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1. Introduction

The use of new generators of continuous distributions from classic ones has become
very common in recent years. Several attempts have been made to de�ne new families
of distributions that extend well-known distributions and at the same time provide great
�exibility in modelling data in practice. One example is the beta-generated family of
distributions pioneered by [9]. A second example is the gamma-generated family of dis-
tributions de�ned by [28]. A third example is the Kumaraswamy family of distributions
proposed by [4]. Recently, [1] proposed a general method to generate new families of
distributions.

Based on the transformer (T-X) generator [1], and using the generalized exponential-
geometric (GEG) distribution [25], we propose a new wider family of distributions given
by

F (x) = 1−
∫ − log[G(x;ξ)]

0

αλ(1− p)e−λt[1− e−λt]α−1

[1− p e−λt]α+1
dt = 1−

[
1−G(x; ξ)λ

1− pG(x; ξ)λ

]α
,(1.1)

where G(x; ξ) is the underlying cumulative distribution function (cdf) depending on
a parameter vector ξ and α > 0, λ > 0 and p ∈ (0, 1) are three additional shape
parameters. For each underlying G, the extended Cordeiro and de Castro-G (�ECC-G�
for short) family of distributions is de�ned by the cdf (1.1). Equation (1.1) is a wider
family of continuous distributions. It includes the generalized Kumaraswamy class [4] of
distributions, proportional and reversed hazard rate models, Marshal-Olkin family and
other sub-families. Some special models are listed in Table 1.

Table 1. Some special models.

λ α p G(x) Reduced distribution

- - 0 - Generalized Kumaraswamy distribution [4]

1 1 0 - G(x)

- 1 0 - Reversed hazard rate model [12]

1 - 0 - Proportional hazard rate model [12]

- 1 p - Marshall-Olkin family of distributions [15]

- - 0 Generalized Rayleigh Kumaraswamy generalized Rayleigh distribution [10]

- - 0 Burr XII distribution Kumaraswamy Burr XII distribution [20]

- - 0 Modi�ed Weibull distribution Kumaraswamy modi�ed Weibull distribution [6]

- - 0 Pareto distribution Kumaraswamy Pareto distribution [2]

This paper is organized as follows. In Section 2, we provide a physical interpretation of
the ECC-G family. Four special cases of this family are de�ned in Section 3. Some useful
expansions are derived in Section 4. In Section 5, we propose explicit expressions for
the moments and generating function using a power series for the quantile function (qf).
Further, we present general expressions for the Rényi and Shannon entropies and mean
deviations are addressed. Estimation of the model parameters by maximum likelihood is
performed in Section 6. Applications to two real data sets illustrate the performance of
the new family in Section 7. The paper is concluded in Section 8.

2. The new family

The corresponding probability density function (pdf) to (1.1) is given by

(2.1) f(x;α, λ, p, ξ) = αλ (1− p) g(x; ξ)G(x; ξ)λ−1 [1−G(x; ξ)λ]α−1

[1− pG(x; ξ)λ]α+1
,



939

where g(x; ξ) is the parent density. Equation (2.1) will be most tractable when the
functions G(x) and g(x) have simple analytic expressions. Hereafter, a random variable
X with density function (2.1) is denoted by X ∼ ECC-G(p, α, λ, ξ). Further, we can
omit sometimes the dependence on the vector ξ of the parameters and write simply
G(x) = G(x; ξ).
Furthermore, the basic motivations for the ECC-G family in practice are the following:

i. to make the kurtosis more �exible compared to the baseline model;

ii. to produce a skewness for symmetrical distributions;

iii. to construct heavy-tailed distributions for modeling real data;

iv. to generate distributions with symmetric, left-skewed, right-skewed or reversed-J
shape;

v. to de�ne special models with all types of the hazard rate function;

vi. to provide consistently better �ts than other generated models under the same
underlying distribution.

For p > 0, we consider a system formed by α independent components following the
Marsha-Olkin cdf (see Table 1) given by

H(x) =
(1− p)G(x)λ

1− pG(x)λ
.

Suppose the system fails if any of the α components fails and let X denote the lifetime
of the entire system. Then, the cdf of X is

F (x) = 1− [1−H(x)]α = 1−
[

1−G(x)λ

1− pG(x)λ

]α
,

which is the proposed generator.
For p = 0, a physical interpretation of the ECC-G distribution can be given as follows.

