( , , ) 2 ( ) 0h

i i i i i
i

L n s s n N
s
λ λ λ+ +

∂
= − = − =

∂
     1,....,i L=  

4. 1λ  Free (equity constraint), 2λ , 3λ , …, 

1Lλ + 0≥  (inequity constraints) 
 
As seen, totally 13 +L  equations are obtained from 
the required conditions of Kuhn-Tucker. Generalization 
cannot be made by using the obtained equations; 
however, a possible solution is sought for different 
situations of iλ s. 
 
3. GOAL PROGRAMMING  
 
Researchers face multi-objective decision making 
problems in practices. Goal programming method was 
begun to be used by Charnes and Cooper in 1961 for 
the first time in solving multi-objective problems [15]. 
Most of the constrained optimization problems have 
only one objective function. Also, the objective 
function is aimed only to be maximized or minimized. 
Because these models have only a single objective, 
they are used in a limited area.  
 
Goal programming method is a technique responding 
the decision maker in solution of multi-objective 
problems. Also, it is the multi-objective decision 
making technique, which tries to optimize objectives 
more than one conflicting with each other under 
certain conditions. In goal programming model, all 
goals specified are included in the model. Sum of the 
potential deviations from the goals is tried to be 
minimized. These deviations may be positive, being 
above the goal, or negative, being below the goal.  

Basic consideration in goal programming technique is 
to convert a multi-objective problem into a problem 
with a single objective to solve it. Optimum solution 
for all conflicting objectives may not be found with 
goal programming. Efficient solutions obtained in 
solution of the problem do not always need to be 
optimum. Goal programming tries to find a solution in 
a way to correct the goals of the model. Therefore, 
ordering, which reflect the objectives in order of 
importance, are required in solving multi-objective 
decision making models with the approach of goal 
programming. This order is called as priority. 
Consequently, compromised solutions, which basically 
consider priority of each objective, may be found. First 

of all, deviation from the goal with st1  priority is 
minimized as much as possible. Then, deviation from 
the following goal in order of priority is minimized as 
much as possible. This continues until deviation from 
the goal with the least priority is minimized as much as 
possible. Then, efficient solutions satisfying all goals 
are sought. 
 
Goal programming is used in many areas because it 
considers minimizing objectives more than one [16-
25]. There are many methods for goal programming. In 
this study, non-linear goal programming method was 
used in which variables get a continuous value in 
specifying sizes of sample to be selected from strata 
under non-linear cost constraint. Simplex 
approximation was used while this method was used 
and Method of Approximation Programming (MAP) 
was employed to obtain a solution with the simplex 
method [26]. 
 

id −  : The negative deviation from ib  

id +  : The positive deviation from ib  

jx   : thj  decision variable 

ib    : The associated right-hand-side value and reflect 

the value that )(xfi  must satisfy 

ijc   : The coefficient associated with variable j  in 

the thi  objective 

( , )k d dρ − +  : Linear function of the goal with thk  
priority 
 
Thus, the model of the linear goal programming with 
priority is expressed as the following: 
 



252 GU J Sci, 24(2):249-262 (2011)/ S.Tuğba ŞAHİN♠  

 

{ }1 2( , ), ( , ),..., ( , )kMina d d d d d dρ ρ ρ− + − + − +=
 

 
1

n

ij j i i i
j

c x d d b− +

=

+ − =∑  1, 2,...,i m=  

 ,  ,  0x d d− + >  
 
If the desired values of the goals, in other words right-
hand side constants ib , are not known, they must be 
specified by the researcher.  

 
MAP method was used by Griffith and Stewart for the 
first time for solving single-objective non-linear 
problems and then, it was expanded to the solution of 
non-linear goal programming problems by Ignizio [26, 
27]. MAP method is used as GS method also in the 
literature. Basic approach of Griffith and Stewart (GS) 
method may be given as the following: 
 
1st step: Decision model is formulated. 
2nd step: An initial solution was chosen arbitrarily. 
3rd step: Vicinities (limits) are defined relating to this 
initial solution. 
4th step: Linear approximation of the non-linear model 
is developed. 
5th step: Optimization of linear approximation of the 
model is solved with multi-dimensional simplex method 
according to the vicinity defined in 3rd step. 
6th step: Because the initial point is chosen arbitrarily, 
the solution obtained in the 5th step takes us to a better 
or worse point. In the fist case, we go to the 3rd step 
while in the second case, the method is ceased or linear 
approximation model is considered in smaller vicinity. 
 
In GS approximation, Taylor series expansion of each 

( )i sf x  is used around a given sx  initial point. Then, 
the non-linear function is converted into a linear 
function by neglecting non-linear terms in the series. To 
do this, ( )i sf x s should be derivable. Each objective 
in multi-objective decision models may be written as 
the following: 

 

( )i i i i iG f x d d b− += + − =  
 

sx : A possible solution for the set of objectives, iĜ : 

linear approximation of non-linear iG  objective 
function. Thus:  
 

,
1

( )ˆ ( ) ( )
J

s
i i s j s j i i i

j j

f xG f x x x d d b
x

− +

=

∂
= + − + − =

∂∑      (5) 

 
Linear approximation in Equation (5) may be re-written 
with vector notation as below: 
 

'ˆ ( ) ( ) ( )i i s i s s i i iG f x f x x x d d b− +⎡ ⎤= + ∇ − + − =⎣ ⎦            (6) 

We can replace the term of sx x−  in Equation (6) 

with a new y  vector.  
 

sy x x= −                                                               (7) 
 
As a result, y  vector in Equation (7) represents a 

variation between a new sx  solution point and the x  

point. However, components of y  may be free from 
the point of view of their signs. Therefore, problem may 
occur in using the simplex method. To eliminate this 
problem, variable of y  may be expressed in two 
positive variables. 
 

y u v= −    ( )0  , 0u v≥ ≥                            (8) 

 
From Equations (7) and (8), Equation (6) may be 
written as below.  
 

