PAPER DETAILS

TITLE: Some properties of the total graph and regular graph of a commutative ring

AUTHORS: Manal GHANEM, Khalida NAZZAL

PAGES: 835-843

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/523044

Some properties of the total graph and regular graph of a commutative ring

Manal Ghanem* and Khalida Nazzal[†]

Abstract

Let R be a commutative ring with unity. The total graph of R, $T(\Gamma(R))$, is the simple graph with vertex set R and two distinct vertices are adjacent if their sum is a zero-divisor in R. Let $\operatorname{Reg}(\Gamma(R))$ and $Z(\Gamma(R))$ be the subgraphs of $T(\Gamma(R))$ induced by the set of all regular elements and the set of zero-divisors in R, respectively. We determine when each of the graphs $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ is locally connected, and when it is locally homogeneous. When each of $\operatorname{Reg}(\Gamma(R))$ and $Z(\Gamma(R))$ is regular and when it is Eulerian.

Keywords: Total graph of a commutative ring, Regular graph of a commutative ring, Locally connected, Locally homogeneous, Regular graph, Eulerian graph.

Mathematics Subject Classification (2010): 13A15, 05C99

 $Received: \ 31.05.2016 \quad Accepted: \ 12.06.2017 \quad \quad Doi: \ 10.15672 / \mathrm{HJMS.2017.490}$

1. Introduction

Throughout this paper R will be used to denote a commutative ring with unity $1 \neq 0$. Let Z(R) be the set of all zero-divisors of R. The total graph of R is the simple graph with vertex set R where two distinct vertices x and y are adjacent if $x+y\in Z(R)$. This graph, denoted by $T(\Gamma(R))$, was introduced by Anderson and Badawi in [1], the authors gave full description for the case when Z(R) is an ideal. On the other hand, they computed some graphical invariants such as the diameter and the girth of $T(\Gamma(R))$. Akbari and et al. [3], proved that if R is a finite ring, then a connected total graph is Hamiltonian. Maimani and et al. [12] investigated the genus of $T(\Gamma(R))$. The radius of $T(\Gamma(R))$ was computed in [13]. The domination number of $T(\Gamma(R))$ is determined independently in both [7] and [16]. For a finite commutative ring R, a characterization of

^{*}Department of Mathematics, School of Science, The University of Jordan, Amman 11942 Jordan,

Email: m.ghanem@ju.edu.jo

[†]Department of Mathematics, Faculty of Arts and Sciences, Palestine Technical University-Kadoorie, Tulkarm, West Bank, Palestine,

Email: k.nazzal@ptuk.edu.ps‡

Eulerian $T(\Gamma(R))$ is given in [16]. Minimum zero -sum k-flows for $T(\Gamma(R))$ are considered in [15]. The complement of $T(\Gamma(R))$ is investigated in [5]. Vertex-connectivity and edge-connectivity of $T(\Gamma(R))$, where R is a finite commutative ring, are discussed in [14]. Some properties of the regular graph $\operatorname{Reg}(\Gamma(R))$ are studied in [4]. The line graph of $T(\Gamma(R))$ is investigated in [8]. Furthermore, the generalized total graph of R is defined in [2]. For a survey on the total graph of a commutative ring, the reader may refer to [6] or [10].

The following theorem gives full description of the graph $T(\Gamma(R))$ when Z(R) is an ideal of R.

- **1.1. Theorem.** [1] Let R be a ring such that Z(R) is an ideal of R. Let $|Z(R)| = \lambda$, $|R/Z(R)| = \mu$.
 - (i) If $2 \in Z(R)$, then $\text{Reg}(\Gamma(R))$ is the union of $\mu 1$ disjoint $K_{\lambda}'s$.
 - (ii) If $2 \in \text{Reg}(R)$, then $\text{Reg}(\Gamma(R))$ is the union of $(\mu 1)/2$ disjoint $K_{\lambda,\lambda}$'s.
 - (iii) $Z(\Gamma(R))$ is the complete graph, K_{λ} .
 - (v) Reg($\Gamma(R)$) is connected if and only if $R/Z(R) \cong \mathbb{Z}_2$ or $R/Z(R) \cong \mathbb{Z}_3$.

Several structural properties of $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ will be considered. Section 2 addresses the problems "when is each of the graphs $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ locally connected?". Section 3 answers the problem "when is each of the graphs $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ regular?". In Section 4, Eulerian $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ are characterized, where R is a finite commutative ring. Section 5 addresses the problem "when is each of the graphs $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ locally homogeneous?"

2. When are $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ Locally Connected?

Let G be a graph with vertex set and edge set V(G) and E(G) respectively. Let $v \in V(G)$, the open neighborhood, N(v), of v is defined by $N(v) = \{u \in V(G) : uv \in E(G)\}$. The graph G is said to be locally connected if for all $v \in V(G)$, N(v) induces a connected graph in G. Thus, if G is a union of complete graphs, then G is locally connected and if a graph G has a bipartite component, other than $K_{1,1}$, then it is not locally connected. This, together with Theorem 1.1 give the following theorem.