Consider a system formed by α independent components and that each component is
made up of λ independent sub-components. Suppose that the system fails if any of the
α components fails and that each component fails if all of the λ sub-components fail.
Let Xj1, . . . , Xjλ denote the lifetimes of the sub-components within the jth component,
j = 1, . . . , α, having a common cdf G. Let Xj denote de lifetime of the jth component,
for j = 1, . . . , α, and let X denote the lifetime of the entire system. Then, the cdf of X
is

P (X ≤ x) = 1− P (X1 > x, . . . ,Xα > x) = 1− P (X1 > x)α

= 1− [1− P (X1 ≤ x)]α = 1− [1− P (X11 ≤ x, . . . ,X1λ)]α

= 1−
[
1− P (X11 ≤ x)λ

]α
= 1−

[
1−G(x)λ

]α
.

Thus, the family of distributions (2.1) with p = 0 is precisely the time to failure of
the entire system.

The hazard rate function (hrf) of X becomes

(2.2) h(x;α, λ, p, ξ) = αλ (1− p) g(x; ξ)G(x; ξ)λ−1

[
1− pG(x; ξ)λ

1−G(x; ξ)λ

]
.

The ECC-G family can simulated by inverting (1.1). Let QG(u) = G−1(u) be the qf
of G for 0 < u < 1. If U has a uniform U(0, 1) distribution, the solution of the nonlinear
equation

(2.3) x = F−1(u) = QG

{[
1− (1− U)1/α

1− p (1− U)1/α

]1/λ}
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follows the density function (2.1).

3. Special ECC-G distributions

For p = 0, we obtain, as an important special case of (2.1), the Cordeiro and de
Castro's (CC) class of density functions. This class provides greater �exibility of its tails
and can be widely applied in many areas of engineering and biology. Here, we present
some special cases of the ECC-G family since it extends several useful distributions in
the literature. For all cases listed below, p ∈ (0, 1), α > 0 and λ > 0.

3.1. The ECC-Normal (ECCN) distribution. The ECCN distribution is de�ned
from (2.1) by taking G(x) and g(x) to be the cdf and pdf of the normal N(µ, σ2) distri-
bution. Its density function is given by

f(x) =
αλ (1− p)

σ
φ
(x− µ

σ

) [
Φ
(x− µ

σ

)]λ−1 [1− Φ(x−µ
σ

)λ]α−1

[1− pΦ(x−µ
σ

)λ]α+1
,(3.1)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, and φ(·) and Φ(·)
are the pdf and cdf of the standard normal distribution, respectively. A random variable
with density function (3.1) is denoted by X ∼ ECCN(p, α, λ, µ, σ2). For µ = 0, σ = 1 and
p→ 0, we obtain the standard Kumaraswamy-normal (KwN) distribution. Furthermore,
the KwN distribution with λ = 1 and α = 1 reduces to the normal distribution.

Plots of the ECCN density function for some values of α, λ, µ and p and di�erent
values of σ are displayed in Figure 1. Based on these plots, we note that the parameter
σ has the same dispersion property such as in the normal density.
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Figure 1. Plots of the ECCN density function for some parameter values.

3.2. The ECC-Weibull (ECCW) distribution. Taking G(x) as the Weibull cdf with

scale parameter β > 0 and shape parameter c > 0, say G(x) = 1 − e−(βx)c , it follows
from equation (2.1) the ECCW density function (for x > 0)

f(x) = αλ (1− p) c βc xc−1

[
1− e−(βx)c

]λ−1

e(βx)c

[
1−

(
1− e−(βx)c

)λ]α−1

[
1− p (1− e−(βx)c)

λ
]α+1 .(3.2)
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For p = 0 and α = λ = 1, the ECCW distribution reduces to the classical Weibull distri-
bution. A random variable with density function (3.2) is denoted by X ∼ ECCW(p, α, λ, β, c).
For c = 1, the ECCW model becomes the Kumaraswamy-exponential-geometric (KwEG)
distribution. The Kumaraswamy-Weibull (KwW) distribution follows as a special case
when p→ 0.

