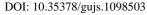
PAPER DETAILS

TITLE: The Class of Demi-Order Norm Continuous Operators

AUTHORS: Gül Sinem Keles, Birol Altin

PAGES: 1693-1698

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/2353370



Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

The Class of Demi-Order Norm Continuous Operators

¹ Gazi University, Institute of Science, Mathematics, 06560 Ankara, Turkey

Highlights

- This paper focuses on the class of the demi-order norm continuous operators.
- Some properties of the demi-order norm continuous operators are obtained.
- Examples of demi-order norm continuous operators are given.

Article Info

Abstract

Received: 4 Apr 2022 Accepted: 9 Sept 2022

Keywords

Demi-order norm continuous operator, Normed Riesz Space Order continuous norm In this paper, we introduce the class of demi-order norm continuous operator on a normed Riesz space. We study the relationship between order-to-norm continuous operator and demi-order norm continuous operator. We also investigate some properties of the class of demi-order norm continuous operator, and it is given a characterization of a normed Riesz space with order continuous norm by the term of the demi-order norm continuous operator.

1. INTRODUCTION

The demi notation was used firstly in the article named "Construction of fixed points of demicompact mappings in Hilbert space" by Petryshyn in 1966 [1]. Krichen B. and O'Regan D. studied some results of the class of weakly demicompact linear operators in 2019 [2]. After, in [3], Benkhaled H., Hajji M., and Jeribi A. introduced the class of demi Dunford-Pettis operators which are a generalization of Dunford Pettis operators. The class of order weakly demicompact operators was introduced by Benkhaled H., Elleuch A., and Jeribi A. in [4].

In this study, we will introduce the class of demi-order-norm continuous operators which are a generalization order-to-norm continuous operators on a Banach lattice, given by Jalili, Haghnejad Azar, and Moghimi in [5].

A net $\{x_{\alpha}\}$ in a Riesz space E is said to be order convergent to $x \in E$ if there is a net $\{y_{\beta}\}$ in E^+ with $y_{\beta} \downarrow 0$ and that for every β , there is $a_0 = a_0(\beta)$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq a_0$. It is denoted by $x_{\alpha} \stackrel{o}{\to} x$. Let E and F be two Riesz spaces, every linear mapping from E into F is called operator (linear operator). Briefly the net $\{x_{\alpha} : \alpha \in \Lambda\}$ is denoted by $\{x_{\alpha}\}$ where Λ is a nonempty directed set. Recall from [5] that let E be a Banach lattice, a bounded operator T on E is said to be an order-to-norm continuous operator if $x_{\alpha} \stackrel{o}{\to} 0$, then $T(x_{\alpha}) \stackrel{\|.\|}{\to} 0$ for all net x_{α} in E. The class of all order-to-norm continuous operators will be denoted $L_{on}(E)$. E has order continuous norm if and only if $x_{\alpha} \downarrow 0$, then $x_{\alpha} \stackrel{\|.\|}{\to} 0$ [6]. Let E, F be two Banach lattices and two operators S, T from E into F. $S \leq T$ means that $S(x) \leq T(x)$ for all $x \in E^+$ [6]. The class of all continuous operators on E is denoted by L(E). A norm $\|.\|$ on a Riesz space is said to be a

² Gazi University, Department of Mathematics, 06560 Ankara, Turkey

lattice norm whenever $|x| \le |y|$, then $||x|| \le ||y||$ [6]. A Riesz space equipped with a lattice norm is known as a normed Riesz space, and a subset A of a Riesz space is said to be order closed whenever $\{x_{\alpha}\}\subseteq A$ and $x_{\alpha} \xrightarrow{o} x$, imply $x \in A$ [6].

Throughout this study, the identity operator is denoted by I. In this study, for all other undefined terms and notation, we will adhere to the conventions in [6].

2. MAIN RESULTS

Definition 2.1. Let M be a normed Riesz space, a bounded operator $H:M\to M$. It is said to be a demi-order norm continuous operator (d-onco) if for every net $\{x_{\alpha}\}$ in M^+ whenever $x_{\alpha} \stackrel{o}{\to} 0$ and $x_{\alpha} - H(x_{\alpha}) \stackrel{\|.\|}{\to} 0$, implies $x_{\alpha} \stackrel{\|.\|}{\to} 0$, and the class of all demi-order norm continuous operators is denoted by $\mathfrak{D}L_{on}(M)$.

