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Abstract

We introduce a new class of harmonic function f , that is subclass of
planar harmonic mapping associated with q− di�erence operator. Let
h and g are analytic functions in the open unit disc D = {z : |z| < 1}. If
f = h+ g is the solution of the non-linear partial di�erential equation

wq(z) =
Dqg(z)

Dqh(z)
= fz

fz
with |wq(z)| < 1, wq(z) ≺ b1

1+z
1−qz and h is

q− convex function of complex order, then the class of such functions
are called q− harmonic functions for which analytic part is q− convex
functions of complex order denoted by SHCq(b). Obviously that the class
SHCq(b) is the subclass of SH. In this paper, we investigate properties
of the class SHCq(b) by using subordination techniques.
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1. Introduction

A planar harmonic mapping in the open unit disc D is a complex valued harmonic
function f , which maps D onto the some planar domain f(D). Since D is a simply
connected domain, the mapping f has a canonical decomposition f = h+g, where h and
g are analytic in D and have the following power series expansions

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n

where an, bn ∈ C, n = 0, 1, 2, 3, · · · . As usual, we call h the analytic part of f and g
the co-analytic part of f , respectively. An elegant and complete treatment theory of
the harmonic mapping is given in Duren's monograph [3]. Lewy [11] proved in 1936
that the harmonic mapping f is locally univalent in D if and only if its Jacobian Jf =
|h′(z)|2 − |g′(z)|2 is di�erent from zero in D. In view of this result, locally univalent
harmonic mappings in the open unit disc are either sense-preserving if |g′(z)| < |h′(z)| or
sense-reversing if |g′(z)| > |h′(z)| in D. Throughout this paper, we will restrict ourselves
to the study of sense-preserving harmonic mappings. We also note that f = h + g is
sense-preserving in D if and only if h′ does not vanish in D and the second dilatation

w(z) = g′(z)
h′(z) has the property |w(z)| < 1 for all z ∈ D. Therefore the class of all sense-

preserving harmonic mappings in D with a0 = b0 = 0 and a1 = 1 will be denoted by
SH. Thus SH contains standard class S of analytic univalent functions. The family of all
mappings f ∈ SH with the additional property that g′(0) = 0, i.e., b1 = 0 are denoted
by S0

H. Hence it is clear that S ⊂ S0
H ⊂ SH.

In 1908 and 1910 Jackson [8, 9] initiated a study of q− di�erence operator by

(1.1) Dqf(z) =
f(z)− f(qz)

(1− q)z for z ∈ B\{0}

where B is a subset of complex plane C, called q− geometric set if qz ∈ B, whenever
z ∈ B. Note that if a subset B of C is q− geometric, then it contains all geometric
sequences {zqn}∞0 , zq ∈ B. Obviously, Dqf(z) → f ′(z) as q → 1−. The q− di�erence
operator (1.1) is sometimes called Jackson q− di�erence operator. Note that such an
operator plays an important role in the theory of hypergeometric series and quantum
physics (see for instance [1, 4, 5, 10]).

Also, note that Dqf(0) → f ′(0) as q → 1− and D2
qf(z) = Dq(Dqf(z)). In fact, q−

calculus is ordinary classical calculus without the notion of limits. Recent interest in q−
calculus is because of its applications in various branches of mathematics and physics.
For de�nition and properties of q− di�erence operator and q− calculus, one may refer to
[1, 4, 5, 10].

Under the hypothesis of the de�nition of q− di�erence operator, then we have the
following rules:

(1) For a function f(z) = zn, we observe that

Dqz
n =

1− qn

1− q z
n−1.

Therefore we have

Dqf(z) = 1 +

∞∑
n=2

an
1− qn

1− q z
n−1.

(2) If functions f and g are de�ned on a q− geometric set B ⊂ C such that q−
derivatives of f and g exist for all z ∈ B, then

(i) Dq(af(z)±bg(z)) = aDqf(z)±bDqg(z) where a and b are real or complex
constants.
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(ii) Dq(f(z).g(z)) = g(z)Dqf(z) + f(qz)Dqg(z).