The hrf corresponding to (3.2) is given by

(3.3) h(x) = αλ (1− p) c βc xc−1 e−(βx)c
[
1− e−(βx)c

]λ−1

1− p
(

1− e−(βx)c
)λ

1− (1− e−(βx)c)
λ

 .
Figures 2 and 3 display plots of the ECCW density and hrf for selected parameter

values, respectively.
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Figure 2. Plots of the ECCW density function for some parameter values.
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3.3. The ECC-gamma (ECCG) distribution. Consider the gamma distribution
with shape parameter a > 0 and scale parameter b > 0, where the pdf and cdf (for
x > 0) are given by

g(x) =
ba

Γ(a)
xa−1 e−bx and G(x) =

γ(a, bx)

Γ(a)
,

where γ(a, bx) is the incomplete gamma function. Inserting these expressions in (2.1)
gives the ECCG density function

f(x) =
αλ (1− p) ba

Γ(a)λ
xa−1 e−bx γ(a, bx)λ−1

[
1−

(
γ(a, bx)

Γ(a)

)λ]α−1

[
1− p

(
γ(a, bx)

Γ(a)

)λ]α+1 .

The Kumaraswamy-gamma (KwG) distribution follows from this model when p → 0.
Plots of the ECCG density and its hrf for selected parameter values are displayed in
Figures 4 and 5, respectively.
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Figure 4. Plots of the ECCG density function for some parameter values.

3.4. The ECC-beta (ECCB) distribution. Consider the beta distribution with pos-
itive shape parameters a and b and pdf and cdf (for 0 < x < 1) given by

g(x) =
1

B(a, b)
xa−1 (1− x)b−1 and G(x) =

Ix(a, b)

B(a, b)
,

where Ix(a, b) =
∫ x
0
wa−1(1 − w)b−1dw is the incomplete beta function and B(a, b) =∫ 1

0
wa−1(1−w)b−1dw = Γ(a)Γ(b)/Γ(a+b) is the beta function. Inserting these expressions

in (2.1) gives the ECCB density function (for 0 < x < 1)

f(x) =
αλ (1− p)
B(a, b)λ

xa−1 (1− x)b−1 Ix(a, b)λ−1

[
1−

(
Ix(a,b)
B(a,b)

)λ]α−1

[
1− p

(
Ix(a,b)
B(a,b)

)λ]α+1 .
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Figure 5. Plots of the ECCG hrf for some parameter values.

The Kumaraswamy beta (KwB) arises as a special case when p→ 0. The beta distribu-
tion corresponds to the limiting case: p → 0 and α = λ = 1. Figure 6 displays plots of
the ECCB density function for some parameter values.
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Figure 6. Plots of the ECCB density function for some parameter values.

4. Useful expansions

We can demonstrate that the cdf (1.1) of X has the expansion

F (x) = 1−
∞∑

j,k=0

wj,kH(j+k)λ(x),(4.1)
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where

wj,k = (−1)j+k pj
(
−α
j

)(
α

k

)

and Ha(x) = G(x)a denotes the exponentiated-G (�exp-G� for short) cumulative distri-
bution. Some structural properties of the exp-G distributions are studied by [17], [13],
[18] and among others.

By di�erentiating (4.1), we obtain

(4.2) f(x;α, λ, p, ξ) =

∞∑
j,k=0

ωj,k hλ(j+k+1)(x),

where

ωj,k =
αλ (1− p) pj

λ (j + k + 1)
(−1)j+k

(
α− 1

j

)(
−α− 1

k

)

and hλ(j+k+1)(x; ξ) = λ(j + k + 1) g(x; ξ)G(x; ξ)λ(j+k+1)−1 denotes the exp-G density
function with power parameter λ(j + k + 1). Hereafter, a random variable having this
density function is denoted by Yj,k ∼ exp-G(λ(j+k+1)). Equation (4.2) reveals that the
ECC-G density function is just a linear combination of exp-G density functions. Thus,
some mathematical properties of the new model can be derived from those properties of
the exp-G distribution. For example, the ordinary and incomplete moments and moment
generating function (mgf) of X can be obtained from those quantities of the exp-G
distribution.

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms such as Maple, Mathematica and Matlab. These plat-
forms have currently the ability to deal with analytic expressions of formidable size
and complexity. Established explicit expressions to calculate statistical measures can be
more e�cient than computing them directly by numerical integration. The in�nity limit
in these sums can be substituted by a large positive integer such as 20 or 30 for most
practical purposes.