Example 2.1. Let M be a normed Riesz space. βI is a demi-order norm continuous operator on M for all $\beta \neq 1$.

Assume that $x_{\alpha} \stackrel{o}{\to} 0$ and $||x_{\alpha} - \beta I(x_{\alpha})|| \to 0$. Therefore, we obtain

$$||x_{\alpha} - \beta I(x_{\alpha})|| \to 0 \Rightarrow |1 - \beta|||x_{\alpha}|| \to 0 \Rightarrow ||x_{\alpha}|| \to 0.$$

Thus, βI is a demi-order norm continuous operator on M.

Generally, the following example shows that the above example is not true in case $\beta = 1$.

Example 2.2. Let c be the set of all convergent sequence of \mathbb{R} . Consider the sequence u_n ; its first n terms are one, and others are zero and, u=(1,1,...). It is clear that $0 \le u_n \uparrow u$ in c. Therefore, we get $u-u_n \downarrow 0$. Hence, $u-u_n \stackrel{o}{\to} 0$. On the other hand $(u-u_n)$ does not convergence to zero in norm, since $||u-u_n||=1$ so, identity operator does not belong to a demi-order norm continuous operator.

The next example gives us that the set of all demi-order norm continuous operator on E is a proper subset of L(E) in general.

Example 2.3. Let $k \in \mathbb{N}$ and $T_k: c \to c$ be an operator defined by $T_k(x) = \sum_{i=1}^k x_i e_i$ for each $x = (x_i) \in c$. Consider the sequence s_n , its first n terms are one, and others are zero and s = (1,1,...). It is obvious that $0 \le s_n \uparrow s$ and $(s - s_n) \downarrow 0$. We obtain that $s - s_n \stackrel{o}{\to} 0$. Hence, $||T_k(s - s_n)|| \to 0$ in c. Define $S_k = I + T_k$ for each $k \in \mathbb{N}$.

 $(s-s_n) \stackrel{o}{\to} 0$ and $\|(I-S_k)(s-s_n)\| = \|(I-I-T_k)(s-s_n)\| = \|T_k(s-s_n)\| \to 0$. Since $\|s-s_n\| = 1$, $(s-s_n)$ convergence is not zero in norm. Therefore, S_k does not belong to $\mathfrak{D}L_{on}(c)$ for each $k \in \mathbb{N}$.

Theorem 2.1. Every order-to-norm continuous operator is a d-onco.

Proof. Let M be a normed Riesz space, $H \in L_{on}(M)$, (x_{α}) in M^+ such that $x_{\alpha} \stackrel{\circ}{\to} 0$ and $\|(x_{\alpha} - H(x_{\alpha})\| \to 0$. Since $H \in L_{on}(M)$, satisfies $\|H(x_{\alpha})\| \to 0$. We can write

$$||x_{\alpha}|| = ||(x_{\alpha} - H(x_{\alpha}) + H(x_{\alpha})||$$

 $\leq ||(x_{\alpha} - H(x_{\alpha})|| + ||H(x_{\alpha})||$

and then we know that $\|(x_{\alpha} - H(x_{\alpha})\| \to 0$ and $\|H(x_{\alpha})\| \to 0$. Therefore, $\|x_{\alpha}\| \to 0$. Hence, H is a demi-order norm continuous operator on M.

In the next example, it is shown that the inverse of the theorem is not generally true.

Example 2.4. Let H be an operator on M = C[0,1] and $H = \frac{1}{2}I$. Since the norm on M is not order continuous norm (see [6]), then the operator H is not in $L_{on}(M)$, but H is a demi-order norm continuous operator on M from Example 2.1.

Theorem 2.2. Let N be a normed Riesz space, $H: N \to N$ be an order-to-norm continuous operator, $S: N \to N$ be a d-onco, then H + S is a d-onco.

