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Highlights 

• A novel mathematical model for COVID-19 is introduced. 

• Stability analysis of the disease-free equilibrium point is analyzed. 

• Basic reproduction number is evaluated for the given model. 
 

Article Info  Abstract 

The severity of the COVID-19 pandemic requires a better understanding of the spread of SARS-

COV2. As of December 2019, several mathematical models have been developed to explain how 

SARS-COV2 spreads within populations, and proposed models have evolved as more is learned 

about the dynamics of the outbreak. In this study, we propose a new mathematical model that 

includes demographic characteristics of the population. Social isolation and vaccination are also 

taken into account in the model. Besides transmission arising from intercourse with undiagnosed 

infected persons, we also consider transmission by contact with the exposed group. In this study, 

after the model is established, the basic reproduction number is calculated and local stability 

analysis of disease-free equilibrium is given. Finally, we give numerical simulations for the 

proposed model. 
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1. INTRODUCTION 

 

Mathematical models are effective tools to explain the spreading dynamics of epidemics ([1]). Epidemic 

models are mathematical formulations that are proposed to explain the spread of diseases in populations, 

which differ depending on the nature of the considered disease. An epidemic model, which usually consists 

of a system of difference or differential equations (ordinary or partial) and initial conditions, provide 

predictions about how the disease will spread in the future, and also guide the steps to be taken to control 

the epidemic. 

 

Many mathematical models have been discussed to explain the spread of SARS-COV2, which has affected 

the whole world as of December 2019 ([2]- [8]). The model given by Nistal et al. is a system of difference 

equations ([2]). Cakir and Savas ([4]) modeled the time-dependent variation of the number of infectious 

individuals with the help of a single differential equation. In other proposed models, the population is 

divided into compartments and the transitions between these compartments are expressed dynamically 

using differential equations. However, in all of the models discussed in these studies, it was assumed that 

the total population is constant in the absence of disease. Although COVID-19 was treated as a seasonal 

disease at the beginning of the epidemic, now it is well known that unlike the seasonal diseases, the 

dynamics of the spread need to be examined in a long period of time. Therefore, the assumption of constant 

population in epidemic models used for diseases that cause short-term epidemics may not be suitable for 

COVID-19. In the epidemic model that is discussed in this paper, a variable population is considered to 

obtain a more realistic approach to explain the dynamics of the spread. In the models given by Arino and 

Portet ([3]), Ndairou et al. ([7]) and Liu et al. ([6]), it is assumed that the virus is not transmitted during the 

incubation period. However, it is known that the new type of coronavirus, which is known to be transmitted   
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through droplets, is contagious also during the incubation period ([9]). This fact is also taken into account 

in the model to be discussed in this paper. In the study by Vega ([8]), simulations based on a SIRD model 

including social isolation term were made. However, the incubation period of the virus was not taken into 

account in this study. We propose a mathematical model consisting of ordinary differential equations in 

which demographic parameters for the population, transmission of the virus in the incubation period, social 

isolation parameter and vaccination are all considered. 

 

The study divided into four sections: In the first section, we give a brief review of the models used for 

COVID-19 and give the motivation for model proposed in this study. In the second section, the model is 

constructed, fixed points of the system are evaluated and local stability analysis of the disease-free 

equilibrium point is given. The third section is devoted to the numerical solution of the model. In the last 

section, conclusions of this study are provided.  

 

2. MODEL FORMULATION AND ANALYSIS 

 

In this study, we construct a compartment model where the total population at time 𝑡,  𝑁(𝑡), is divided into 

five partitions depending on their epidemiological states: 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡) and 𝑅(𝑡). 𝑆(𝑡) is 

composed of susceptible individuals in the population. Three infective groups are used in the model. The 

first one, 𝐸(𝑡), consists of the exposed individuals. They are infected by the virus, but due to the incubation 

period of the virus they are not generally contagious until the last two days of this period ([10]). If a person 

is in 𝐸(𝑡), then it is known that the diagnosis rate of that person is quite low. However, that person can still 

transmit the virus to the susceptible individuals. The other two infectious groups, 𝐼1(𝑡) and 𝐼2(𝑡) are 

composed of diagnosed individuals with SARS-COV2 and undiagnosed individuals (both symptomatic and 