'ˆ ( ) ( ) ( )i i s i s i i iG f x f x u v d d b− +⎡ ⎤= + ∇ − + − =⎣ ⎦        (9) 

 
The obtained Equation (9) is a function, which is made 
linear. Thus, Equation (9) will be used as approximation 
of a non-linear function to a linear form. 
 
Two issues should be taken under consideration in 
using linear approximation. The first one is; each 
component of 1 2( , ,  . . . , )Jx x x x=  must have 

upper and lower limits. If jU  is upper limit of jx  

component, then  
 

jj Ux ≤≤0                                                        (10) 

 
This value of jU  may be found by considering the set 

of objectives. The second issue is whether ˆ
iG  (linear 

approximation of non-linear iG ) is good 

approximation in vicinity of sx  or not. 
 
Let jd  be the maximum distance in which jx  can 

move. Thus, jd will help us in defining vicinity. 

Because 
 

j j jd y d                 j 1, 2, . . . , J  − ≤ ≤ =      (11) 

 

jjj vuy −=  

 
               1, 2,  . . . ,   j j j jd u v d j J− ≤ − ≤ =

0≥ju , 0≥jv                                                    (12) 
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Then, Equation (12) may be written as below: 
 
0                 1, 2,  . . . , j ju d j J≤ ≤ =        (13) 

0                 1, 2,  . . . , j jv d j J≤ ≤ =        (14) 

 
Remind from Equations (7) and (10) that 
 
0                 1, 2,  . . . ,   j jx U j J≤ ≤ =  

and 

sy x x= −    or   jsjj xxy ,−=  

 
and combine these equations with Equations (13) and 
(14): 
 

} ,min{0 , jsjjj xUdu −≤≤                    (15) 

},min{0 , jsjj xdv ≤≤                                (16) 

 
As a result, upper limits’ set consisting of Equations 
(15) and (16) is the most superior objectives’ set. With 
this the most superior objectives’ set, jx  decision 

variables cannot pass any upper limit. Also, it enables 
the region where iG  is approached to stay relatively 
small. The most superior objectives have higher priority 
than other all objectives with priority. Equations (15) 
and (16) may be written in the following form: 
 

{ },min ,  j t t j j s ju d d d U x− ++ − = −          (17) 

{ },min ,  j q q j s jv d d d x− ++ − =                     (18) 

 
Cooper and Steinberg recommended the interval in 
Equation (19) for jd  [28]. 

 
510 jjj UdU ≤≤                                      (19) 

 
If recovery cannot be obtained in optimum solution of 
the linear model, jd  value may be decreased properly. 

Because Equations (17) and (18) are the most superior 

objectives, we want to minimize td +  in Equation (17) 

and qd +  in Equation (18). Herein, the most clear 

problem is selection of jd .  

 
Under the light of the definitions above, let us model 
the problem of specifying sizes of sample to be selected 
from strata under non-linear cost constraint, which is 
considered in this study, according to the goal 
programming method. 
Our first goal is to minimize variance of sample mean 
statistics. The second goal is to minimize the used part 
of the allocated budget for the research. Our final goal 
is to make total of sample size selected from strata 

equal to sample size of n . Also, because right-hand 
side resource must be specified in goal programming 
problems, right-hand side resource may be taken as the 
desired variance as specified by the researcher 
according to his opinion for variance of sample mean 
statistics: 
 

2
2

2

2

2

D
z
d

yreliabilit
precision

==  

 
If population consists of two strata, then goal 
programming model is expressed as below: 
 

2 2 2 2 2
21 1 2 2

1 2 2 2
1 2

1 1: N S N S df D
N n N n z

+ ≤ =  

variance of sample mean statistics 
 

2 1 1 2 2: 'f t n t n cα α+ ≤    non-linear cost function 
 

3 1 2:f n n n+ =  
 
We may write each goal as below: 
 

2 2 2 2
21 1 2 2

1 1 12 2
1 2

1 1: N S N SG d d D
N n N n

− ++ + − =  

2 1 1 2 2 2 2: 'G t n t n d d cα α − ++ + − =  

3 1 2 3 3:G n n d d n− ++ + − =  

{ } { } { }( )1 2 3 3min d , d , d d+ + − ++  

 
Once the non-linear model has been established as seen 
above, limits of the variables are specified. 

jd ,maximum distance in which jn  can move, and the 

initial point sn  are chosen arbitrarily. 
 

1 1
1

1 1

22 2 2
2

1 1 10 5
11

10 5

U Udn n U n
U nn n U Ud

≤ ≤≤ − = −⎫ ⎫
⇒ ⇒⎬ ⎬= −≤ − ⎭⎭ ≤ ≤

 

Once the initial point, ( )1 2s s sn n ,n= , has been 

chosen arbitrarily according to the researcher’s 
foresight, non-linear goal programming method is made 
linear as seen below. 
 