- **2.1. Theorem.** Let R be a ring and Z(R) be an ideal of R.
 - (i) $Z(\Gamma(R))$ is a locally connected graph.
 - (ii) $\operatorname{Reg}(\Gamma(R))$ and $T(\Gamma(R))$ are locally connected graphs if and only if $2 \in Z(R)$, or R is an integral domain.

The next theorem considers the case when R is a product of two rings.

2.2. Theorem. Let R be a product of two rings R_1 and R_2 . Then $T(\Gamma(R))$ is locally connected if and only if either R_1 or R_2 is not an integral domain.

Proof. First, we study the case when both R_1 and R_2 are integral domains. Suppose that $2 \in \operatorname{Reg}(R)$ (i.e. $2 \in \operatorname{Reg}(R_1)$ and $2 \in \operatorname{Reg}(R_2)$), then (-1,1) and (-1,-1) are only adjacent to each other in N((1,0)) and hence there is no path between (-1,0) and (-1,1) in N((1,0)). If $2 \in Z(R_1)$ and $2 \in \operatorname{Reg}(R_2)$, then (0,-1) is an isolated vertex in N((1,1)). And if $2 \in Z(R_1)$ and $2 \in Z(R_2)$, then there is no path joining (1,0) and (0,1) in N((1,1)). So, $T(\Gamma(R))$ is not locally connected.

Now, we may assume that either R_1 or R_2 is not an integral domain. Let $N_i(u)$, denotes the open neighborhood of u in $T(\Gamma(R_i))$. Let $(a,b) \in R$ and $(x,y),(z,w) \in N((a,b))$. If (x,y) and (z,w) are non-adjacent in N((a,b)), then we have four cases:

Case 1: $x \in N_1(a)$ and $w \in N_2(b)$ or $(z \in N_1(a))$ and $y \in N_2(b)$.

Assume that $x \in N_1(a)$ and $w \in N_2(b)$. Then (x, y) - (a, w) - (x, b) - (z, w) is a path in N((a, b)).

Case 2: $x, z \in N_1(a)$ or $(y, w \in N_2(b))$.

Assume that $x, z \in N_1(a)$. Then we have three cases.

Case 2.1: $2 \in Z(R_1)$.

Choose $t \in R_2 \setminus \{b\}$, then $(a,t) \in N((a,b))$. So, (x,y) - (a,t) - (z,w) is a path in N((a,b)).

Case 2.2: $2 \in \text{Reg}(R_1)$ and $2 \in Z(R_2)$.

If R_1 is not an integral domain, then there exist $t, s \in Z(R_1)$ such that $-x+t \neq a$ and $-z+r \neq a$. Then if $-x+t \neq -z+r$, the path (x,y)-(-x+t,b)-(-z+r,b)-(z,w) is obtained. Otherwise, (x,y)-(-x+t,b)-(z,w) is a path in N((a,b)). Now, if R_2 is not an integral domain, then there exists $r \in Z(R_2)$ such that $-b+r \neq b$. So, (x,y)-(a,-b+r)-(z,w) is a path in N((a,b)).

Case 2.3: $2 \in \text{Reg}(R_2)$.

If R_2 is not an integral domain, then there exists $r \in Z(R_2)$ such that $-b+r \neq b$. So, (x,y)-(a,-b+r)-(z,w) is a path in N((a,b)). If R_1 is not an integral domain, then there exist $t,s \in Z(R_1)$ such that $-x+t \neq a$ and $-z+r \neq a$. So, when $-x+t \neq -z+r$, we get the path (x,y)-(-x+t,-b)-(x,b)-(-z+r,-b)-(z,w) in N((a,b)). Otherwise, we get the path (x,y)-(-x+t,-b)-(z,w).

Case 3: $x \in N_1(a)$, $z \in R_1 - N_1(a)$ and w = b or $(x = a, y \in R_2 - N_2(b))$ and $w \in N_2(b)$.

Assume that $x \in N_1(a)$, $z \in R_1 - N_1(a)$ and w = b. Then $2b \in Z(R_2)$. So, R_1 is not an integral domain, gives $-x+t \neq a$ for some $t \in Z(R_1)$. Therefore, (x,y)-(-x+t,b)-(z,w) is a path in N((a,b)). While R_2 is not an integral domain, implies that $-b+r \neq b$ for some $r \in Z(R_2)$. So, (x,y)-(a,-b+r)-(z,w) is a path in N((a,b)).

Case 4: x = a, w = b, $2a \in Z(R_1)$, and $2b \in Z(R_2)$ or $(y = b, x = a, 2a \in Z(R_1))$ and $2b \in Z(R_2)$.

Assume that $x=a, \ w=b, \ 2a\in Z(R_1)$, and $2b\in Z(R_2)$. Then R_1 is not an integral domain, implies that $-x+t\neq a$ for some $t\in Z(R_1)$ and R_2 is not an integral domain implies that $-b+r\neq b$ for some $r\in Z(R_2)$. Thus, (x,y)-(-x+t,b)-(z,w) or (x,y)-(a,-b+r)-(z,w) is a path in N((a,b)).