(iii) Dq

(
f(z)

g(z)

)
=
g(qz)Dqf(z)− f(qz)Dqg(z)

g(z)g(qz)
, g(z)g(qz) 6= 0.

(iv) As a right inverse, Jackson introduced q− integral∫ z

0

f(t)dqt = z(1− q)
∞∑
n=0

qnf(zqn)

provided that the series converges.

The following theorem is an analogue of the fundamental theorem of calculus.

A. Theorem. ([10]) Let f be a q− regular at zero, de�ned on q− geometric set B
containing zero. De�ne

F (z) =

∫ z

c

f(ζ)dqζ, (ζ ∈ B)

where c is a �xed point in B, then F is q− regular at zero. Furthermore DqF (z) exists
for every z ∈ B and

DqF (z) = f(z)

for every z ∈ B.
Conversely, if a and b are two points in B, then∫ b

a

Dqf(ζ)dqζ = f(b)− f(a).

(3) The q− di�erential is de�ned as

dqf(z) = f(z)− f(qz).

Therefore we can write

dqf(z) =
f(z)− f(qz)

(1− q)z dqz.

(4) The partial q− derivative of a multivariable real continous functions
f(x1, x2, ..., xi−1, xi, xi+1, ..., xn) to a variable xi is de�ned by

Dq,xif(~x) =
f(~x)− εq,xif(~x)

(1− q)xi
, xi 6= 0, q ∈ (0, 1)[

Dq,xif(~x)

]
xi=0

= lim
xi→0

Dq,xif(~x)

where εq,xif(~x) = f(x1, x2, ..., xi−1, qxi, xi+1, ..., xn) and we use Dk
k,x instead of

operator
∂kq
∂qxk

for some simpli�cation.

Finally, let Ω be the family of functions φ analytic in D, and satisfy the conditions
φ(0) = 0, |φ(z)| < 1 for all z ∈ D. Denote by Pq the family of functions p of the form
p(z) = 1 + p1z + p2z

2 + · · · , analytic in D and satisfy the condition

(1.2)

∣∣∣∣ p(z)− 1

1− q

∣∣∣∣ ≤ 1

1− q , z ∈ D

where q ∈ (0, 1) is a �xed real number. Let A be the family of functions f , de�ned by
f(z) = z + a2z

2 + a3z
3 + ..., that are analytic in D and satisfy the conditions f(0) =

0, f ′(0) = 1. If f satis�es the condition

1 +
1

b

(
qz
Dq(Dqf(z))

Dqf(z)

)
≺ 1 + z

1− qz ,

where b ∈ C, b 6= 0, then f is called q− convex function of complex order, and the class of
such functions are denoted by Cq(b). If f1 and f2 are analytic functions in D, then we say
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that f1 is subordinate to f2, written as f1 ≺ f2 if there exists a Schwarz function φ ∈ Ω
such that f1(z) = f2(φ(z)), z ∈ D. We also note that if f2 univalent in D, then f1 ≺ f2 if
and only if f1(0) = f2(0) and f1(D) ⊂ f2(D). This implies that f1(Dr) ⊂ f2(Dr), where
Dr = {z : |z| < r , 0 < r < 1} (Subordination principle [6] ).

We also need the following lemmas:

1.1. Lemma. Let φ be analytic in D with φ(0) = 0 and |φ(z)| < 1, z ∈ D. If |φ(z)|
attains its maximum value on the circle |z| = r at a point z0 , then we have

z0φ
′(z0) = mφ(z0), m ≥ 1.

For more details of Jack's lemma, one may refer to [7].

1.2. Lemma. ([12]) If h is an element of Cq(b), then

F2(|b|, Reb, q, r) ≤ |Dqh(z)| ≤ F1(|b|, Reb, q, r)

where

F1(|b|, Reb, q, r) =

[
(1− qr)Reb+|b|.(1 + qr)Reb−|b|

]− 1−q2

2q2logq−1

,

F2(|b|, Reb, q, r) =

[
(1− qr)Reb−|b|.(1 + qr)Reb+|b|

]− 1−q2

2q2logq−1

.