 

( ) ( ) ( ) 2
1 1 1: 1 s 1 sĜ f n f n ' u v d d D− ++ ∇ − + − =⎡ ⎤⎣ ⎦
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2 2

1 1 1 2
1 12 2

2 22 2
2 2

2
s

'

1 s

n

N S
N n u v

f n d d D
u vN S

N n

− +

⎛ ⎞
−⎜ ⎟ −⎛ ⎞⎜ ⎟+ + − =⎜ ⎟⎜ ⎟ −⎝ ⎠−⎜ ⎟⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )
2 2 2 2

21 1 2 2
1 1 2 2 1 12 2 2 2

1 2
1 s

N S N Sf n u v u v d d D
N n N n

− +− − − − + − =

 

( ) ( ) ( )2 2 2: 2 s 2 sĜ f n f n ' u v d d c'− ++ ∇ − + − =⎡ ⎤⎣ ⎦
 

( )
1

1 11 1
2 21

2 22 2
s

'

2 s
n

u vt n
f n d d c'

u vt n

α

α

α
α

−
− +

−

−⎛ ⎞ ⎛ ⎞
+ + − =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

 
( ) ( ) ( )1 1

1 1 1 1 2 2 2 2 2 22 sf n t n u v t n u v d d c'α αα α− − − ++ − + − + − =
 

( ) ( ) ( )3 3 3: 3 s 3 sĜ f n f n ' u v d d n− ++ ∇ − + − =⎡ ⎤⎣ ⎦
 

( ) 1 1
3 3

2 2

1
1

s

'

3 s
n

u v
f n d d n

u v
− +−⎛ ⎞⎛ ⎞

+ + − =⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
 

 

( ) ( ) ( )1 1 2 2 3 33 sf n u v u v d d n− ++ − + − + − =  

 

{ }4 4 4 1 1 1: 1 sĜ u d d min d ,U n− ++ − = −  

 

{ }5 5 5 1 1: 1 sĜ v d d min d ,n− ++ − =  

 

{ }6 6 6 2 2 2: 2 sĜ u d d min d ,U n− ++ − = −  

 

{ }7 7 7 2 2: 2 sĜ v d d min d ,n− ++ − =  

 
The model, which has been made linear to specify sizes 
of sample to be selected from the strata under non-linear 
cost constraint for the population consisting of two 
strata, is expressed as below. 
 
 
 
 
 
 

{ } { } { } { }( )4 5 6 7 1 2 3 3min d d d d , d , d , d d+ + + + + + − ++ + + +
 

( ) ( ) ( )
2 2 2 2

21 1 2 2
1 1 2 2 1 12 2 2 2

1 2
1 s

N S N Sf n u v u v d d D
N n N n

− +− − − − + − =

 
( ) ( ) ( )1 1

1 1 1 1 2 2 2 2 2 22 sf n t n u v t n u v d d c'α αα α− − − ++ − + − + − =
 

( ) ( ) ( )1 1 2 2 3 33 sf n u v u v d d n− ++ − + − + − =  

 

{ }4 4 1 1 11 su d d min d ,U n− ++ − = −  

 

{ }5 5 1 11 sv d d min d ,n− ++ − =   

 

{ }6 6 2 2 22 su d d min d ,U n− ++ − = −  

 

{ }7 7 2 22 sv d d min d ,n− ++ − =  

 
The optimization problem, which is made linear as seen 
above, is solved with multi-dimensional simplex 
method. Models can be established in similar way for 
higher strata numbers. 

4. TO MINIMIZE VARIANCE OF SAMPLE 
MEAN STATISTICS WITH SIMULATION 
STUDY BY USING GOAL PROGRAMMING AND 
KUHN-TUCKER METHOD UNDER THE 

CONSTRAINT OF  
1

'
L

h h
h

c t nα

=

= ∑   

In this chapter, considering the constraint of 

1

'
L

h h
h

c t nα

=

=∑ ( 0α > ), simulation study was 

conducted relating to the cost constraint, which is a 
function of α . Kuhn-Tucker and goal programming 
method were used to find which α  values produce 
more efficient variance of sample mean statistics as 
well as superiorities of the methods over each other 
were investigated. Monte Carlo simulation with 1000 
repetitions to find the variance of sample mean statistics 
with the help of this cost constraint. In the simulation 
study, population size ( N ), size of sample to be 

selected from population ( n ), budget ( 'c ), travel cost 

from a stratum to another stratum ( ht ) and α  were 
given at the beginning. The models to be used to 
minimize variance of sample mean statistics under non-
linear cost constraint are as the following. 
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Model 1: The model established for goal programming  Model 2: The model established for Kuhn-Tucker 
method 

{ } { } { }( )1 2 3 3min d , d , d d+ + − ++  

2 22 2
21 1

1 12 2
1

1 1... h h

h

N SN S d d D
N n N n

− ++ + + − =  

1 1 2 2... 'h ht n t n d d cα α − ++ + + − =  

1 3 3... hn n d d n− ++ + + − =   1,  . . . , h L=  

               2min ( )V x  

1

'

1

  1,  . . . , 

L

h
h

L

h h
h

h h h

n n

t n c

r n k h L

α

=

=

=

≤

≤ ≤ =

∑

∑  

 
In actual practices, it is hard to specify stratum 
variances and sample size to be selected from the 
population. Therefore, stratum variances are estimated 
with the help of a pilot sample and then, sample size to 
be selected from population may be specified. We 
mentioned before that right hand side resource must be 
specified to solve problems in goal programming. 
Therefore, the researcher will specify the right hand 
side resource of variance of sample mean statistics. The 
researcher may specify the desired variance with a 
certain precision and reliability based on previous 
studies or according to his competency. Increase in 
precision will decrease variance of sample mean 
statistics and more precise estimations are obtained.  
 