If R is a local ring, then Z(R) is an ideal and hence $Z(\Gamma(R))$ is a complete graph which is obviously locally connected. When R is a product of two rings, we have the following theorem.

2.3. Theorem. Let R be a product of two rings R_1 and R_2 . Then $Z(\Gamma(R))$ is locally connected if and only if either R_1 or R_2 is not an integral domain.

Proof. Observe that if R is a product of two integral domains, then there is no path joining (1,0) and (0,1) in N((0,0)). So $Z(\Gamma(R))$ is not locally connected. Assume that either R_1 or R_2 is not an integral domain. Since $(0,0) \in N((a,b))$ for any non-zero zero-divisors (a,b), we have (x,y)-(0,0)-(z,w) is a path joining (x,y) and (z,w) in N((a,b)). Thus N((a,b)) is locally connected for all $(a,b) \in Z(R)-\{0\}$. So it remains to study connectivity of the graph induced by N((0,0)). Assume that (x,y) and (z,w) are two non-adjacent vertices in N((0,0)), then $x \in Z(R_1) \setminus \{0\}$ implies that (x,y)-(-x,-w)-(z,w) is a path in N((0,0)).

Next, we will investigate when $\operatorname{Reg}(\Gamma(R))$ is locally connected. If R is a local ring, then $\operatorname{Reg}(\Gamma(R))$ is locally connected if R is an integral domain or $2 \in Z(R)$. If R is a product of two rings, then we have the following.

2.4. Theorem. Let R be a product of two rings and $2 \in \text{Reg}(R)$. Then $\text{Reg}(\Gamma(R))$ is locally connected.

Proof. Assume that $(a,b) \in \text{Reg}(R)$ and (x,y), (z,w) are two non-adjacent vertices in N((a,b)). Then $x \in N(a)$ gives the path (x,y) - (a,-b) - (-a,-w) - (z,w) in N((a,b)), and $y \in N(b)$ gives the path (x,y) - (-a,b) - (-z,-b) - (z,w) in N((a,b)).

Let $R = R_1 \times R_2$, then it is easy to see that if $|\text{Reg}(R_1)| = 1$, then $2 \in Z(R)$ and $\text{Reg}(\Gamma(R))$ is a complete graph and hence it is locally connected.

A Boolean ring provides an example of a ring R with only one regular element, this is due to the fact that for all $r \in R$, $r = r^2$. So, we get the following.

2.5. Theorem. If R is a Boolean ring or R is a product of rings with at least one Boolean factor, then $Reg(\Gamma(R))$ is a complete graph.

At this point it makes sense to require that $|\text{Reg}(R_i)| > 2$, for all i.

2.6. Theorem. Let R be a product of two local rings R_1 and R_2 such that $2 \in Z(R)$ and $|\text{Reg}(R_i)| \geq 2$ for i = 1, 2. Then $\text{Reg}(\Gamma(R))$ is locally connected if and only if R_1 or R_2 is not an integral domain.

Proof. Suppose that $R = R_1 \times R_2$ where R_1 and R_2 are integral domains, $2 \in Z(R)$ and $|\operatorname{Reg}(R_i)| \geq 2$ for i = 1, 2. Choose $(t, s) \in \operatorname{Reg}(R) \setminus \{(1, 1)\}$, then $2 \in Z(R_1)$ and $2 \in Z(R_2)$ imply that (1, s) and (t, 1) are two non-adjacent vertices in $\operatorname{Reg}(\Gamma(R))$ and there is no path joining them in N((1, 1)). If $2 \in Z(R_1)$ and $2 \in \operatorname{Reg}(R_2)$, then (1, -1) and (t, -1), where $t \in \operatorname{Reg}(R_1) \setminus \{1\}$, are non-adjacent vertices in N((1, 1)), with no path joining them in N((1, 1)). So $\operatorname{Reg}(\Gamma(R))$ is not locally connected.

Conversely, let $R=R_1\times R_2$ where R_1 and R_2 are two local rings such that $2\in Z(R)$ and $|\mathrm{Reg}(R_i)|\geq 2$, for i=1,2. Without loss of generality, assume that $2\in Z(R_1)$. Let $(a,b)\in\mathrm{Reg}(R)$ and (x,y),(z,w) be two non-adjacent vertices in N((a,b)). If R_1 is not an integral domain, then there exists $t\in Z(R_1)$ such that $t+a\neq a$. Since $Z(R_1)$ is an ideal of $R,\ t+a\in\mathrm{Reg}(R_1)$. Therefore, (x,y)-(a+t,-y)-(a+t,-w)-(z,w) is a path in N((a,b)). And if R_2 is not an integral domain, then $t-y\neq b$ and $s-w\neq b$ for some $t,s\in Z(R_2)$, so (x,y)-(a,t-y)-(a,s-w)-(z,w) is a path in N((a,b)) when $t-y\neq s-w$, otherwise, we have the path (x,y)-(a,t-y)-(z,w) in N((a,b)).