asymptomatic), respectively. According to the official policies applied by almost every country in the 

world, the diagnosed individuals are isolated from the rest of the population for a period that they become 

uncontagious. This period is updated by the officials time to time depending on the dominant variant of the 

virus that is effective in the country. Based on this fact, we assume that the diagnosed individuals are not 

contagious for the population. In the beginning of the COVID-19 pandemic, it was thought to be a seasonal 

epidemic. However, as the process progressed, it was understood that the pandemic would last for a long 

time. In most of the given models for short term epidemics, total population is assumed to be constant. But 

for COVID-19 models, it would not be realistic to ignore the demographic properties of the population. In 

the models given in [11] and [12], demographic effects are considered but the equation governing the total 

population is given in the form 

 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁, 

(1) 

 

where Λ and 𝜇 represent the new births per unit of time and natural death rate of the population, respectively. 

In the model we propose, a more general equation for the total population is considered for the disease-free 

case: 

 
𝑑𝑁

𝑑𝑡
= (𝑏(𝑁) − 𝑑(𝑁))𝑁, 

(2) 

 

where 𝑏(. ) and 𝑑(. ) are functions of 𝑁 representing the birth and death rates, respectively. The functions 

𝑏 and 𝑑 are assumed to be non-negative definite, differentiable functions which does not contradict with 

the biological facts. We also assume that ∃𝐾 > 0 such that 𝑏(𝐾) = 𝑑(𝐾), where 𝐾 represents the carrying 

capacity of the population. The model is given by the following system of ordinary differential equations: 

 
𝑑𝑆

𝑑𝑡
= 𝑏(𝑁)𝑁 −

(𝛽1𝐸 + 𝛽2𝐼2)𝜉𝑆

𝑁
+ 𝑟−1𝑅 − (𝜇 + 𝑑(𝑁))𝑆, 

 
𝑑𝐸

𝑑𝑡
=

(𝛽1𝐸 + 𝛽2𝐼2)𝜉𝑆

𝑁
− (𝛾1 + 𝛾2 + 𝑑(𝑁))𝐸, 

 

 

 

 

 

(3) 
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𝑑𝐼1

𝑑𝑡
= 𝛾1𝐸 + 𝛾3𝐼2 − (𝑑(𝑁) + 𝜃 + 𝑟1)𝐼1, 

 
𝑑𝐼2

𝑑𝑡
= 𝛾2𝐸 − (𝛾3 + 𝑟2 + 𝑑(𝑁))𝐼2, 

 
𝑑𝑅

𝑑𝑡
= 𝑟1𝐼1 + 𝑟2𝐼2 − (𝑑(𝑁) + 𝑟−1)𝑅 + 𝜇𝑆. 

 

with non-negative initial conditions 

 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼1(0) = 𝐼10, 𝐼2(0) = 𝐼20, 𝑅(0) = 𝑅0. (4) 

 

Flow diagram of the model is given in Figure 1.  

 

               
Figure 1. Flow diagram of the model given by (3) 

 

The parameters 𝛽1 and 𝛽2 are transmission rates arising from contact with exposed (𝐸) and undiagnosed 

infected individuals (𝐼2), respectively. Due to social isolation recommendations that are officially made, 

people limit the number of people they are in contact with and they are more reluctant to enter uncontrolled 

areas as they were before the outbreak. For this reason, a frequency-dependent contamination term is used 

in model (3) instead of a density-dependent contamination term, which is frequently used in airborne 

transmitted diseases. 𝑟−1, 𝜇, 𝛾1, 𝛾2, 𝛾3, 𝑟1 and 𝑟2 represent waning immunity rate, effective vaccination 

rate, the rate of being diagnosed within the incubation period, the rate of being undiagnosed within the 

incubation period, diagnosing rate after the incubation period, recovery rate for diagnosed infected 

individuals and recovery rate for undiagnosed infected individuals, respectively. Recovered group is 

composed of the immune individuals in the population. Immunity can be gained by vaccination or 

recovering from the infection with immunity. However, in the proposed model the individuals who once 

been infected and are no longer contagious are also considered as immune, although some symptoms 

associated with the disease may persist. The parameter 𝜉, 0 ≤  𝜉 ≤  1, is used to reflect social isolation 

effect to the model. √𝜉 indicates the proportion of individuals who continue their social lives unprotected 

from COVID-19. If all of the population lives unprotected (without using face masks, without following 

social distancing rules, etc.), then the value of 𝜉 is assumed to be 1. As the protection level increases then 