Proof. Let a net (x_{α}) in N^+ such that $x_{\alpha} \stackrel{o}{\to} 0$ and $||x_{\alpha} - (H+S)(x_{\alpha})|| \to 0$. We can write as

$$||x_{\alpha} - S(x_{\alpha})|| = ||x_{\alpha} - S(x_{\alpha}) - H(x_{\alpha}) + H(x_{\alpha})||$$

$$\leq ||x_{\alpha} - (H + S)(x_{\alpha})|| + ||H(x_{\alpha})||.$$

It is obvious that $||H(x_{\alpha})|| \to 0$, since $H \in L_{on}(N)$. Moreover, we know that $||x_{\alpha} - (H+S)(x_{\alpha})|| \to 0$. Thus, $||x_{\alpha} - S(x_{\alpha})|| \to 0$. We obtain that $||x_{\alpha}|| \to 0$, since S belongs to $\mathfrak{D}L_{on}(N)$. Hence, H+S is a d-onco.

The result of Theorem 2.2 is true for S + H as well as for S - H.

However, as the next example shows that the sum of two d-onco is not a d-onco in general.

Example 2.5. Let T_1 , T_2 be two operators on M = C[0,1], defined as $T_1(f) = T_2(f) = \frac{1}{2}f$ for each $f \in M$. T_1 and T_2 are two demi-order norm continuous operators, but $T_1 + T_2 = I$ does not belong to $\mathfrak{D}L_{on}(M)$.

The following theorem gives that a characterization of a normed Riesz space having an order continuous norm.

Theorem 2.3. Let M be a normed Riesz space. Then the following statements are equivalent

- (i) M has order continuous norm,
- (ii) $L_{on}(M) = \mathfrak{D}L_{on}(M)$.

Proof. $(i) \Rightarrow (ii)$ It is clear that $L_{on}(M) \subset \mathfrak{D}L_{on}(M)$ from Theorem 2.1. We have to show that $\mathfrak{D}L_{on}(M) \subset L_{on}(M)$.

It is well-known $x_{\alpha} \stackrel{o}{\to} 0$ implies $x_{\alpha} \stackrel{\|.\|}{\to} 0$ if M has order continuous norm. Then, $H(x_{\alpha}) \stackrel{\|.\|}{\to} 0$ if $H \in L(M)$. It show that $L_{on}(M) = L(M)$, so it is clear that $\mathfrak{D}L_{on}(M) \subset L_{on}(M)$. The proof is complete.

 $(ii) \Rightarrow (i)$ Let $L_{on}(M) = \mathfrak{D}L_{on}(M)$ and $x_{\alpha} \downarrow 0$. Since $\frac{1}{2}I$ is a d-onco, then $\frac{1}{2}I$ is in $L_{on}(M)$. Hence, I belongs to $L_{on}(M)$. It is obvious that

$$x_{\alpha} \downarrow 0 \Rightarrow x_{\alpha} \stackrel{o}{\to} 0$$
$$\Rightarrow x_{\alpha} \stackrel{\parallel . \parallel}{\to} 0.$$

Since $||x_{\alpha}|| \downarrow$ and $x_{\alpha} \stackrel{||.||}{\to} 0$, we obtain that $||x_{\alpha}|| \downarrow 0$, so M has order continuous norm.

Let M and N be two normed Riesz spaces and $\widehat{M} = M \oplus N = \{ (a,b): a \in M, b \in N \}$ if \widehat{M} is equipped with the coordinatewise order that is $(a_1,b_1) \leq (a_2,b_2) \Leftrightarrow a_1 \leq a_2$ and $b_1 \leq b_2$ for each $(a_1,b_1), (a_2,b_2) \in \widehat{M}$ and the norm $\|(a,b)\|_{\widehat{M}} = \|a\|_{M} + \|b\|_{N}$.

Theorem 2.4. Let M and N be two normed Riesz spaces. Then the following operators are d-onco.

(i)All operators H on M which $(I - H)^{-1}$ exists and is bounded.