2.7. Theorem. If $R = \prod_{i=1}^{n} R_i, n \geq 3$, then $\text{Reg}(\Gamma(R))$ is locally connected.

Proof. Let $a = (a_i) \in \text{Reg}(R)$ and $u = (u_i)$ and $v = (v_i)$ be two non-adjacent vertices in N(a). Since $u \in N(a)$, $a_i + u_i \in Z(R_i)$, for some i, say for i = 1. Define $w = (w_i)$ such that $w_1 = u_1$, $w_2 = -u_2$, $w_3 = -v_3$ and $w_i = 1$ for all $i \geq 4$, then u - w - v is a path in N(a).

An Artinian ring is a ring that satisfies the descending chain condition on ideals. An Artinian ring R can be written uniquely (up to isomorphism) as a finite direct product of Artinian local rings. Since Z(R) is an ideal of R when R is local, we may conclude the following.

2.8. Theorem. Let R be an Artinian ring, then

- (i) $T(\Gamma(R))$ is not locally connected if and only if R is a local ring satisfying $2 \in \text{Reg}(R)$ and R is not an integral domain or R is a product of integral domains.
- (ii) $Z(\Gamma(R))$ is not locally connected if and only if R is a product of two integral domains.
- (iii) $\operatorname{Reg}(\Gamma(R))$ is not locally connected if and only if R is a local ring satisfying $2 \in \operatorname{Reg}(R)$ and R is not an integral domain or $R = R_1 \times R_2$, $2 \in Z(R)$, and $|\operatorname{Reg}(R_i)| \geq 2$ and R_i is an integral domain for i = 1, 2.

- **2.9. Corollary.** (i) $T(\Gamma(\mathbb{Z}_n))$ is not locally connected if and only if $n = t^m$, where t is an odd prime and $m \geq 2$ or $n = t_1t_2$, where t_1 , and t_2 are distinct primes.
 - (ii) $Z(\Gamma(\mathbb{Z}_n))$ is not locally connected if and only if $n = t_1t_2$ where t_1 and t_2 are two distinct primes.
 - (iii) $\operatorname{Reg}(\Gamma(\mathbb{Z}_n))$ is not locally connected if and only if $n=t^m$, where t is an odd prime and $m \geq 2$.

3. When are $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ regular?

In this section, we study regularity of the graphs $T(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, and $Z(\Gamma(R))$ for any ring R. Maimani et al. [12] proved that in $T(\Gamma(R))$, $\operatorname{deg}(u) = |Z(R)| - 1$ if $2 \in Z(R)$ or $u \in Z(R)$, and $\operatorname{deg}(u) = |Z(R)|$ otherwise. So, $T(\Gamma(R))$ is regular graph only if $2 \in Z(R)$ or R is an infinite non integral domain ring.

Now, we examine regularity of $\operatorname{Reg}(\Gamma(R))$. Clearly, if Z(R) is an ideal, then $\operatorname{Reg}(\Gamma(R))$ is regular of degree |Z(R)| - 1, when $2 \in Z(R)$ and it is regular graph of degree |Z(R)| when $2 \in \operatorname{Reg}(R)$.

The following theorems address the case when R is a product of two rings.

3.1. Theorem. Let R be a product of two rings R_1 and R_2 where R_1 and R_2 are two rings such that $|\text{Reg}(R_1)| = n_1$ and $|\text{Reg}(R_2)| = n_2$. Let $(u_1, u_2) \in \text{Reg}(R)$ and $\deg_1(u_1) = r_1$ and $\deg_2(u_2) = r_2$, where $\deg_i(u_i)$ is the degree of u_i in $\text{Reg}(\Gamma(R_i))$. Then the degree of the vertex (u_1, u_2) in $\text{Reg}(\Gamma(R))$ is given by,

$$\deg((u_1, u_2)) = \begin{cases} n_2 r_1 + n_1 r_2 - r_1 r_2, & \text{if } 2 \in \operatorname{Reg}(R); \\ n_1 r_2 + n_2 r_1 + (n_1 + n_2) - (r_1 + r_2) - r_1 r_2 - 2, & \text{if } 2 \in Z(R_1) \text{ and } 2 \in Z(R_2); \\ n_1 r_2 + n_2 r_1 - r_2 + n_2 - r_1 r_2 - 1, & \text{if } 2 \in Z(R_1) \text{ and } 2 \in \operatorname{Reg}(R) \end{cases}.$$