In addition, since the researcher determines the initial 
points and the maximum distances that hn s can change 
in the goal programming method arbitrarily, it is very 
difficult to compare the Kuhn-Tucker and Goal 
Programming methods theoretically in this study. 
Failing to identify the initial point correctly can result in 
a very inaccurate solution. This study takes into 
consideration the size of each stratum ( hN ) and has 
initial points that correspond to values in the middle of 
strata sizes. The Kuhn-Tucker method relies on trying 
all possible conditions of Lagrange multiplier iλ s that 
are used in formulating the general Lagrange function. 
For these reasons, it is almost impossible to compare 
the two methods theoretically because a theoretical 
comparison will not yield precise results but instead 
produce different results according to each initial point 
and different iλ  conditions. Since virtually all 
nonlinear optimization methods contain intuitional or 
arbitrary initial points, the best way to compare two 
nonlinear optimization techniques is to conduct a 
simulation whereby all possible iterations in the 
solution area will be tested. The simulation conducted 
in this study is especially significant since it clearly 
displays the superiorities of each method that couldn’t 
be theoretically demonstrated. 
 
The following steps were followed in solving the 
models. 
 
Step 1: Since sizes of strata are known at the beginning 
of the study, units on the strata are obtained by 
producing hN  amount of data with different means 

and variances from Normal Distribution. Because the 
strata were aimed to be homogeneous, Normal 
Distribution data, which have quite different stratum 
means, but have small stratum variances so that inside 
the stratum is homogeneous, were used. 
Step 2: Stratum variances were calculated with the help 
of the specified units. 
Step 3: Models 1 and 2, which were established under 
non-linear cost constraint, were solved with the help of 
the simulation program and variance values and CPU 
solution times were obtained. One of the most important 
problems in solving non-linear models is to specify the 
initial point required for the solution. In this study, 
initial points were specified by considering stratum 
sizes. 
Step 4: Steps 1-2-3 were repeated 1000 times. 
Step 5: Mean of the values obtained from 1000 
repetitions was calculated to generalize the results and 
then, optimum sample sizes to be selected from strata, 
variance of sample mean statistics and CPU solution 
times were obtained. 
 
When there are two or three strata, it is possible to 
conduct a manual solution using the Kuhn-Tucker or 
Goal Programming methods. However, as the number 
of strata goes up, it becomes more and more difficult to 
solve models using the two methods. There are also 
programmes such as Lindo, Lingo and Gino that are 
used in the solution of models using the Kuhn-Tucker 
and Goal Programming methods. These programmes 
make the solution of a single model possible yet they do 
not allow for a simulation. Therefore, the simulation 
intended to compare different models included in this 
study was done using a computer code developed in 
MATLAB. 
 
The simulation study was conducted under different 
values of travel costs to the strata. The simulation study 
was conducted for the cases that the population consists 
of two, three, four and five strata. Because the results 
could be generalized for four different stratum numbers, 
no more stratum numbers were considered. The results 
are summarized in Tables 1-10. In the tables, ihn  

stands for the sample size, which was obtained from i th 
model and should be selected from hth stratum while i . 
Cons. Budg. shows the used part of the budget allocated 
for the research when solution is conducted with ith 
model. However, the cases in which possible solutions 
could not be ensured are expressed in bold. 



 

 

Table 1: If two strata exist, 500N = , 1 300N = , 2 200N = , 2 15d = , 1.96z = , 2 3.904D = , 100n = , ' 500c = , 1 1t =  and 2 1t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  ( )1V x  1cpu  1. Cons. Budg. 
21n  22n  ( )2

V x  2cpu  2. Cons. Budg. 

0.2 59.9259 40.0741 0.00797 72.6094 4.3594 66.4350 33.5650 0.00815 171.4219 4.3338 
0.4 59.8200 40.1800 0.00801 72.2344 9.5187 66.4680 33.5320 0.00819 171.0313 9.4340 
0.5 59.7521 40.2479 0.00757 70.1410 14.0741 65.1000 34.9000 0.00771 170.1848 13.9761 
0.6 59.6984 40.3016 0.00800 72.8594 20.8174 66.4070 33.5930 0.00818 171.4844 20.6340 
0.8 60.0820 39.9180 0.00799 72.0938 45.5804 66.5490 33.4510 0.00817 169.0625 45.3196 
1 59.9930 40.0070 0.00801 74.4375 100 66.5180 33.4820 0.00819 169.6563 100 

1.2 59.4315 40.5685 0.00801 74.3125 219.6101 66.4930 33.5070 0.00819 167.4844 221.5664 
1.5 52.9511 34.2319 0.00946 77.4375 585.5960 51.1820 26.1450 0.01114 181.7500 499.8493 
1.8 21.0856 29.8000 0.02049 77.3281 692.0338 27.1240 14.2380 0.02252 172.8281 499.4029 
2 15.0667 29.8000 0.02718 77.8906 1115.04 17.8550 13.5680 0.02999 183.0313 502.8916 

 

Table 2: If two strata exist, 500N = , 1 400N = , 2 100N = , 2 20d = , 1.96z = , 2 5.20D = , 100n = , ' 1000c = , 1 1t =  and 2 50t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  ( )1V x  1cpu  1. Cons. Budg. 
21n  22n  ( )2

V x  2cpu  2. Cons. Budg. 

0.2 80.0862 19.9138 0.00798 83.3438 93.3523 89.6830 10.3170 0.00897 176.1094 82.1986 
0.4 76.9092 23.0908 0.00805 84.7031 181.2084 89.6760 10.3240 0.00898 176.3125 133.2469 
0.5 79.8969 20.1031 0.00782 83.6230 233.1210 89.7000 10.3000 0.00880 177.1290 169.9391 
0.6 77.9281 22.0719 0.00802 85.2813 333.7377 89.6630 10.3370 0.00898 174.0469 217.8963 
0.8 81.7607 18.2393 0.00803 83.4531 544.1297 89.6400 10.3600 0.00900 175.2656 361.0077 
1 83.5063 16.4937 0.00810 76.1563 908.1934 89.6200 10.3800 0.00899 178.4531 608.6200 

1.2 91.4891 8.5109 0.00963 77.1840 878.7992 88.7000 9.9000 0.00925 176.1341 1000.5 
1.5 98.9907 0.4512 0.03583 83.5625 1000.1 40.1180 6 0.03332 187.1094 988.9494 
1.8 89.8000 1.2512 0.05922 81.1047 3355.02 24 4 0.04193 185.1216 911.3431 
2 82.7923 5.2851 0.02614 79.1310 8251.17 18.1000 4 0.06165 183.1200 1127.61 
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Table 3: If two strata exist, 500N = , 1 350N = , 2 150N = , 2 0.055d = , 1.96z = , 2 0.0143D = , 100n = , ' 3500c = , 1 50t =  and 2 1t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  ( )1V x  1cpu  1. Cons. Budg. 
21n  22n  ( )2

V x  2cpu  2. Cons. Budg. 

