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ABSTRACT

Let G be a simple connected graph and its Laplacian eigenvalues be u; > p, = -+ = u,,_; = p, = 0. In this paper,

we present an upper bound for the algebraic connectivity u,_; of G and a lower bound for the largest eigenvalue p,

of G in terms of the degree sequence d,d,,...,d, of G and the number |N; N N;| of common vertices of i and j

(1 £i <j <n) and hence we improve bounds of Maden and Biiyiikkose [14].
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1. INTRODUCTION

Let G = (V,E) be a simple graph with the vertex set
V ={v,,v,,...,v,} and edge set E. We use i ~j to
denote that v;v; is an edge of G and N; to denote that
the set of neighbours of v;. For v; € V, the degree of v;
and the average of the degrees of the vertices adjacent to
v; are denoted by d; and m;, respectively. We assume
that d; = d, = -+ = d,, without lost of generality and
we call dq,d;, ..., d, the degree sequence of G. Let
A(G) be the adjacency matrix of G and let D(G) be the
diagonal matrix of vertex degrees. The Laplacian matrix
of G is L(G) = D(G) — A(G). For the simplicity of
notation, we write L(G) = L. Clearly, L is a real
symmetric matrix. From this fact and GerSgorin’s
Theorem, it follows that its eigenvalues are nonnegative
real numbers. Morever, since the sum of rows is 0, it is
obvious that 0 is the smallest eigenvalue of L with the
all ones vector as an eigenvector. The Laplacian
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eigenvalues of G are the eigenvalues of the Laplacian
matrix L of G. Throughout this paper, the Laplacian
eigenvalues of G are denoted by

P 2y 2 2 g1 2 iy = 0.

In addition, by the extremal non-trivial Laplacian
eigenvalues, we shall mean y,_; and p;. It is easy to
show that p, ,(G) =0 if and only if G is not
connected. Thus, u,_; is called the algebraic
connectivity of the graph G [5]. In[1] it is proved that if
u is an eigenvalue of L then u <n and that the
multiplicity of 0 equals the number of components of
G. Thus, G is a connected graph if and only if p,_q >
0.

The Laplacian eigenvalues of a graph are important in
the graph theory because they have a relation to
numerous graph invariants, including connectivity,
expanding property, isoperimetric number, maximum
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cut, independence number, genus, diameter, mean
distance and bandwidth-type parameters of a graph. In
many application one needs good lower bound and upper
bound of extremal non-trivial Laplacian eigenvalues (see

(1], [3]. [4], [6], [7], [9], [10], [11], [12], [14]).

In this paper, our aim is to improve the upper bound for
the algebraic connectivity u,_; of G and the lower
bound for y; of G given by Maden and Biiyiikkose
[14]. We use Theorem 1 [13] and modify the technique
of the proof of Lemma 3 [13], we give an upper bound
for the algebraic connectivity p,_; of G and a lower
bound of the largest eigenvalue p; of G in terms of the
degree sequence dy,d,,...,d, of G and the number
[N; N N;| of common vertices of i and j (1<i<j <

n).

2. THE MAIN RESULT

We always assume that G is a simple connected graph
of order n. The known upper and lower bounds which
we used in proof of our main theorem are following:

1. Grone and Merris’ bound [15]:

U =dy +1, @)
where d; is the largest degree of G.
2. Li and Pan’s bound [16]:

Uz = dy, (2)
where d, and pu, are the second largest degree and the
second largest Laplacian eigenvalue of G, respectively.
3. Fidler’s bound [5]: Let G be a graph different from
K, and let d,, be its minimum degree. Then

fn-1 < dy. 3

Firstly we summarize the results of Wolkowicz and Styan on the eigenvalue inequalities which are our fundamental tools in

this paper.
Theorem 1. (Theorem 2.1 [13]) Let A be an n Xn complex matrix with real eigenvalues A(A) and let m =%,
s= trn—Az — m?2. Then
s
m-—svn—1< Apin(4) <m-— 4
R ml‘l’l( ) m ( )
m+ﬁslmax(A) <m+svn-—1. 3)

Equality holds on the left (right) of (4) if and only if equality holds on the left (right) of (5) if and only if the n — 1 largest

(smallest) eigenvalues are equal.