Proof. Note that if $2 \in \text{Reg}(R)$, then $N((u_1, u_2)) = \{(a, b) \in \text{Reg}(R) : a \in N(u_1) \text{ or } b \in N(u_2)\}$. So, $|N((u_1, u_2))| = r_1 n_2 + n_1 r_2 - r_1 r_2$. If $2 \in Z(R_1)$ and $2 \in Z(R_2)$, then $N((u_1, u_2)) = \{(a, b) \in \text{Reg}(R) \setminus \{(u_1, u_2)\} : a \in N(u_1) \cup \{u_1\} \text{ or } b \in N(u_2) \cup \{u_2\}\}$. So, $|N((u_1, u_2))| = (r_2 + 1)n_1 + (r_1 + 1)n_2 - (r_1 + 1)(r_2 + 1) - 1$. If $2 \in Z(R_1)$ and $2 \in \text{Reg}(R_2)$, then $N((u_1, u_2)) = \{(a, t) \in \text{Reg}(R) \setminus \{(u_1, u_2)\} : a \in N(u_1) \cup \{u_1\} \text{ or } b \in N(u_2)\}$. So, $|N((u_1, u_2))| = (r_1 + 1)n_2 + n_1 r_2 - (r_1 + 1)r_2 - 1$. □

Since for any local ring R the graph $\text{Reg}(\Gamma(R))$ is regular and every finite ring is a product of local rings by using Theorem 3.1 we get the following.

3.2. Theorem. If R is a finite ring, then $Reg(\Gamma(R))$ is a regular graph.

The following two lemmas will be useful in the subsequent work.

- **3.3. Lemma.** Let R be a finite ring. Then
 - (i) if |R| is even, then |Z(R)| and |Reg(R)| are both odd when R is a field or a product of fields of even orders, and they are both even otherwise.
 - (ii) if |R| is odd, then |Reg(R)| is even and |Z(R)| is odd.

If R is a ring, then $2 \in Z(R)$ if and only if |r| = 2 in (R, +), for some $r \in R \setminus \{0\}$. If R is a finite ring, then $2 \in Z(R)$ if and only if |R| is even.

Using Theorem 3.1 and the same notation, it is easy to conclude the following.

3.4. Lemma. Let R be a product of two local rings R_1 and R_2 and $(u_1, u_2) \in \text{Reg}(R)$. Then the degree of the vertex (u_1, u_2) in $\text{Reg}(\Gamma(R))$ is even if and only if $|\text{Reg}(R_1)|$, $|\text{Reg}(R_2)|$ are both odd and $\text{deg}_1(u_1)$, $\text{deg}_2(u_2)$ are both even.

Now, we are ready to prove the following theorem.

3.5. Theorem. Let R be a finite ring. Then $Reg(\Gamma(R))$ is a regular graph of even degree if and only if R is a field or a product of two or more fields of even orders.

Proof. Let $R=\prod_{i=1}^n R_i, n\geq 2$, where R_i is a finite local ring for all i. First, we will study the three special cases: (i) |R| is odd or (ii) R_i is a field of even order for all i, or (iii) R_i is not a field of even order for all i. Using induction in each case, Theorem 3.1 and the above two lemmas, we get $\operatorname{Reg}(\Gamma(R))$ is a regular graph of odd order and even degree when R is a product of fields of even orders, and it is a regular graph of even order and odd degree otherwise. Now, we move to the case where R is a product of fields of even orders and local rings that are not fields of even orders, note that $R\cong S\times T$, where S is the product of all fields $R_i's$ and S is the product of all not fields local rings S is S. Then $\operatorname{Reg}(\Gamma(R))$ is a regular graph of even order and odd degree. Finally if $|R|=2^m t$, where S is odd integer, we may write S is S is a regular graph of even order and odd degree.

Note that $Z(\Gamma(R))$ is a regular graph, of degree |Z(R)|-1, when R is a local ring since $Z(\Gamma(R))\cong K_{|Z(R)|}$. However, $Z(\Gamma(R))$ is not regular if R is a product of two rings, since $N((0,0))=Z(R)/\{(0,0)\}$ and $N((0,1))\subseteq Z(R)/\{(1,0),(0,1)\}$. So, we get the following.

3.6. Theorem. Let R be a finite ring, then

- (i) $Z(\Gamma(R))$ is a regular graph if and only if R is a local ring
- (ii) $Z(\Gamma(R))$ is a regular graph of even degree if and only if R is a field or R is a local ring of odd order.
- **3.7. Corollary.** (i) $T(\Gamma(\mathbb{Z}_n))$, and $\operatorname{Reg}(\Gamma(\mathbb{Z}_n))$ are regular graphs of even degrees if and only if n=2.
 - (ii) $Z(\Gamma(\mathbb{Z}_n))$ is regular graph of even degree if and only if n=2 or $n=p^m$, p is odd prime and $m\geq 1$.

4. When are $Reg(\Gamma(R))$ and $Z(\Gamma(R))$ Eulerian?

A graph is said to be Eulerian if it has a closed trail containing all of its edges. Or equivalently, a connected graph G is Eulerian if and only if the degree of each vertex in V(G) is even.