The aim of this paper is to investigate properties of the class of q− harmonic functions
for which analytic part is q− convex functions of complex order de�ned by

SHCq(b) =

{
f = h+g : wq(z) =

Dqg(z)

Dqh(z)
=
fz
fz
, wq(z) ≺ b1

1 + z

1− qz , |wq(z)| < 1, h ∈ Cq(b)

}
,

where

Dqh(z) =
h(z)− h(qz)

(1− q)z = fz and Dqg(z) =
g(z)− g(qz)

(1− q)z = fz.

2. Main Results

In this section, we �rst assume that the function f is sense-preserving q− harmonic

function if and only if wq(z) = fz
fz

is analytic. To show that

(⇒) Let f = h+ g be sense-preserving q− harmonic function, then we will show that

wq is analytic. Since h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n are analytic functions,

then we can write q− derivatives of these functions as

Dqh(z) = 1 +

∞∑
n=2

1− qn

1− q anz
n−1 and Dqg(z) = b1 +

∞∑
n=2

1− qn

1− q bnz
n−1.

We must note that when q → 1−, Dqh(z) reduces to h′(z) and Dqg(z) reduces to g′(z).
The second q− dilatation and q− Jakobian are de�ned by

wq(z) =
Dqg(z)

Dqh(z)
=
fz
fz
,

Jfq(z) = |Dqh(z)|2 − |Dqg(z)|2.
Also, the total q− di�erential of f(~x) can be written in the following manner,

dqf(~x) = Dq,x1dqx1 +Dq,x2dqx2 +Dq,x3dqx3 + · · ·+Dq,xndqxn.

Therefore the q− di�erential can be written as

dqf = Dq,zdqz +Dq,zdqz.
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Consequently, f is locally univalent and sense-preserving if |Dqh(z)| > |Dqg(z)| and
sense-reversing if |Dqg(z)| > |Dqh(z)|. Note that fz 6= 0 whenever Jfq(z) > 0. For
sense-preserving f , one sees that

(|Dqh(z)| − |Dqg(z)|)|dqz| ≤ |dqf | ≤ (|Dqh(z)|+ |Dqg(z)|)|dqz|.
With aid of these de�nitions, let f = h+g be the solution of the non-linear elliptic partial
di�erential equation

wq(z)fz = fz
under the condition |wq(z)| < 1 for all z ∈ D. A non-constant complex -valued function
f is q− harmonic and orientation sense-preserving mapping on D if and only if f is the
solution of the non-linear elliptic partial di�erential equation

(2.1) wq(z)fz = fz

where

fz = Dqh(z) =
h(z)− h(qz)

(1− q)z and fz = Dqg(z) =
g(z)− g(qz)

(1− q)z .

If we take the q− derivative of equation (2.1) with respect to z, we get

(2.2) fzz = fzzwq(z) + fz
∂wq
∂z

.

On the other hand, since f is q− harmonic, then we have 4f = 4 ∂2f
∂z∂z

= 4fzz = 0 and

fzz = 0. Therefore the equality (2.2) reduces to

(2.3) fz
∂wq
∂z

= 0

and this shows that
∂wq

∂z
= 0, that is, wq is analytic.

(⇐) Conversely, if wq is analytic in D, then ∂wq

∂z
= 0. Therefore equality (2.2) reduces

to

(2.4) fzz = fzzwq(z).

On the other hand, using the de�nition of wq, we have |wq(z)| < 1. Thus, we get

(2.5) 1− |wq(z)| 6= 0.

Considering (2.4) and (2.5), we obtain

(2.6) fzz = fzzwq(z)⇒ fzz = 0

and the equality (2.6) shows that f is q− harmonic. This proves our assumption.
We now investigate properties of the class SHCq(b). For Theorem 2.4, we need the

following results. The �rst theorem is very important in order to obtain subordination
of the analytic functions involving q− di�erence operator.

2.1. Theorem. ([2]) p is an element of Pq if and only if p(z) ≺ 1 + z

1− qz . This result is

sharp for the functions p(z) =
1 + φ(z)

1− qφ(z)
, where φ is a Schwarz function.

