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ABSTRACT 

 

We transfer the recent obtained result of univariate Lyapunov-type inequality for third order differential equations to 

the multivariate setting of a shell via the polar method. Our result is better than the result of Anastassiou [Appl. 
Math. Letters, 24 (2011), 2167-2171] for third order partial differential equations. 
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1. INTRODUCTION AND MAIN RESULT 

 

The Lyapunov inequality and many of its 

generalizations play a key role in the study of 

oscillation theory, disconjugacy, eigenvalue problems, 

and numerous other applications for the theories of 

differential and difference equations. Up to now, the 

Lyapunov-type inequalities have been studied 

extensively such as [1,2,6,9]. However, there are not so 

many results for partial differential equations or systems 

except for [3,4] or [5]. 

 

Here, we give some notation for constructing the 

theoretical background given by Anastassiou [3] who 

was the first interested in the problem of finding on the 

multivariate Lyapunov-type inequalities in the 

literature: 

 

Suppose that A  be a spherical shell 
N  for 1N  , 

i.e. 
3 1(0, ) (0, )A B R B R   for 

1 30 R R  , where the ball 

 

 (0, ) :NB R x x R  
                                              

(1) 

 

for 0R   and   is the Euclidean norm. We also 

suppose that 

 

 1 : 1N NS x x   
                                                

(2) 

 

is the unit sphere in N

 with surface area 
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where   is the gamma function. It is easy to see that 

every  0Nx   has a unique representation of the 

form x r , where 0r x   and 
1Nx

S
r

    [8, 

pp. 149-150]. Thus,  0N 
 
may be regarded as the 

Cartesian product 1

1 3[ , ] NA R R S   . Therefore, we have 
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(5) 

 

for  F C A . Here, we deal with the partial 

differential equations involving radial derivatives of 

functions on A , using the polar coordinates ,r  . If 

 nf C A
 

for n , then    1 3[ , ]nf C R R 
 

for a 

fixed 1NS  . 

 

Recently, by using the result of Çakmak [6], 

Anastassiou [3] obtained the following result. 

 

Theorem A. Suppose that n , 2n   and 

 q C A . If  nf C A  is a solution of the following 

partial differential equations 

 

( )
( ) ( ) 0 , ,

n

n

f x
q x f x x A

r


   


                                   (6) 

 

with the boundary value conditions 

 

           1 2 1 30, 0, 0, 0, 0nf B R f B t f B t f B R        

                                                                                     
(7) 

 

where 1 1 2 1 3n nR t t t t R      , and   0f t  , 

1NS   , for any  1,k kt t t  , 1,2, , 1k n  , then 

the following inequality 
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(8) 

 

holds. 

 

In 1907, Lyapunov [7] established the first Lyapunov 

inequality 
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c
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                                                           (9) 

 

if 

 

( ) ( ) ( ) 0x t q t x t                                                         (10) 

 

has a real solution ( )x t
 
satisfying the boundary value 

conditions 

 

( ) ( ) 0x a x c                                                              (11) 

 

for   0x t 
 
for  ,t a c . 

 

Since the appearance of Lyapunov's fundamental paper, 

various proofs and generalizations or improvements 

have appeared in the literature. 

 

More recently, Aktaş et al. [1] obtained the following 

Lyapunov-type inequality for third order differential 

equations 

 

( ) ( ) ( ) 0,x t q t x t                                                        (12) 

 

where  [ , ]q C a c , with the boundary value 

conditions 

 

( ) ( ) ( ) 0x a x b x c                                                    (13) 

 

for   0x t 
 
for    , ,t a b b c  . 

 

Theorem B. If the equation (12) has a solution ( )x t
 

satisfying the boundary value conditions (13), then the 

following inequality 
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                                                       (14) 

 

holds. 

 

Now, motivated by the recent results of Anastassiou [3], 

we transfer the univariate inequality (14) in Theorem B 

to the multivariate setting of a shell via the polar 

method. 

 

Theorem 1. Suppose that  q C A . If  3f C A  is a 

solution of the following third order partial differential 

equations 

 
3

3

( )
( ) ( ) 0 , ,

f x
q x f x x A

r


   


                                 

(15) 

 

with the boundary value conditions 

 

        1 2 30, 0, 0, 0f B R f B R f B R     
               

(16) 

 

where 
1 2 3R R R  , and   0f t  , 1NS   , for any 

   1 2 2 3, ,t R R R R  , then the following inequality 
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 (17) 

 

holds. 

 

Proof. One can rewrite (15) as 

 

 
3
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q r f r r R R S
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(18) 

 

where    1 3[ , ]q C R R  , 1NS   , such that the 

boundary value conditions 

 

     1 2 3 0f R f R f R    
                                   

 (19) 

 

for 1NS   . In addition,   0f r   holds for any 

   1 2 2 3, ,r R R R R 
 

and 1NS   . Thus, from 

inequality (14), we get 

 



GU J Sci, 28(2):265-267 (2015)/ Mustafa Fahri AKTAŞ, Devrim ÇAKMAK     267 

 
 3 3 3

1 1 1

1 1 1 1

12

3 1

16
( ) ( ) ( )

R R R
N N N N

R R R
q r dr r r q r dr r q r dr R

R R
       


   

 

 
 3 3 3

1 1 1

1 1 1 1

12

3 1

16
( ) ( ) ( )

R R R
N N N N

R R R
q r dr r r q r dr r q r dr R

R R
       


  

              

(20) 

 

for a fixed 1NS  . Therefore, we have the following 

inequality 
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for 1NS    and 
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(22) 

 

which by (5), proves the inequality (17). 

 

Remark 1. It is easy to see that the inequality (17) is 

better than the inequality (8) with 3n   in Theorem A 

given by Anastassiou [3] in the sense that (8) with 

3n   follows from (17), but not conversely. 
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