Clearly, if R is a finite local ring, then $T(\Gamma(R))$ is non Eulerian, and $\operatorname{Reg}(\Gamma(R))$ is Eulerian if and only if $R \cong \mathbb{Z}_2$, while $Z(\Gamma(R))$ is Eulerian if and only if |R| is odd or R is a field.

The next theorem, which is due to Shekarriz et al. [16], characterizes Eulerian $T(\Gamma(R))$ when R is a finite ring.

4.1. Theorem. Let R be a finite ring, then the graph $T(\Gamma(R))$ is Eulerian if and only if R is a product of two or more fields of even orders.

Let R be a direct product of two rings. Then $\operatorname{Reg}(\Gamma(R))$ is connected, since for any two vertices (a,b) and (x,y) in $\operatorname{Reg}(\Gamma(R))$, (a,b)-(-a,-y)-(x,y) is a path joining the two non-adjacent vertices, [1]. So, for any finite non local ring R, $\operatorname{Reg}(\Gamma(R))$ is connected. Using Theorem 3.5, the following theorem is obtained.

4.2. Theorem. Let R be a finite ring. Then the graph $Reg(\Gamma(R))$ is Eulerian if and only if $R \cong \mathbb{Z}_2$ or R is a product of two or more fields of even orders.

Finally, we investigate when $Z(\Gamma(R))$ is Eulerian.

4.3. Theorem. Let R be a finite ring. Then $Z(\Gamma(R))$ is Eulerian if and only if R is a field or |R| is odd.

П

Proof. Clearly, if R is a local ring, then $Z(\Gamma(R))$ is Eulerian if and only if R is a field or |R| is odd. Suppose that $R = \prod_{i=1}^{n} R_i$, where R_i is a finite local ring for all i. Then we have two cases.

Case 1: |R| is even. If $Z(\Gamma(R))$ is Eulerian, then $\deg((0,0,...,0)) = |Z(R)| - 1$ is even. From Lemma 3.3, R is a product of fields of even orders. So $\deg((1,0,0,...,0)) = |Z(R)| - 1 - \prod_{i=2}^{n} |Reg(R_i)|$ is odd, a contradiction.

Case 2: |R| is odd. Then $|R_i|$ is odd for all i. Take $w=(w_i)\in Z(R)$. Define $T=\{t\in\{1,2,..,n\}: w_t\in Z(R_t)\}$ and $J=\{1,2,..,n\}\backslash T$. Now, to compute the degree of w in $Z(\Gamma(R))$, note that for any finite local ring of odd order S, the sum of any two elements is a zero-divisor if and only if both elements are zero-divisors or one of them belongs to the coset x+Z(S) and the other belongs to the coset -x+Z(S), where $x\in \operatorname{Reg}(S)$. So, the vertex $a=(a_i)\in Z(R)\backslash \{w\}$ is non-adjacent to w when $a_i\in \operatorname{Reg}(R_i)$ for all $i\in T$, and $a_i\in R_i\backslash -w_i+Z(R_i)$ for all $i\in J$ and $a_i\in Z(R_i)$ for some $i\in J$. Since $|-w_i+Z(R_i)|=|Z(R_i)|$ for all i, we have $\deg(w)=(|Z(R)|-1)-(\prod_{i\in T}|\operatorname{Reg}(R_i)|(\prod_{i\in J}|\operatorname{Reg}(R_i)|-\prod_{i\in J}(|\operatorname{Reg}(R_i)|-|Z(R_i)|))$. Since |Z(R)| is odd and $|\operatorname{Reg}(R_i)|$ is even for all i, we get $\deg(w)$ is even. Moreover $Z(\Gamma(R))$ is connected graph since 0 adjacent s to all other vertices in $Z(\Gamma(R))$. Thus $Z(\Gamma(R))$ is Eulerian.

4.4. Corollary. (i) $T(\Gamma(\mathbb{Z}_n))$ is never Eulerian.

- (ii) $\operatorname{Reg}(\Gamma(\mathbb{Z}_n))$ is Eulerian if and only if n=2.
- (iii) $Z(\Gamma(\mathbb{Z}_n))$ is Eulerian if and only if n=2 or n is an odd number.

5. When are $T(\Gamma(R))$, $Reg(\Gamma(R))$ and $Z(\Gamma(R))$ locally homogeneous?

A graph G is called locally homogeneous if the graph induced by the neighborhoods of any two vertices are isomorphic. Let H be a given graph. A graph G is called locally H if for each vertex $v \in V(G)$, the subgraph induced by the open neighborhood of v, N(v), is isomorphic to H. Locally H graphs are also called locally homogeneous [17]. Graphs associated with algebraic structures are known to exhibit some symmetrical properties, see for example [17]. In this section, we investigate homogeneity in the total graphs associated with rings.

Let R be a local ring with $|Z(R)| = \alpha$. Then by Theorem 1.1, $T(\Gamma(R))$ is locally H if and only if $1 \in Z(R)$. In this case, $H = K_{\alpha-1}$. So, if R is a finite local ring, then $T(\Gamma(R))$ is locally H if and only if |R| is even, $\operatorname{Reg}(\Gamma(R))$ is either locally $K_{\alpha-1}$ or $\overline{K_{\alpha}}$, and $Z(\Gamma(R))$ is locally $K_{\alpha-1}$. The next theorem treats the case for any finite ring R.