5. General properties

5.1. Asymptotes and shapes.

5.1. Proposition. The asymptotics of equations (1.1), (2.1) and (2.2) as x→ −∞ are
given by

F (x) ∼ αG(x)λ as x→ −∞,
f(x) ∼ αλ g(x)G(x)λ−1 as x→ −∞,
h(x) ∼ αλ g(x)G(x)λ−1 as x→ −∞.

These equations can provide the e�ects of the parameters on the tails of the distribu-
tion.
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5.2. Proposition. The asymptotics of equations (1.1), (2.1) and (2.2) when x→∞ are
given by

1− F (x) ∼ (
λ

1− p )α Ḡ(x)α as x→∞

f(x) ∼ α(
λ

1− p )α g(x) Ḡ(x)α−1 as x→∞,

h(x) ∼ αg(x)

Ḡ(x)
as x→∞.

The shapes of the density and hazard rate functions can be described analytically.
The critical points of the ECC-G density function are the roots of the equation:

(5.1) (λ− 1)
g(x)

G(x)
+
g′(x)

g(x)
= λ g(x)G(x)λ−1

[
α− 1

1−G(x)λ
+

p (α+ 1)

1− pG(x)λ

]
.

There may be more than one root to (5.1). Let λ(x) = ∂2 log[f(x)]/∂x2. We have

λ(x) = (λ− 1)
g′(x)G(x)− g(x)2

G(x)2
+
g′′(x)g(x)− g′(x)2

g(x)2

− λg′(x)G(x)λ−1

[
α− 1

1−G(x)λ
+

p (α+ 1)

1− pG(x)λ

]
− λ(λ− 1)g(x)2G(x)λ−2

[
α− 1

1−G(x)λ
+

p (α+ 1)

1− pG(x)λ

]
− λ2g(x)2G(x)2λ−2

[
α− 1

(1−G(x)λ)2
+

p (α+ 1)

(1− pG(x)λ)2

]
.

If x = x0 is a root of (5.1) then it corresponds to a local maximum if λ(x) > 0 for all
x < x0 and λ(x) < 0 for all x > x0. It corresponds to a local minimum if λ(x) < 0 for
all x < x0 and λ(x) > 0 for all x > x0. It refers to a point of in�exion if either λ(x) > 0
for all x 6= x0 or λ(x) < 0 for all x 6= x0.

The critical point of h(x) are obtained from the equation

(5.2)
g′(x)

g(x)
+ (λ− 1)

g(x)

G(x)
− p λ g(x)

G(x)λ−1

1− pG(x)λ−1
= λ g(x)

G(x)λ−1

1−G(x)λ−1
.

There may be more than one root to (5.2). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′′(x)g(x)− [g′(x)]2

g(x)2
+ (λ− 1)

g′(x)G(x)− [g(x)]2

G(x)2

−p λ g′(x)
G(x)λ−1

1− pG(x)λ
− p λ (λ− 1) g(x)2

G(x)λ−2

1− pG(x)λ
− p2λ2g(x)2

G(x)2λ−2

[1− pG(x)λ]2

−λ g′(x)
G(x)λ−1

1−G(x)λ
− λ (λ− 1) g(x)2

G(x)λ−2

1−G(x)λ
− λ2g(x)2

G(x)2(λ−1)

[1−G(x)λ]2
= 0.

If x = x0 is a root of (5.2) then it refers to a local maximum if τ(x) > 0 for all x < x0
and τ(x) < 0 for all x > x0. It corresponds to a local minimum if τ(x) < 0 for all x < x0
and τ(x) > 0 for all x > x0. It gives an in�exion point if either τ(x) > 0 for all x 6= x0

5.2. Quantile power series. Power series methods are at the heart of many aspects of
applied mathematics and statistics. The qfs are in widespread use in continuous distri-
butions and often �nd representations in terms of power series. The qf for a distribution
has many uses in both the theory and statistical applications. It may be used to generate
values of a random variable having F (x) as its distribution function. This fact serves as
the basis of a method for simulating a sample from an arbitrary distribution with the aid
of a random number generator.
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By expanding (2.3), we derive explicit expressions for the moments and generating
function of the ECC family using a power series for the qf x = Q(u) = F−1(u) of X,
which is easily obtained using a linear recurrent equation for its coe�cients. If the G qf,
say QG(u), does not have a closed-form expression, it can usually be expressed in terms
of a power series