Proof. If p is an element of Pq, then we have∣∣∣∣ p(z)− 1

1− q

∣∣∣∣ ≤ 1

1− q ⇔ |p(z)−m| ≤ m,

where m =
1

1− q > 1. Therefore we can write∣∣∣∣ 1

m
p(z)− 1

∣∣∣∣ ≤ 1.
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Thus the function ψ(z) = 1
m
p(z)− 1 is analytic and has modulus at most 1 in D, and so

φ(z) =
ψ(z)− ψ(0)

1− ψ(0)ψ(z)
=

( 1
m
p(z)− 1)− ( 1

m
− 1)

1− ( 1
m
− 1)( 1

m
p(z)− 1)

satis�es the conditions of Schwarz lemma. This shows that we can write

p(z) =
1 + φ(z)

1− (1− 1
m

)φ(z)
⇒ p(z) ≺ 1 + z

1− qz .

Conversely, suppose that the function p is analytic in D and satis�es the condition p(0) =
1 and

p(z) ≺ 1 + z

1− qz ⇒ p(z) =
1 + φ(z)

1− (1− 1
m

)φ(z)

p(z)−m = m
1−m
m

+ φ(z)

1 + 1−m
m

φ(z)
.

On the other hand the function
1−m
m

+φ(z)

1+ 1−m
m

φ(z)
maps the unit circle onto itself, then we have

|p(z)−m| ≤ m⇔
∣∣∣∣ p(z)− 1

1− q

∣∣∣∣ ≤ 1

1− q .

This shows that p ∈ Pq. �

We must note that the linear tranformation 1+z
1−qz maps |z| = r onto the disc with

centre C(r) = 1+qr2

1−q2r2 and radius ρ(r) = (1+q)r

1−q2r2 .

2.2. Lemma. If f is a function (real or complex valued) de�ned on q− geometric set B
with |q| 6= 1, then

Dq(logf(z)) =
Dqf(z)

f(z)
.

Proof. Using the de�nition of q− di�erence operator, then we have

Dq(logf(z)) =
logf(qz)− logf(z)

qz − z = log

(
1 + h

Dqf(z)

f(z)

) 1
h

.

If we take limit for h→ 0, we obtain the desired result. �

2.3. Lemma. (q−Jack's Lemma) Let φ be analytic in D with φ(0) = 0. If |φ(z)| attains
its maximum value on the circle |z| = r at a point z0 ∈ D, then we have

z0Dqφ(z0) = mφ(z0)

where m ≥ 1 is a real number.

Proof. Using the de�nition of q− di�erence operator and Jack's lemma, then we can
write

Dqφ(z) =
φ(z)− φ(qz)

z − qz =
φ(z)− φ(z0)

z − z0
, qz = z0.

If we take limit for z → z0, we get

lim
z→z0

Dqφ(z) = Dqφ(z0) = lim
z→z0

φ(z)− φ(z0)

z − z0
= φ′(z0).

Therefore we have

z0Dqφ(z0) = mφ(z0).

�
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2.4. Theorem. If f = h+ g is an element of SHCq(b), then

(2.7)
g(z)

h(z)
≺ b1

1 + z

1− qz .

Proof. Since f = h+ g ∈ SHCq(b), then we have

Dqg(z)

Dqh(z)
≺ b1

1 + z

1− qz .

The linear transformation w = b1
1+z
1−qz maps |z| = r onto the disc with centre C(r) =(α1(1+qr

2)

1−q2r2 , α2(1+qr
2)

1−q2r2
)
and radius ρ(r) = |b1|(1+q)r

1−q2r2 , where α1 = Reb1 and α2 = Reb2.

Thus using the subordination principle and the de�nition of the class SHCq(b), we can
write

(2.8) wq(Dr) =

{
Dqg(z)

Dqh(z)
:

∣∣∣∣Dqg(z)

Dqh(z)
− b1(1 + qr2)

1− q2r2

∣∣∣∣ ≤ |b1|(1 + q)r

1− q2r2 , q ∈ (0, 1)

}
.