5.1. Theorem. Let R be a finite ring. Then

- (i) Let x and y be two distinct vertices in $T(\Gamma(R))$. Then, the subgraph of $T(\Gamma(R))$ induced by N(x) is isomorphic to the subgraph induced by N(y) if and only if |R| is even.
- (ii) Let x and y be two distinct vertices in $\text{Reg}(\Gamma(R))$. Then, the subgraph of $\text{Reg}(\Gamma(R))$ induced by N(x) is isomorphic to the subgraph induced by N(y).
- (iii) $Z(\Gamma(R))$ is locally H if and only if R is a local ring. In this case, $H = K_{|Z(R)|-1}$.

Proof. (1) If |R| is odd, then $2 \notin Z(R)$, and so, $T(\Gamma(R))$ is not regular, hence we may assume that |R| is even. Let $R = \prod_{i=1}^n R_i$. Where each R_i is a local ring. Without loss of generality, we may assume that $2 \in Z(R_1)$. Obviously, for n=1, the result holds. If $S = \prod_{i=2}^n R_i$, then $R = R_1 \times S$. We will prove that the neighborhoods of any two distinct vertices in $T(\Gamma(R))$ are isomorphic. Let (a,b) be an arbitrary element in R. Let $N_1 = \{a\} \times (S/\{b\}), \ N_2 = \{(x,y) \in R : x \neq a, x+a \in Z(R_1)\}$ and $N_3 = \{(x,y) \in R : x+a \in \operatorname{Reg}(R_1), \text{ and } y+b \in Z(S)\}$. Note that N_1, N_2 and N_3 form a

partition for N((a,b)). Thus $N((a,b)) = N_1 \cup N_2 \cup N_3$. N_1 induces a complete graph of order |S|-1. For each fixed vertex $r \in S$, let $N_{2_r} = \{(x,r) \in R : x \neq a, x+a \in Z(R_1)\}$. Each set N_{2_r} induces a copy of the graph induced by N(a) in the graph $T(\Gamma(R_1))$ which a complete graph. Besides, for each pair of distinct vertices in $r, s \in S$, each vertex (x_1, r) in N_{2_r} is adjacent to each vertex (x_2, s) in N_{2_s} , since $x_1 + x_2 + 2a \in Z(R_1)$ implies that $x_1 + x_2 \in Z(R_1)$. Each vertex in N_1 is adjacent to each vertex in N_2 .

Now, we claim that N_3 induces a complete graph. Let $(x_1, y_1), (x_2, y_2) \in N_3$ then $a + x_1 \in \text{Reg}(R_1)$ and $a + x_2 \in \text{Reg}(R_1)$. we study two cases:

Case 1: $a \in Z(R_1)$, then both x_1 and x_2 belong to $\operatorname{Reg}(R_1)$. By Theorem 2.9 of [1], $x_1 + x_2 \in Z(R_1)$ or $x_1 - x_2 \in Z(R_1)$. Assume that $x_1 - x_2 \in Z(R_1)$, say $x_1 - x_2 = z$ and $x_1 + x_2 = r$, for some $r \in \operatorname{Reg}(R_1)$ and some $z \in Z(R_1)$. This implies that $2x_1 - z = r$ which is a contradiction, thus $x_1 + x_2 \in Z(R_1)$ and hence (x_1, y_1) is adjacent to (x_2, y_2) .

Case 2. $a \in \text{Reg}(R_1)$, we have $x_1 + a = r_1$ and $x_2 + a = r_2$, where $r_1, r_2 \in \text{Reg}(R_1)$. Either $r_1 + r_2 \in Z(R_1)$ or $r_1 - r_2 \in Z(R_1)$. If $r_1 + r_2 \in Z(R_1)$, then $x_1 + x_2 + 2a \in Z(R_1)$, and hence $x_1 + x_2 \in Z(R_1)$. If $r_1 - r_2 \in Z(R_1)$, then $x_1 - x_2 \in Z(R_1)$, if $x_1 \in \text{Reg}(R_1)$, then $x_1 - a = z_1$, for some $z_1 \in Z(R_1)$. But $x_1 + a = r_1$, where $r_1 \in \text{Reg}(R_1)$. So, $2x_1 = z_1 + r_1$ which is a contradiction. Similarly, $x_2 \in Z(R_1)$, and hence, (x_1, y_1) is adjacent to (x_2, y_2) .