QG(u) =

∞∑
i=0

ai u
i,(5.3)

where the coe�cients ai's are suitably chosen real numbers which depend on the pa-
rameters of the G distribution. For several important distributions, such as the normal,
Student t, gamma and beta distributions, QG(u) does not have explicit expressions but
it can be expanded as in equation (5.3). As a simple example, for the normal N(0, 1)
distribution, ai = 0 for i = 0, 2, 4, . . . and ai = b(i−1)/2 for i = 1, 3, 5, . . ., where the
quantities b(i−1)/2 can be determinated recursively from

bk+1 =
1

2(2k + 3)

k∑
r=0

(2r + 1) (2k − 2r + 1) br bk−r
(r + 1) (2r + 1)

.

We have a1 = 1, a3 = 1/6, a5 = 7/120 and a7 = 127/7560, . . .
Henceforth, we use a result by [11] (see Section 0.314) for a power series raised to a

positive integer n (for n ≥ 1)

QG(u)n =

(
∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i,(5.4)

where the coe�cient cn,i (for i = 1, 2, . . .) follows from the recurrence equation (with
cn,0 = an0 )

(5.5) cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m.

Clearly, the quantity cn,i can be determined from cn,0, . . . , cn,i−1 and then from the
quantities a0, . . . , ai. The coe�cient cn,i can be given explicitly in terms of the coef-
�cients ai's, although it is not necessary for programming numerically our expansions in
any algebraic or numerical software. For the normal N(0, 1) distribution, the coe�cients
cn,i can be obtained from (5.4) using the ai's given above.

Next, we derive an expansion for the argument of QG(·) in (2.3)

A =
[1− (1− u)1/α]1/λ

[1− p (1− u)1/α]1/λ
.

By using the generalized binomial expansion three times since u ∈ (0, 1), we can write

A =

∞∑
r,s,t=0

(−1)r+s+t pr
(
−λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)
ut.

Then, the qf of X can be expressed from (2.3) as

(5.6) Q(u) = QG

(
∞∑
t=0

δt u
t

)
,

where

δt =

∞∑
r,s=0

(−1)r+s+t pr
(
λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)
.
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For any underlying G distribution, we combine (5.3) and (5.6) to obtain

Q(u) = QG

(
∞∑
t=0

δt u
t

)
=

∞∑
i=0

ai

(
∞∑
t=0

δt u
t

)i
,

and then using (5.4) and (5.5), we have

(5.7) Q(u) =

∞∑
t=0

et u
t,

where et =
∑∞
i=0 ai di,t, di,0 = δi0 and (for t > 1)

di,t = (t δ0)−1
t∑

m=1

[m(i+ 1)− t] δm di,t−m.

Equation (5.7) is the main result of this section. It allows to obtain various mathematical
quantities for the ECC-G family as investigated in the next sections.

5.3. Generating function. Here, we provide two general formulae for the moment
generating fucntion (mgf) M(t) = E(etX) of X. A �rst formula for M(t) follows from
(4.2) as

M(t) =

∞∑
j,k=0

ωj,kMj,k(t),(5.8)

where Mj,k(t) is the mgf of Yj,k. Hence, M(t) can be immediately determined from
the generating function of the exp-G distribution. We now provide three applications
of equation (5.8). For example, the generating functions of the ECC-exponential (with
parameter β) (for t < 1/β), ECC-Pareto (ECCP) (with parameter ν > 0 real non
integer) and ECC-standard logistic (ECCSL) (for t < 1) distributions are determined
from equation (5.8) as

M(t) =

∞∑
j,k=0

[λ(j + k + 1)]B(λ(j + k + 1), 1− βt)ωj,k,

M(t) = e−t
∞∑

j,k,m=0

[λ(j + k + 1)] B
(
λ(j + k + 1), 1−mν−1) ωj,k tm

m!
,

and

M(t) =

∞∑
j,k=0

[λ(j + k + 1)]B(t+ λ(j + k + 1), 1− t)ωj,k,

respectively.
Next, we provide a fourth application of (5.8) by taking again as the underlying the

Weibull distribution with scale parameter β and shape parameter c (see Section 3.2). The
generating function of the exp-Weibull distribution with power parameter λ(j+ k+ 1) is
given by

Mj,k(t) =

∞∑
r=0

v
(r)
j,k Ir(t),(5.9)

where

v
(r)
j,k = β cβ [λ(j + k + 1)]

∞∑
i=0

(−1)i+r
(

[λ(j + k + 1)](i+ 1)− 1

r

)
,
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δr = β (r + 1)1/c and

Ir(t) =

∫ ∞
0

xc−1 exp{t x− (δr x)c}dx.