𝜉 will decay to zero, proportionally. 𝜃 denotes the COVID-19 related death rate. Let 𝑅+
5∗ =

{(𝑆, 𝐸, 𝐼1, 𝐼2, 𝑅)𝑇 ∈ 𝑅5: 𝑆, 𝐸, 𝐼1, 𝐼2, 𝑅 ≥ 0 𝑎𝑛𝑑 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝑅 > 0}.  
 

Theorem 1. There is a unique solution of IVP (3)-(4) and the solution remains in 𝑅+
5∗. 

 

Proof. Existence and uniqueness of the solution of (3)-(4) can easily be seen. We need to show that the 

domain 𝑅+
5∗ is positively invariant. Since, 

 
𝑑𝑆

𝑑𝑡
|

𝑆=0
= 𝑏(𝐸 + 𝐼1 + 𝐼2 + 𝑅)(𝐸 + 𝐼1 + 𝐼2 + 𝑅) + 𝑟−1𝑅 ≥ 0, 
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𝑑𝐸

𝑑𝑡
|

𝐸=0
=

𝛽2𝐼2𝜉𝑆

𝑆 + 𝐼1 + 𝐼2 + 𝑅
≥ 0, 

 
𝑑𝐼1

𝑑𝑡
|
𝐼1=0

= 𝛾1𝐸 + 𝛾3𝐼2 ≥ 0, 

 
𝑑𝐼2

𝑑𝑡
|
𝐼2=0

= 𝛾2𝐸 ≥ 0, 

 
𝑑𝑅

𝑑𝑡
|

𝑅=0
= 𝑟1𝐼1 + 𝑟2𝐼2 + 𝜇𝑆 ≥ 0, 

 

on each hyperplane bounding the non-negative orthant, the vector field points into 𝑅+
5∗ and 𝑅+

5∗ is positively 

invariant.  

 

𝑁 (𝑡)  =  𝑆 (𝑡)  +  𝐸 (𝑡)  +  𝐼1 (𝑡)  +  𝐼2 (𝑡)  +  𝑅 (𝑡), therefore, 𝑁(𝑡) also remains non-negative. For 

simplicity in calculations in the equilibrium point analysis, henceforth, we use the system 

 
𝑑𝑆

𝑑𝑡
= 𝑏(𝑁)𝑁 −

(𝛽1𝐸 + 𝛽2𝐼2)𝜉𝑆

𝑁
+ 𝑟−1(𝑁 − 𝑆 − 𝐸 − 𝐼1 − 𝐼2) − (𝜇 + 𝑑(𝑁))𝑆, 

 
𝑑𝐸

𝑑𝑡
=

(𝛽1𝐸 + 𝛽2𝐼2)𝜉𝑆

𝑁
− (𝛾1 + 𝛾2 + 𝑑(𝑁))𝐸, 

 
𝑑𝐼1

𝑑𝑡
= 𝛾1𝐸 + 𝛾3𝐼2 − (𝑑(𝑁) + 𝜃 + 𝑟1)𝐼1, 

 
𝑑𝐼2

𝑑𝑡
= 𝛾2𝐸 − (𝛾3 + 𝑟2 + 𝑑(𝑁))𝐼2, 

 
𝑑𝑁

𝑑𝑡
= (𝑏(𝑁) − 𝑑(𝑁))𝑁 − 𝜃𝐼1, 

 

 

 

 

(5) 

 

which is equivalent to system (3) with the initial conditions:  

 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼1(0) = 𝐼10, 𝐼2(0) = 𝐼20, N(0) = 𝑁0. (6) 

 

Equilibrium points of system (5) are evaluated by letting  

 
𝑑𝑆

𝑑𝑡
= 0, 

 
𝑑𝐸

𝑑𝑡
= 0, 

 
𝑑𝐼1

𝑑𝑡
= 0, 

 
𝑑𝐼2

𝑑𝑡
= 0, 

 
𝑑𝑁

𝑑𝑡
= 0.  
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The disease-free equilibrium (DFE) point of system (5) is 