If a vertex $(x_1,y_1) \in N_2$, is adjacent to a vertex $(x_2,y_2) \in N_3$, then, $x_1+x_2 \in \operatorname{Reg}(R_1)$, To see this write $x_1+a=z$ and $x_2+a=r$, where $z \in Z(R_1)$ and $r \in \operatorname{Reg}(S)$, this implies that $x_1+x_2+(2a-z)=r$, and so, $x_1+x_2 \in \operatorname{Reg}(R_1)$. We may write $Z(S)=\bigcup_{i=1}^m I_i$, where each I_i is a maximal ideal of S. Suppose that $b \in b_i+I_i$, if $a_i+b_i \in I_i$, then $y_2 \in \bigcup_{i=1}^m a_i+I_i$. Let G be the bipartite subgraph of $T(\Gamma(R))$ with partite sets N_2 and N_3 where two vertices $(x_1,y_1) \in N_2$ and $(x_2,y_2) \in N_3$ are adjacent if $y_1+y_2 \in Z(S)$. Similarly, $N_1 \cup N_3$ with edges joining N_1 to N_3 form another bipartite graph. Finally, since this description of N((a,b)) does not depend on the choice of (a,b), we conclude that the neighborhood of any two vertices in $T(\Gamma(R))$ are isomorphic.

- (ii) Considering Theorem 3.2, $\operatorname{Reg}(\Gamma(R))$ is regular. Let $R=\prod_{i=1}^n R_i$. For $i=1,2,\ldots,n$, let G_i be the spanning subgraph of $\operatorname{Reg}(\Gamma(R))$ where two vertices $(x_1,x_2,\ldots x_n)$ and $(y_1,y_2,\ldots y_n)$ are adjacent in G_i if $x_i+y_i\in Z(R_i)$. The graph $\operatorname{Reg}(\Gamma(R))$ is the overlay of the layers G_i , $i=1,2,\ldots,n$. Each layer is a union of complete graphs or a union of complete bipartite graphs. Let x and y be two distinct vertices in $\operatorname{Reg}(\Gamma(R))$. Let $N_i(x)$ and $N_i(y)$ be the open neighborhoods of x and y respectively, in the graph G_i . Then $N(x)=\bigcup_{i=1}^{i=n}N_i(x)$, and $N(y)=\bigcup_{i=1}^{i=n}N_i(y)$. So, N(x) is the overlay of the layers induced by $N_i(x)$, $i=1,2,\ldots,n$. Similar result holds for N(y). Observe that for each $i=1,2,\ldots,n$, $N_i(x)$ and $N_i(y)$ induce isomorphic subgraphs of the graph $\operatorname{Reg}(\Gamma(R))$.
 - (iii) Direct result of Theorem 3.6 part (1) and the argument before Theorem 6.1.

References

- Anderson, D. F., Badawi, A. The Total graph of a commutative ring, J. Algebra 320, 2706-2719, (2008).
- [2] Anderson, D. F., Badawi, A. The generalized total graph of a commutative ring, J. Algebra App. 12 (2013), doi: 10.1142/S021949881250212X (2013).
- [3] Akbari, S., Kiani, D., Mohammadi, F., Moradi, S. The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213 (12) 2224-2228 (2009).
- [4] Akbari, S., Haydari, F. The regular graph of a commutative ring, Period Math. Hungar. 67 (2) 211-220 (2013).
- [5] Asir, T., Chelvam, T. On the total graph and its complement of a commutative ring, Comm. Algebra. 41, 38820-3835, dio:10.1080/009282.2012.678956 (2013).

- [6] Badawi, A. On the total graph of a ring and its related graphs: A Survey, M. Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, New York. doi: 10.1007/978-1-4939-0925-4-3 (2014).
- [7] Chelvam, T., Asir, T. Domination in the total graph of a commutative ring, J. Combin. Math. Combin. Comput. 87, 147-158 (2013).
- [8] Erić, A. Lj., Pucanović, Z. S. Some properties of the line graphs associated to the total graph of a commutative ring, Pure Appl. Math. J. 2 (2) 51-55 (2013).
- [9] Harary, F. Graph Theory. Publishing Co., Reading Mass (1972).
- [10] Nazzal K. Total graphs associated to a commutative ring, Palest. J. Math. 5 (Spec.1) (2016).
- [11] Koshy, T. Elementary number theory with applications. Harcourt Academic press $\operatorname{Co.}(2002)$.
- [12] Maimani, H. R., Wickham, C. Yassemi, S. Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42, 1421-1758 (2010).
- [13] Pucanovi, Z., Petrovi, Z. On the radius and the relation between the total graph of a commutative ring and its extensions, Pub. Ins. Math. (Beograd) (N.S.) 89,1-9 (2011).
- [14] Ramin, A. The total graph of a finite commutative ring. Turk J. Math, 37, 391-397 (2013).
- [15] Sander, T., Nazzal, K. Minimum flows in the total graph of a finite commutative ring, Trans. Comb. 3(3), 11-20 (2014).
- [16] Shekarriza, M. H. Shirdareh Haghighia, M. H., Sharifa, H. On the total graph of a finite commutative ring, Comm. Algebra. 40, 2798-2807 (2012).
- [17] Vince A. Locally homogeneous graphs from groups, J. Graph Theory, 4, 417-422 (1981).