(ii) $\widehat{(H_{\alpha})}$ is the class of operator on \widehat{M} . $\widehat{(H_{\alpha})}$ is defined by $\begin{bmatrix} 0 & 0 \\ H & \alpha I \end{bmatrix}$ and $\widehat{M} = M \oplus N \ (\alpha \neq 1)$ for every operator H from M into N.

Proof. (i) Assume a net (x_{α}) in M^+ such that $x_{\alpha} \stackrel{o}{\to} 0$ and $||x_{\alpha} - H(x_{\alpha})|| \stackrel{\|.\|}{\to} 0$. It is written as

$$||x_{\alpha}|| = ||(I - H)^{-1} (I - H)x_{\alpha}||$$

$$\leq ||(I - H)^{-1}|||(I - H)x_{\alpha}||.$$

Since $(I - H)^{-1}$ exists, is bounded, and there are inequalities, we obtain that $||x_{\alpha}|| \to 0$. Hence, H belongs to $\mathfrak{D}L_{on}(M)$.

(ii) Let $\{\widehat{x_{\alpha}}\}\$ be a net in \widehat{M}^+ such that $\{\widehat{x_{\alpha}}=(x_{\alpha},y_{\alpha})\}$, $x_{\alpha}\in M$, $y_{\alpha}\in N$ for $\alpha\neq 1$, $\widehat{x_{\alpha}}\overset{o}{\to}0$ and $\|\widehat{x_{\alpha}}-\widehat{H}\widehat{x_{\alpha}})\|_{\widehat{M}}\to 0$. It will be shown that $\|\widehat{x_{\alpha}}\|_{\widehat{M}}\to 0$. We know that $\|\widehat{x_{\alpha}}\|_{\widehat{M}}=\|x_{\alpha}\|_{M}+\|y_{\alpha}\|_{N}$. Hence, to show that $\|\widehat{x_{\alpha}}\|_{\widehat{M}}\to 0$, we have to show that $\|x_{\alpha}\|_{M}\to 0$ and $\|y_{\alpha}\|_{N}\to 0$.

$$\begin{split} \left\| \widehat{x_{\alpha}} - \widehat{H}(\widehat{x_{\alpha}}) \right\|_{\widehat{M}} &= \left\| (x_{\alpha}, y_{\alpha}) - \widehat{H}(x_{\alpha}, y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha}) - (0, Hx_{\alpha} + \alpha y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha} - Hx_{\alpha} - \alpha y_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}, y_{\alpha}(1 - \alpha) - Hx_{\alpha}) \right\|_{\widehat{M}} \\ &= \left\| (x_{\alpha}) \right\|_{M} + \left\| y_{\alpha}(1 - \alpha) - Hx_{\alpha} \right\|_{N}. \end{split}$$

From the assumption that $\|\widehat{x_{\alpha}} - \widehat{H}\widehat{x_{\alpha}})\|_{\widehat{M}} \to 0$. Therefore, it is obtained $\|(x_{\alpha})\|_{M} \to 0$ and $\|y_{\alpha}(1-\alpha) - Hx_{\alpha}\|_{N} \to 0$. $\|(x_{\alpha})\|_{M} \to 0$ implies $\|Hx_{\alpha}\|_{N} \to 0$, since H is continuous. Moreover, we can write as

$$|(1 - \alpha)| \|y_{\alpha}\|_{N} = \|y_{\alpha}(1 - \alpha) - Hx_{\alpha} + Hx_{\alpha}\|_{N}$$

$$\leq \|y_{\alpha}(1 - \alpha) - Hx_{\alpha}\|_{N} + \|Hx_{\alpha}\|_{N}.$$

We get $|(1-\alpha)| \|y_{\alpha}\|_{N} \to 0$ so, $\|\widehat{x_{\alpha}}\|_{\widehat{M}} \to 0$. Thus, $(\widehat{H_{\alpha}})$ belongs to $\mathfrak{D}L_{on}(\widehat{M})$.