0.2 61.5136 38.4864 0.00827 88.6094 116.0383 79.8660 20.1340 0.00856 171.4688 121.8952 
0.4 74.1757 25.8243 0.00806 86.7031 283.6174 79.9330 20.0670 0.00857 170.7188 291.7622 
0.5 66.7660 33.2340 0.00803 86.6094 414.3172 79.8680 20.1320 0.00851 170.2188 451.3314 
0.6 72.3142 27.6858 0.00804 86.6250 659.7195 79.8520 20.1480 0.00859 167.0156 698.4361 
0.8 35.8545 64.1455 0.01212 87.9688 904.1116 79.9010 20.0990 0.00859 165.4688 1674.5 
1 48.5219 51.4781 0.00986 82.4531 2477.6 70 17.8670 0.01009 163.4219 3517.9 

1.2 32.3490 67.6510 0.00763 81.9063 3399.08 33.1170 60.4590 0.01498 185.3594 3471.8 
1.5 12.4437 87.4920 0.03850 73.2969 3013.2 16 39.2840 0.03063 204.1094 3446.2 
1.8 13.9906 59.6000 0.03654 75.1819 7342.3 10 22 0.03360 187.1354 3415.6 
2 3.7477 85.3552 1.15266 98.7656 7987.7 8 16.8140 0.06442 182.1875 3482.7 

 

Table 4: If two strata exist, 500N = , 1 200N = , 2 300N = , 2 15d = , 1.96z = , 2 3.904D = , 100n = , ' 4000c = , 1 25t =  and 2 35t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  ( )1V x  1cpu  1. Cons. Budg. 
21n  22n  ( )2

V x  2cpu  2. Cons. Budg. 

0.2 39.4349 60.5651 0.00798 84.2656 131.6600 33.6350 66.3650 0.00816 165.6563 131.4954 
0.4 36.3212 63.6788 0.00804 82.4688 289.5569 33.5330 66.4670 0.00817 165.0938 289.4365 
0.5 33.8115 66.1885 0.00717 82.2500 430.1162 33.5590 66.4410 0.00799 164.9375 430.1150 
0.6 30.2006 69.7994 0.00810 82.1250 640.2479 33.7660 66.2340 0.00815 165.5000 639.7793 
0.8 37.3318 62.6682 0.00806 87.0938 1411.2 33.5180 66.4820 0.00820 165.0938 1420.3 
1 41.4459 58.5541 0.00801 81.2813 3085.5 33.5450 66.4550 0.00818 164.4844 3164.5 

1.2 53.6262 18.6233 0.02640 81.1094 4142.8 21.1230 41.1430 0.01429 163.0313 4000.4 
1.5 20.1000 18.8260 0.03089 79.5469 5111.8 14.6370 17.6970 0.02932 177.9375 4005.6 
1.8 21.5485 1.4106 0.02581 80.1460 6346.9 9 11 0.04904 173.1888 3926.5 
2 23.2020 10.3768 0.39750 82.5313 17227.04 7.3010 8.9110 0.06126 164.7188 4111.8 
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Table 5: If three strata exist, 10000N = , 1 2000N = , 2 3000N = , 3 5000N = , 2 20d = , 1.96z = , 2 5.206D = , 250n = , ' 600c = ,  

               1 1t = , 2 1t =  and 3 1t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  ( )1V x  1cpu  1 Cons. Budg. 
21n  22n  23n  ( )2

V x  2cpu  2. Cons. Budg. 

0.2 54.5623 75.2175 120.2202 0.00391 81.53 7.2042 30.3749 62.7066 156.9185 0.00424 178.95 7.0160 
0.4 55.2662 74.9087 119.8251 0.00394 80.15 17.3811 30.3732 62.6513 156.9755 0.00426 177.76 16.7073 
0.5 55.7726 74.7288 119.4986 0.00390 80.78 27.0442 30.3968 62.7347 156.8685 0.00423 179.40 25.9586 
0.6 55.0128 75.5546 119.4326 0.00392 80.81 42.0996 30.3154 62.7022 156.9824 0.00424 177.62 40.4957 
0.8 51.7445 77.9879 120.2676 0.00391 80.21 102.2760 30.3656 62.6714 156.9630 0.00425 178.37 99.8371 
1 52.2178 76.3912 121.3910 0.00395 80.29 250 30.3962 62.6918 156.9120 0.00427 179.43 250 

1.2 65.3490 82.9819 101.6691 0.00405 80.75 607.7959 28.9916 59.7999 149.6917 0.00445 183.37 599.9839 
1.5 73.7972 5.4000 50.1930 0.02208 79.85 1002.1 12.2231 23.8702 57.9031 0.01126 173.51 599.9651 
1.8 74.6000 5.4000 43.6787 0.02284 80.71 3266.4 8.1202 13.7433 29.4068 0.02025 181.35 594.9546 
2 74.6000 5.4000 49.6300 0.02215 82.04 8057.5 9.9089 12.9871 18.2517 0.02457 224.81 599.9756 

 

Table 6: If three strata exist, 10000N = , 1 2000N = , 2 3000N = , 3 5000N = , 2 15d = , 1.96z = , 2 3.904D = , 200n = , ' 6000c = ,  

               1 15t = , 2 45t =  and 3 30t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  ( )1V x  1cpu  1. Cons. Budg. 
21n  22n  23n  ( )2

V x  2cpu  2. Cons. 
Budg. 