In [13] Wolkowicz and Styan proved Theorem 1 by using the following lemmas.

T
Lemma 2. (Lemma 2.1 [13]) Let C = I,, — % m="=2

and e = (1,1,...,1)T. Then

ATca
- where W and A = (4;) € R™ are column vectors,

—synWTCW < WTA—mWTe = WTCA < snWTCW. (©)
Equality holds on the left (right) of (1) if and only if A = aw + be for some scalars a and b, where a <0 (a > 0).

It should be noted that m and s? defined in Theorem 1 and Lemma 2 are equivalent [13].

Lemma 3. (Lemma 2.2 [13]) Let 1 = (A4, 43,..., 1), m and s be defined as in Lemma 2 and 14 = A5 =...= A,,. Then
s

Ap <m-—

=m+

Vn—1

N

<2
n—1_ 0

Using Theorem 1 Maden and Biiyiikkdse [14] gave upper and lower bounds for p,,_; and ;.

Theorem 4. (Theorem 3 and Corollary 5 [14]) Let G be a simple graph. Then

and

where m = % r,d;(d;+1) and

®)

m+svn—1, &)

n
1
i=1

i<j
i~
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]

Now, we reprove Lemma 3 for the Laplacian matrix L of G and hence we improve the upper bound for A,,_; in (8) and the
lower bound for 4; in (9).

Theorem 5. Let G be a simple graph and let m and s be defined as in Theorem 4. Then

2 2 2 2 2 1/2\1/2
< ns? +2((dy + 1)* —di_)(d5 —diy) (10)
Hp-1=|M— 2z —n
and
2 2 2 2\ 172\ /2
U =(m+ - . (11)

Proof. Let G be a simple graph and let m and s be defined as in Theorem 4. Then we have that

n 2
1
n?(m = 4)? = n? <—Z(u? - M%_1)>

Z(ul —#o) +Z(u, ti-1) (K = i)

Jj*k
By using (1)-(3) we have that

D0 — i) — ha) 2 20 + 1) = dB)(f — iy,
Jj*k
On the other hand,

n n n
2 2
Z(u? —Mp1) = Z(u? —m+m—pi ) = Z[(u? = m)(uf +m—2uf )] +nlm — p;_p)?
i=1 i= i=1
=ns? +n(m— pu2_))>2
Finally, we have that
n?(m—pf_1)? 2 ns? +n(m—ui_)? +2((dy + 1)* — dj_1)(dF — di_y).

Solving this inequality for u2_; we obtain the inequality in (10).

Now we similarly expand n?(u? — m). Then we have

n 2

nz(u%—m)2=(nu%—2u?> Z(ul )+Z(u1 12) (2 — uf).

i=1 Jj*k
By using (1)-(3), we have that

D (0 - i) (1 1E) 2 2dy + DA + 1)* - dB).

j7k
We have that
n?(u? — m)? = n(u? —m)? + ns? + 2(d;, + 1)%((d; + 1)?> — d3).
Solving this inequality for u? we obtain the inequality in (11). |

In the proof of Lemma 3 in [13, Lemma 2.2], the second sum is omitted but we consider it to improve the upper bound for
Un—1 in(8) and the lower bound for p; in (9). Now we compare our bounds with the bounds of Maden and Biiyiikkdse [ 14].

Exercise 6. Let G = (V,E) with V = {1,2,3,4,5,6,7,8} and

E = {{1,2}, {1,3},{2,3},{2,4},{3,4},{2,5},{2,6},{2,8},{4,5}, {4,6},{4,8},{6,7}, {7,8}}.
For this graph pu; = 1.13 and p; = 7.1. We present aforesaid upper bounds for u- and lower bounds for y; of the graph
G as follows:

Hy ® | (10) t ©® | db
G 113 | 472 | 276 710 | 3.02 | 517
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