 

𝐹0
∗ = (𝑆0

∗, 𝐸0
∗, 𝐼1,0

∗ , 𝐼20
∗ , 𝑁0

∗) = (
(𝑏 + 𝑟−1)𝐾

𝜇 + 𝑏 + 𝑟−1
, 0,0,0, 𝐾), 

(7) 

 

where 𝑏 ∶=  𝑏 (𝐾)  =  𝑑 (𝐾) and the endemic equilibrium of system (5) is  

 

𝐹∗ = (𝑆∗ , 𝐸∗ , 𝐼1
∗, 𝐼2

∗, 𝑁∗ )  

 

where  

 

𝐼1
∗ = 𝑎1𝑁∗, 

 

 

𝐼2
∗ = 𝑎1𝑎2𝑁∗, 

 

 

𝐸∗ = 𝑎1𝑎2𝑎3𝑁∗, 
 

 

𝑆∗ = 𝑎4𝑁∗,  

 

and 𝑁∗ is the positive solution of the equation:  

 

𝑏(𝑁∗) − 𝑎4[𝑎1𝑎2𝜉(𝛽1𝑎3 + 𝛽2) + 𝑑(𝑁∗) + 𝑟−1 + 𝜇] + 𝑟−1[1 − 𝑎1(1 + 𝑎2 + 𝑎2𝑎3)] = 0. (8) 

 

Here, 

  

𝑎1 =
𝑏(𝑁∗) − 𝑑(𝑁∗)

𝜃
, 

 

 

𝑎2 =
𝑑(𝑁∗) + 𝜃 + 𝑟1

𝑎3𝛾1 + 𝛾3
, 

 

 

𝑎3 =
𝑑(𝑁∗) + 𝛾3 + 𝑟2

𝛾2
, 

 

 

𝑎4 =
(𝛾1 + 𝛾2 + 𝑑(𝑁∗))𝑎3

𝜉(𝛽1𝑎3 + 𝛽2)
. 

 

 

Basic reproduction number, 𝑅0, for epidemic models is an important threshold value that helps us 

understand the future of the disease. The biological interpretation of 𝑅0 is the number of secondary 

infections that are caused by one infected individual introduced to a susceptible population. For models 

with multi infective groups, using the Next Generation Matrix (NGM) method to calculate 𝑅0 is more 

convenient ([13]). Before applying NGM method to the model, we first need to verify that for the disease-

free model, the DFE is locally asymptotically stable. With the assumption b ′ (K) < d′ (K), it is easy to show 

that NGM method can be applied to the model given by (5). This assumption is biologically valid for 

growing populations. We consider the infectious classes and define 𝑋 =  (𝐸, 𝐼1, 𝐼2). Let the matrices ℱ𝑖  and 

𝒱𝑖 represent the new infections introduced to a class and the compartmental transitions, respectively, are 

defined as 

 

ℱ𝑖(𝑋) = (

𝛽1𝐸 + 𝛽2𝐼2

𝑁
𝜉𝑆

0
0

), 
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𝒱𝑖(𝑋) = (

(𝑑(𝑁) + 𝛾1 + 𝛾2)𝐸

−𝛾1𝐸 − 𝛾3𝐼2 + (𝑑(𝑁) + 𝜃 + 𝑟1)𝐼1

−𝛾2𝐸 + (𝛾3 + 𝑑(𝑁) + 𝑟2)𝐼2

). 

 

 

The NGM for system (5) is the matrix 𝐹𝑉−1, where 

 

𝐹 = [
𝜕ℱ𝑖(𝑋)

𝜕𝑥𝑖
]

𝐹0
∗

, 𝑉 = [
𝜕𝒱𝑖(𝑋)

𝜕𝑥𝑖
]

𝐹0
∗

.  

 

Hence, the basic reproduction number of system (5) is 

 

𝑅0
∗ =

𝜉𝛽1(𝑏 + 𝑟−1)

(𝑏 + 𝑟−1 + 𝜇)(𝑏 + 𝛾1 + 𝛾2)
+

𝜉𝛽2𝛾2(𝑏 + 𝑟−1)

(𝑏 + 𝑟−1 + 𝜇)(𝑏 + 𝛾1 + 𝛾2)(𝑏 + 𝛾3 + 𝑟2)
. 