0.2 38.2386 55.4012 106.3602 0.00492 84.68 207.8218 24.5884 50.1954 125.2162 0.00531 178.29 205.7626 
0.4 34.4243 57.1950 108.3807 0.00494 83.09 484.3263 24.5467 50.2696 125.1837 0.00533 178.54 476.6858 
0.5 35.8860 58.0852 106.0288 0.00491 82.46 741.7297 24.5531 50.2977 125.1492 0.00530 178.53 729.0808 
0.6 33.3014 61.6950 105.0036 0.00493 81.64 1146.3 24.5212 50.2051 125.2737 0.00531 177.57 1118.3 
0.8 42.2565 40.5942 117.1493 0.00519 83.60 2526.3 24.5499 50.2628 125.1873 0.00535 176.98 2656.9 
1 47.2288 42.6132 110.1580 0.00512 77.64 5930.8 23.1348 47.2666 117.5327 0.00565 178.89 6000 

1.2 59.6000 10.0391 60.4000 0.01367 81.28 6856.3 11.8696 23.1151 56.0072 0.01162 172.76 5999.8 
1.5 59.6000 7.4406 60.4000 0.01737 79.04 21897.4 14.1825 12.6375 22.3839 0.02101 233.89 5999.8 
1.8 59.6000 10.4000 50.4238 0.01419 78.95 61395.2 9.0027 8.1281 13.5287 0.03391 216.03 5999.8 
2 59.6000 10.4000 56.9900 0.01360 81.3281 155585.4 7.1805 6.5276 10.5023 0.04303 215.2656 5999.8 
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Table 7: If four strata exist, 1000N = , 1 100N = , 2 200N = , 3 300N = , 4 400N = , 2 20d = , 1.96z = , 2 5.206D = , 100n = ,  

               ' 1000c = , 1 1t = , 2 1t = , 3 1t =  and 4 1t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  14n  ( )1V x  1cpu  1. Cons. 
Budg. 21n  22n  23n  24n  ( )2

V x  2cpu  2. Cons. 
Budg. 

0.2 11.6620 16.4847 25.8373 46.0160 0.00921 85.10 7.4529 5.3446 14.8393 29.8520 49.9641 0.00973 165.25 7.2721 
0.4 11.6715 15.3638 26.2182 46.7465 0.00930 84.09 14.0030 5.3617 14.8893 29.8537 49.8953 0.00975 163.50 13.5712 
0.5 11.7328 14.8165 26.4429 47.0078 0.00919 85.15 19.2730 5.3751 14.8867 29.7877 49.9505 0.00966 165.42 18.7021 
0.6 11.1577 15.4032 26.7265 46.7126 0.00928 85.67 26.6295 5.3558 14.9177 29.9243 49.8022 0.00975 164.81 25.9140 
0.8 13.1829 14.2111 26.2442 46.3618 0.00947 84.60 51.4058 5.3459 14.8959 29.7930 49.9652 0.00978 163.14 50.4652 
1 12.3246 15.5130 26.0819 46.0805 0.00929 83.10 100 5.3748 14.8930 29.7786 49.9536 0.00974 165.35 100 

1.2 11.7264 15.1722 26.3065 46.7949 0.00934 81.87 196.8957 5.3563 14.8997 29.8951 49.8489 0.00976 163.56 200.9894 
1.5 14.7988 17.2227 25.2845 42.6940 0.00928 82.93 534.5096 5.4127 14.8442 29.8729 49.8702 0.00974 165.50 585.2358 
1.8 21.6330 25.1580 24.8463 28.3627 0.01032 78.15 1321.9 10.6851 17.8399 23.6727 29.7707 0.01139 251 997.1487 
2 23.4000 29.4000 13.7360 25.6000 0.01356 81.85 2256 8.4000 13.2503 17.5019 21.1418 0.01586 239.51 999.4226 

 

Table 8: If four strata exist, 6000N = , 1 500N = , 2 1500N = , 3 2000N = , 4 2000N = , 2 15d = , 1.96z = , 2 3.904D = ,  

               200n = , ' 6000c = , 1 40t = , 2 30t = , 3 20t =  and 4 10t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  14n  ( )1V x  1cpu  1. Cons. 
Budg. 21n  22n  23n  24n  ( )2

V x  2cpu  2. Cons. 
Budg. 

0.2 20.8958 36.5880 66.3393 76.1769 0.00500 84.65 205.1605 6.9756 43.8051 74.6437 74.5756 0.00523 169.21 193.9499 
0.4 10.8546 41.8949 69.0709 78.1796 0.00499 85.06 403.4899 6.9772 43.8402 74.6470 74.5356 0.00522 167.95 391.4667 
0.5 13.8823 44.8132 67.7512 73.5533 0.00488 84.95 600.2493 6.9659 43.9237 74.4975 74.6129 0.00520 168.95 563.3994 
0.6 17.9376 39.5912 67.9811 74.4901 0.00492 84.71 883.0817 6.9678 43.9581 74.5774 74.4967 0.00524 168.01 817.2237 
0.8 16.8837 42.1778 68.1577 72.7808 0.00490 85.75 1877.1 6.9658 43.9611 74.5173 74.5558 0.00523 171.39 1751.9 
1 11.8215 40.8603 69.8039 77.5143 0.00496 81.53 3869.9 6.9702 43.8968 74.5731 74.5599 0.00522 170.13 3832.8 