The following example gives us that Theorem 2.4 (ii) may not be valid in case $\alpha = 1$

Example 2.6. Let an operator $H: \ell_1 \to \ell_\infty$, $\widehat{M} = \ell_1 \oplus \ell_\infty$ equipped with coordinatewise order and operator \widehat{H} . is defined by $\begin{bmatrix} 0 & 0 \\ H & I \end{bmatrix} \widehat{H}$ does not belong to $\mathfrak{D}L_{on}(\widehat{M})$. An order bounded sequence $\{\widehat{x_n}\}$ in \widehat{M}^+ such that $\widehat{x_n} = (0, e_n)$ and e_n the nth. term equals one and the others are zero. Since (e_n) is order convergent in ℓ_∞ , then $(\widehat{x_n})$ is order convergent and $\|\widehat{x_n} - \widehat{H}\widehat{x_n}\| = 0 \to 0$. Since $\|e_n\|_\infty = 1$, then $\|\widehat{x_n}\|_{\widehat{M}} = 1$, so \widehat{H} does not belong to $\mathfrak{D}L_{on}(\widehat{M})$.

The next example shows that the set of all demi-order norm continuous operators on a normed Riesz space is not closed according to multiplication with scalar.

Note that, if H is a d-onco and $\alpha \in \mathbb{R}$, then αH may not be d-onco in general. For example, M = C[0,1], $H = \frac{1}{2}I : M \to M$ is a d-onco, but $2H = I : M \to M$ is not a d-onco.

Theorem 2.5. Let M be normed Riesz space. Then the following assertions are equivalent

- (i) All operator $H: M \to M$ is a d-onco.
- (ii) $I: M \to M$ is a d-onco,
- (iii) M has order continuous norm.

Proof. $(i) \Rightarrow (ii)$ It is obvious.

 $(ii)\Rightarrow (iii)$ Assume that a net (x_α) in M^+ such that $I\in \mathfrak{D}L_{on}(M)$ and $x_\alpha\downarrow 0$. Since $\|x_\alpha-I(x_\alpha)\|=0\to 0$, and I is in $\mathfrak{D}L_{on}(M)$, we get $\|x_\alpha\|\to 0$. We know x_α is decreasing. Hence, it is clear that $\|x_\alpha\|$ is decreasing. Since $\|x_\alpha\|\downarrow$ and $\|x_\alpha\|\to 0$, then we get $\|x_\alpha\|\downarrow 0$, so M has order continuous norm.

 $(iii) \Rightarrow (i)$ It is obvious from Teorem 2.3.

The next example shows that if H is a d-onco and, $0 \le S \le H$, then S is not a d-onco in general.

Example 2.7. Let H, S be two operators on M = C[0,1], S = I and H = 2I. It holds $0 \le S \le H$. H belongs to $\mathfrak{D}L_{on}(M)$, but S does not belong to $\mathfrak{D}L_{on}(M)$.

The following theorem gives us that the domination property is satisfied under the some special conditions.

Theorem 2.6. Let S and H be two positive operators on the normed Riesz space M and $0 \le S \le H \le I$. If H is the d-onco, then S is also the d-onco.

Proof. Assume that a net (x_{α}) in M^+ such that $H \in \mathfrak{D}L_{on}(M)$, $x_{\alpha} \stackrel{o}{\to} 0$ and $||x_{\alpha} - S(x_{\alpha})|| \to 0$.

Since $0 \le (I - H)(x_{\alpha}) \le (I - S)(x_{\alpha})$, we obtain that

$$||(I-H)(x_{\alpha})|| \le ||(I-S)(x_{\alpha})||.$$

Thus, $||x_{\alpha} - H(x_{\alpha})|| \to 0$. Since H is in $\mathfrak{D}L_{on}(M)$, then $||x_{\alpha}|| \to 0$. Therefore, we get S is also a d-onco.

Theorem 2.7. Let M be a normed Riesz space, S and H two operators on M and $I \le S \le H$. If S is in $\mathcal{D}L_{on}(M)$, then H is in $\mathcal{D}L_{on}(M)$.

Proof. Assume that a net (x_{α}) in M^+ such that $S \in \mathfrak{D}L_{on}(M)$, $x_{\alpha} \stackrel{O}{\to} 0$ and $\|(H-I)(x_{\alpha})\| \to 0$. We know that $0 \le (S-I)(x_{\alpha}) \le (H-I)(x_{\alpha})$. Hence,

$$||(H-I)(x_{\alpha})|| \to 0 \Rightarrow ||(S-I)(x_{\alpha})|| \to 0$$
.