 

Theorem 2. Let 𝑏 (. ) and 𝑑 (. ) be positive definite and differentiable functions. Assume that there exists 

a 𝐾 >  0 such that 𝑏 (𝐾)  =  𝑑 (𝐾)  =  𝑏 and 𝑏 ′ (𝐾)  <  𝑑′ (𝐾). The DFE of the system given by (5) is 

locally asymptotically stable if 𝑅0
∗ < 1. 

 

3. NUMERICAL SIMULATIONS OF THE MODEL 

 

In this section, we first construct the demographic functions 𝑏 (. ) and 𝑑 (. ) using the data of Turkey 

between the years 2006 and 2019 ([14]). We use the software Mathematica for calculations in this study. 

Using linear regression, the birth rate and death rate functions are obtained as follows:  

 

𝑏 (𝑁) =  9.738213863922327 ×  10−5  −  6.709683343532898 ×  10−13𝑁,  
 

𝑑 (𝑁)  =  −1.608685714474 ×   10−5 +  3.8017993601939726 ×  10−13𝑁. 

 

Vaccination against COVID-19 first started in December, 2020, almost one year after the virus is identified. 

However, it took longer for communities to reach vaccines. In Turkey, although the first vaccine application 

was made in January, it took August to reach significant vaccination rates in the community. For this reason 

we first assume that the effective vaccination rate is zero. For the parameter values in Table 1 and µ = 0, 

the basic reproduction number is evaluated as 𝑅0
∗ = 1.88804. The positive equilibrium point for these 

parameter values is (𝑆∗ , 𝐸∗ , 𝐼1
∗, 𝐼2

∗, 𝑁∗ ) where 

 

𝑆∗ = 1.64777 ×   107, 
 

 

𝐸∗ = 1.48516 ×  106, 
 

 

𝐼1
∗ = 5.14193 ×  106, 

 

 

𝐼2
∗ = 85616.6, 

 

 

𝑁∗ = 3.1147 × 107.  

 
Table 1. Model parameters used for the numerical solution 

𝜃 = 0.489011 × 10−3 𝛾2 = 0.014 
𝑟1 = 0.142857 𝛾3 = 0.1 
𝑟2 = 0.142857 𝛽1 = 0.3 
𝑟−1 = 0.435747 × 10−2 𝛽2 = 0.26 
𝛾1 = 0.011 𝜉 = 0.15 
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For the same parameter values, as the daily effective vaccination rate µ increases, 𝑅0
∗ value decreases, and 

for the values of µ >  0.0039,  𝑅0
∗ < 1. 

 

Solving system (5) with the initial conditions 

 

(𝑆0 , 𝐸0 , 𝐼10, 𝐼20, 𝑁0 ) = (82094772, 424090, 212045, 424090, 83154997), 
 

we obtain 𝐼1 as shown in Figure (2). 

 

 
Figure 2. Diagnosed individuals with COVID-19 evaluated from system (5) and reported  

          number of active cases between December 12, 2020 and January 22, 2021 in Turkey 

 

4. CONCLUSIONS 

 

In this study, we introduce a novel mathematical model to explain the spread of SARS-COV2 in a varying 

population. We use a compartment model with three infectious classes. The first one is the exposed group 

which is composed of the individuals who are in the first stage of the disease. The virus is in its incubation 

period and diagnosing rate of the individuals in this group is quite low. However, people in this class are 

contagious. We divide the infectious individuals into two groups after the incubation period. The first group 

is composed of infected individuals who are diagnosed with COVID-19 and we assume that, due to the 

isolation rules, they are not contagious. The second class is composed of the individuals who are not 

diagnosed with COVID-19 but infectious (both symptomatic and asymptomatic), and they can transmit the 

disease. The model contains social isolation and vaccination terms which are considered as the most 

effective control mechanisms for COVID-19 pandemic. Official policies about the social isolation rules 

and the rate of efficient vaccination change from time to time in every country. Also, the virus evolves and 

its spreading rate changes. Therefore, when using real data to estimate the future of the pandemic it would 

be more appropriate to use time periods with similar properties (social isolation rules, vaccination rate, 

variant of virus). 
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