1.2 44.5663 45.7008 47.1889 50.9382 0.00583 80.12 9912.2 5.6142 32.4102 55.2438 56.5820 0.00688 164.06 5999.7 
1.5 40.2333 40.4000 40.4000 40.4000 0.00701 81.46 25615.1 5.6386 15.1061 22.3414 29.3569 0.01388 164.54 5999.6 
1.8 23.8444 40.4000 40.4000 40.4000 0.00712 81.37 58794.7 3.8896 9.5109 13.3573 17.2521 0.02278 164.46 5999.4 
2 15.6500 40.4000 40.4000 40.4000 0.00732 80.53 107726.5 3.2859 7.4929 10.4050 13.1067 0.02945 165.54 5999.4 
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Table 9: If five strata exist, 12000N = , 1 500N = , 2 1500N = , 3 2000N = , 4 3000N = , 5 5000N = , 2 15d = , 1.96z = ,  

              2 3.904D = , 3000n = , ' 10000c = , 1 1t = , 2 1t = , 3 1t = , 4 1t =  and 5 1t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  14n  15n  ( )1V x  1cpu  1. Cons. 
Budg. 21n  22n  23n  24n  25n  ( )2

V x  2cpu  2. Cons. 
Budg. 

0.2 383.8852 469.3990 549.0027 723.8627 873.8504 0.0002901 81.73 17.8477 23.0248 182.9513 317.1620 685.2190 1791.6429 0.0003531 214.56 16.0358 
0.4 389.7346 468.4325 547.6591 722.1248 872.0490 0.0002908 81.23 63.9487 23.0595 183.1433 317.6459 685.3889 1790.7624 0.0003530 214.34 55.1987 
0.5 390.4496 467.0902 546.4128 723.3082 872.7392 0.0002896 80.09 121.1841 22.9835 182.8854 317.4297 685.3558 1791.3456 0.0003517 214.32 104.6378 
0.6 394.0425 458.4847 544.5004 729.1695 873.8029 0.0002904 83.67 229.8087 23.0836 182.7230 317.5309 686.1007 1790.5618 0.0003529 221.04 200.8568 
0.8 388.1765 449.5937 530.9316 749.2129 882.0853 0.0002912 81.56 828.2816 23.0915 181.9827 315.1197 678.1884 1801.6177 0.0003532 213.96 762.7089 
1 380.6586 459.5457 538.6283 735.5823 885.5851 0.0002976 82.01 3000 23.0277 182.8430 317.2660 685.1607 1791.7026 0.0003529 215.46 3000 

1.2 519.1677 560.5407 582.2710 638.4316 699.5890 0.0003416 75.90 10797.4 19.8913 156.4575 270.6815 583.9678 1527.0064 0.0004270 217.46 9999.6 
1.5 619.2000 769.2000 228.9295 0.8000 150.8000 0.07928 76.59 42057.6 6.2727 39.6574 67.5611 146.7108 379.7887 0.00186 213.73 9999.2 
1.8 599.9969 599.9990 600.0004 600.0033 600.0004 0.0003831 81.43 500774.5 3.7291 16.8254 27.4395 57.9506 146.8292 0.00463 213.89 9999.1 
2 599.9978 599.9991 600.0001 600.0020 600.0010 0.0003845 77.43 1800000 15.2575 31.6147 37.7754 49.4929 69.9348 0.00499 215.25 9999.7 

 

Table 10: If five strata exist, 12000N = , 1 500N = , 2 1500N = , 3 2000N = , 4 3000N = , 5 5000N = , 2 40d = , 1.96z = ,  

                 2 10.412D = , 1000n = , ' 25000c = , 1 10t = , 2 20t = , 3 30t = , 4 40t =  and 5 50t =  
 The results obtained from goal programming The results obtained from Kuhn-Tucker method 
α  

11n  12n  13n  14n  15n  ( )1V x  1cpu  1. Cons. 
Budg. 21n  22n  23n  24n  25n  ( )2

V x  2cpu  2. Cons. 
Budg. 

0.2 75.0570 113.6166 114.1282 150.0917 547.1065 0.00105 84.39 438.0407 8.9476 61.9672 106.3287 228.4535 594.3030 0.00118 200.14 435.3464 
0.4 81.3125 103.0263 121.9716 153.5278 540.1618 0.00104 85.92 1309.7 8.9351 61.9087 106.1899 228.3533 594.6130 0.00119 200.68 1316.9 
0.5 79.2506 104.2901 122.0161 157.4363 537.0069 0.00103 82.18 2285.2 8.9596 61.9427 106.4002 228.6803 594.0172 0.00108 201.32 2320.3 
0.6 79.1165 105.5777 127.3873 153.2341 534.6844 0.00108 79.96 4000.8 8.9546 61.8709 106.3984 228.2108 594.5653 0.00120 199.34 4117.8 
0.8 42.3120 64.7840 111.3294 194.1176 587.4570 0.00106 79.92 12977.5 8.9463 61.8421 106.4447 228.5068 594.2601 0.00119 200.07 13222 
1 200.2000 200.2000 200.2000 200.2000 99.6000 0.00219 81.51 25000 5.9247 35.9314 61.9546 131.5188 342.0546 0.00205 203.90 24999.9 