In order to verify Schwarz function conditions, we de�ne the function φ by

(2.9)
g(z)

h(z)
= b1

1 + φ(z)

1− qφ(z)
.

Note that φ is a well de�ned analytic function and

g(z)

h(z)

∣∣∣∣
z=0

= b1 = b1
1 + φ(0)

1− qφ(0)
.

This proves that φ(0) = 0. We now need to show that |φ(z)| < 1 for all z ∈ D. If we take
q− derivative of both sides of (2.9) and simplify, we get

Dqg(z)

h(z)
− g(qz)Dqh(z)

h(z)h(qz)
= b1

Dqφ(z)− qφ(qz)Dqφ(z) + qDqφ(z) + qφ(qz)Dqφ(z)

(1− φ(z))(1− φ(qz))
.

Multiplying both sides of this equation by h(z)/Dqh(z) and simplifying, we obtain

(2.10)
Dqg(z)

Dqh(z)
= b1

(
1 + φ(qz)

1− qφ(qz)
+

(1 + q)zDqφ(z)

(1− qφ(z))(1− qφ(qz))
.
h(z)

zDqh(z)

)
.

Applying Lemma 2.2 in the equation (2.10), we can write the following form

(2.11)
Dqg(z)

Dqh(z)
= b1

(
1 + φ(qz)

1− qφ(qz)
+

(1 + q)zDqφ(z)

(1− qφ(z))(1− qφ(qz))

(
1− qφ(z)

)b 1−q2

q2logq−1

)
.

Assume to the contrary that there esists a point z0 ∈ Dr such that |φ(z0)| = 1. In view
of Lemma 2.3, equation (2.11) gives

Dqg(z0)

Dqh(z0)
= b1

(
1 + φ(qz0)

1− qφ(qz0)
+

(1 + q)mφ(z0)

(1− qφ(z0))(1− qφ(qz0))

(
1−qφ(z0)

)b 1−q2

q2logq−1

)
/∈ wq(Dr).

This contradicts our assumption (2.8) and therefore |φ(z)| < 1 for all z ∈ D. This
completes the proof of our theorem. �

2.5. Corollary. If f = h+ g ∈ SHCq(b), then we have

(2.12) F2(|b|, Reb, |b1|, q, r) ≤ |Dqg(z)| ≤ F1(|b|, Reb, |b1|, q, r),
where

F1(|b|, Reb, |b1|, q, r) =

[(
1− qr

)Reb+|b|(
1 + qr

)Reb−|b|]− 1−q2

2q2logq−1 |b1|(1 + r)

1− qr ,

F2(|b|, Reb, |b1|, q, r) =

[(
1− qr

)Reb−|b|(
1 + qr

)Reb+|b|]− 1−q2

2q2logq−1 |b1|(1− r)
1 + qr

.
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Proof. Since f = h + g is an element of SHCq(b), from Theorem 2.4 we write
Dqg(z)

Dqh(z)
≺

b1
1+z
1−qz , where h ∈ Cq(b). Therefore we have∣∣∣∣Dqg(z)

Dqh(z)
− b1(1 + qr2)

1− q2r2

∣∣∣∣ ≤ |b1|(1 + q)r

1− q2r2 .

This inequality yields

|Dqg(z)| ≤ |Dqh(z)| |b1|(1 + r)

1− qr .

If we use Lemma 1.2, we get the right side of (2.12). Similarly, we can prove the other
side of the inequality (2.12). �

2.6. Corollary. If f = h+ g ∈ SHCq(b), then we have

(2.13) f = h(z) + h(z)b1
1 + φ(z)

1− qφ(z)
,

where φ is a Schwarz function.

Proof. Using Theorem 2.4, then we can write

g(z)

h(z)
≺ b1

1 + z

1− qz ⇒
g(z)

h(z)
= b1

1 + φ(z)

1− qφ(z)
.

Therefore we obtain

g(z) = h(z)b1
1 + φ(z)

1− qφ(z)
,

which gives (2.13). �
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