Since S is in $\mathfrak{D}L_{on}(M)$, we obtain that $||x_{\alpha}|| \to 0$, so H belongs to $\mathfrak{D}L_{on}(M)$.

Theorem 2.8. Let M be a normed Riesz space, $H, S, N: M \to M$ be three operators and $N \le S \le H \le I + N$. If N is in $L_{on}(M)$ and H is in $\mathfrak{D}L_{on}(M)$, then S is in $\mathfrak{D}L_{on}(M)$.

Proof. We obtain from the hypothesis $0 \le S - N \le H - N \le I$. H - N is a d-onco from Theorem 2.2, and S - N is a d-onco from Theorem 2.6. Since S = S - N + N, S - N is a d-onco, N is in $L_{on}(M)$, and from Theorem 2.2, we obtain that S is a d-onco.

Note that if a continuous operator belongs to $\mathfrak{D}L_{on}(M)$, then its adjoint does not generally belong to $\mathfrak{D}L_{on}(M)$. For example, $I: l_1 \to l_1$ a d-onco, but its adjoint $I^* = I := l_\infty \to l_\infty$ is not a d-onco.

Similarly, if the adjoint of a continuous operator is d-onco, then it may not be a d-onco in general; for example, choice $M = l_{\infty}$. Since M' is AL-space, then M' has order continuous norm [6]. Hence, $I': M' \to M'$ is a d-onco, but $I: l_{\infty} \to l_{\infty}$ is not a d-onco.

The following example gives us that the set of all demi-order norm continuous operators on M does not form a lattice in general.

Example 2.8. Let $M = L^1([0,1]) \times c_0$, $H: M \to M$ be an operator, and defined as $H(f,x) = (0, (\int_0^1 f(x) sinx dx, \int_0^1 f(x) sin2x dx, \int_0^1 f(x) sinx 3 dx, \cdots))$, for each $f \in L^1([0,1])$. Since the norm on the M is order continuous, then H is in $L_{on}(M)$. Therefore, H is a d-onco, but it does not have modulus. Since this operator is not order bounded [6], so $\mathfrak{D}L_{on}(M)$ is not a lattice.

Let L(M) be a Riesz space. $\mathfrak{D}L_{on}(M)$ is not order closed in L(M) in general.

Example 2.9. Let $T: l_{\infty} \to l_{\infty}$ be an operator, $x = (x_i)$ and defined as $T_n(x) = \sum_{i=1}^n x_i e_i$. We get $0 \le T_n \uparrow I$. Therefore, it is clear that $T_n \stackrel{o}{\to} I$. $\mathfrak{D}L_{on}(M)$ is not order closed, since I is not a d-onco.

ACKNOWLEDGMENT

We would like to thank the Scientific and Technological Research Council of Türkiye (TÜBİTAK) for the TÜBİTAK BİDEB 2211-A General Domestic Doctorate Scholarship Program that supported the first author.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] Petryshyn, W.V., "Construction of fixed points of demicompact mappings in Hilbert space", Journal of Mathematical Analysis and Applications, 14(2): 276-284, (1966).
- [2] Krichen, B., O'Regan, D., "Weakly demicompact linear operators and axiomatic measures of weak noncompactness", Mathematica Slovaca, 69(6): 1403-1412, (2019).
- [3] Benkhaled, H., Hajji, M., Jeribi, A., "On the class of Demi Dunford- Pettis Operators", Rendiconti del Circolo Matematico di Palermo, Ser. 2, 1-11, (2022).
- [4] Benkhaled, H., Elleuch, A., Jeribi, A., "The class of order weakly demicompact operators", Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A Matemáticas., 114(2): 1-8, (2020).
- [5] Jalili, A., Haghnejad, K., Moghimi, M., "Order-to-topology continuous operators", Positivity, 25(2): 1-10, (2021).
- [6] Aliprantis, C.D., Burkinshaw, O., Positive Operators, 119, Berlin, (2006).