1.2 200.2000 200.2000 200.2000 200.2000 16.7667 0.01087 81.39 59250.6 10.3352 21.1204 30.7460 56.5519 129.0020 0.00465 204.35 24890.7 
1.5 100.8454 100.2317 100.4790 100.3852 9.1250 0.08367 81.48 102022 11.8989 22.1846 23.8122 29.2027 40.1087 0.00843 206.90 24999.3 
1.8 50.5259 50.2295 50.4916 50.4331 4.1759 0.08497 79.60 116712.8 7.5169 12.8554 13.6792 16.5465 22.0206 0.01510 206.07 24999.1 
2 25.2665 25.4220 25.0001 25.0002 2.0714 0.08319 75.50 63274.6 5.9107 9.7882 10.4284 12.4855 16.2690 0.02016 205.42 24997.6 
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5. A COMPARISON OF GOAL PROGRAMMING 
AND KUHN-TUCKER METHODS  
Different situations of population sizes, stratum sizes, 
costs of travels to strata, sample size of n  to be allocated 
for strata and precision were considered in simulation 
studies. Possible solutions were sought for different 
situations of α  showing effect of traveling to strata on 
cost constraint. The cost constraint used in the study is 

non-linear in the form of ' h hc t nα=∑ .  

 
As α  value becomes higher, number of the possible 
solutions decreases for both of Model 1, which was 
solved by goal programming, and Model 2, which was 
solved by Kuhn-Tucker method. As α  value becomes 
higher, the constraints cannot be satisfied for both of the 
models. As seen in tables, the most efficient α  values, 
which provide possible solutions for Model 1, which was 
solved by goal programming, and Model 2, which was 
solved by Kuhn-Tucker method, is 0.5α = . If it is 

0.5α = , variance of sample mean statistics is obtained 
as the smallest among the possible solutions no matter 
what cost for traveling to strata is. Also, as α  values 
producing possible solution become higher, the used part 
of the budget allocated for the research increases.  
 
Model 1 which was solved by goal programming 
obtained smaller variance of sample mean statistics for 
α  values having possible solutions rather than Model 2 
which was solved by Kuhn-Tucker method. However, it 
should be kept in mind that there is not a single objective 
in goal programming. Kuhn-Tucker method aims only to 
minimize variance of sample mean statistics while goal 
programming method aims to minimize variance of 
sample mean statistics and the budget used in the 
research at the same time to allocate sample size for 
strata. As seen in Table 1, when costs for traveling to 
strata are close or same, goal programming and Kuhn-
Tucker methods use the budget allocated for the research 
in almost same way. As seen in Table 2, differences exist 
between costs for traveling to strata while Kuhn-Tucker 
method generally uses lesser part of the budget allocated 
for the research compared with goal programming. In 
goal programming, as α  value increases, the used part 
of the budget shows higher tendency to increase although 
sample size is shared well compared with Kuhn-Tucker 
method. We may generalize this as the fact that in goal 
programming the used part of the budget is higher for 
higher α  values compared with Kuhn-Tucker method. 
Generally, goal programming achieves smaller variance 
of sample mean statistics and Kuhn-Tucker method 
achieves smaller cost; however, vice versa has been 
encountered rarely. For example, in Table 3, while it is 

0.8α = , goal programming found the value of 

( )1V x  as 0.01212 and the budget used for the research 

as 904.1116; however, Kuhn-Tucker method found the 
value of ( )2xV  as 0.00859, and the budget used for the 
study as 1674.5. Also, the situation in which the desired 
variance is small was considered in Table 3. In other 

words, goal value of the st1  priority for goal 

programming was made small as much as possible. Thus, 
because variance of sample mean statistics is lower than 
0.0143 when it is α =1.5, 1.8 and 2 for goal 

programming, the st1 priority could not be ensured in 
goal programming. Situations occurred in which goal 
programming found smaller values for both of variance 
of sample mean statistics and the used budget for the 
research; however, such situations were not encountered 
in case of Kuhn-Tucker method. For example, goal 
programming method found lower values for both of 
variance of sample mean statistics and the used budget 
for the research compared with Kuhn-Tucker method 
when it is α =1.2 in Table 1, α =0.2, 0.4, 0.5 and 0.6 in 
Table 3,α =0.8 and 1 in Table 4, α =0.8 in Table 6, 
α =1.2 in Table 7, α =0.4, 0.5, 0.6 and 0.8 in Table 10. 
Furthermore, any occasion in which goal programming 
method does not produce solution while Kuhn-Tucker 
method produces solution was not encountered. 
Moreover, in some cases, Kuhn-Tucker method failed to 
produce any solution while goal programming produced 
solution. For example, all goals were satisfied and 
possible solutions were produced in goal programming 
when it is α =1.2 in Table 2, α =1 and 1.2 in Table 3, 
α =1 in Table 6; however, Kuhn-Tucker method could 
not produce possible solutions. Also, according to the 
results obtained by simulation, goal programming solves 
problems in shorter time compared with Kuhn-Tucker 
method. 
 
5. CONCLUSION  
 
As a result, smaller variances of sample mean statistics 
were obtained in goal programming method compared 
with Kuhn-Tucker method. Goal programming method 
can produce smaller variances of sample mean statistics 
and the budget at the same time compared with Kuhn-
Tucker method. Goal programming method produced 
possible solutions by satisfying all goals in cases that 
Kuhn-Tucker method failed to produce any solution. 
Also, goal programming method produces solution in 
shorter time. As a result of the aforementioned reasons, it 
is recommended to use goal programming method in the 
problem of allocation of sample size for strata in 
optimum way because it considers both of objectives 
more than one and produces smaller variance of sample 
mean statistics which is the only objective in Kuhn- 
Tucker method. 

For a further research; under linear and nonlinear cost 
constraints, comparing of the variance of sample mean 
statistic for The Separate Ratio Estimation, The 
Combined Ratio Estimation and Stratified Cluster 
Sampling using Stratified Random Sampling can be 
investigated. 
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