[21] derived two di�erent formulae for Ir(t) which hold for: (i) c > 1 or (ii) for c = p/q,
where p ≥ 1 and q ≥ 1 are co-prime integers. The �rst representation for Ir(t) is given
in terms of the Wright generalized hypergeometric function [27] de�ned by

pΨq

[
(α1, A1) , · · · , (αp, Ap)
(β1, B1) , · · · , (βq, Bq)

; x

]
=

∞∑
n=0

p∏
j=1

Γ(αj +Aj n)

q∏
j=1

Γ(βj +Bj n)

xn

n!
.

We can write

Ir(t) =

∞∑
m=0

tm

m!

∫ ∞
0

xm+β−1 exp{−(δr x)c}dx =
1

β δβr

∞∑
m=0

tm

δmr m!
Γ(mc−1 + 1)

=
1

β δβr
1Ψ0

[
(1, β−1)
− ;

t

δr

]
.(5.10)

The function Ir(t) exists if 1 +
∑q
j=1Bj −

∑p
j=1Aj > 0.

Based on equations (5.8), (5.9) and (5.10), we obtain (for λ > 1)

M(t) = c−1
∞∑

j,k,r=0

ωj,k v
(r)
j,k

δr
1Ψ0

[
(1, c−1)
− ;

t

δr

]
.(5.11)

A second representation for Ir(t) is obtained from the Meijer G-function de�ned by

Gm,np,q

(
x

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫
L

m∏
j=1

Γ (bj + t)

n∏
j=1

Γ (1− aj − t)

p∏
j=n+1

Γ (aj + t)

p∏
j=m+1

Γ (1− bj − t)
x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path; see Section 9.3 in

[11] for a description of this path. The Meijer G-function contains many integrals with

elementary and special functions [22]. From the result exp{−g(x)} = G1,0
0,1

(
g(x) | −

0

)
for an arbitrary g(·) function, Ir(t) becomes

Ir(t) =

∫ ∞
0

xc−1 exp{sx− (δr x)c}dx =

∫ ∞
0

xv−1 esxG1,0
0,1

(
δcr x

c| −
0

)
dx.

We now assume that c = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. Note that
this condition for calculating the integral Ir(t) is not restrictive since every real number
can be approximated by a rational number. Using equation (2.24.1.1) in [22] (volume3),
we have

Ir(t) =
pp/q−1/2(−t)−p/q

(2π)(p+q)/2−1
Gp,qq,p

(
δqrp

p+q

(−t)pq2q

∣∣∣∣ q−p
pq
, 2q−p

pq
, . . . , pq−p

pq

0, 1
q
, . . . , q−1

q

)
.(5.12)

Using (5.8), (5.9) and (5.12), we can obtain M(t) for the ECCW distribution.
A second general formula for M(t) can be derived from (4.2) as

M(t) =

∞∑
j,k=0

[λ(j + k + 1)]ωj,k ρ(t, λ(j + k + 1)− 1),(5.13)
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where ρ(t, a) can be determined from the underlying qf QG(x) by

ρ(t, a) =

∫ ∞
−∞

et xG(x)a g(x)dx =

∫ 1

0

exp {tQG(u)} uadu.(5.14)

An alternative expression for ρ(t, a) in terms of the coe�cients of the G qf follows
using the power series for the exponential function and (5.4) and then integrating the
result. We can obtain

ρ(t, a) =

∞∑
n,i=0

cn,i t
n

(a+ i+ 1)n!
.(5.15)

We can derive the mgfs for several ECC-G distributions from equations (5.8) and (5.13),
the last one combining with (5.14) or (5.15). Equations (5.8) and (5.13) are the main
results of this section.

5.4. Moments. Here, we provide two general formulae for the nth moment of X. The
�rst one is obtained from (4.2) as

µ′n = E(Xn) =

∞∑
j,k=0

ωj,k E(Y nj,k) =

∞∑
j,k=0

ωj,k

∫ ∞
−∞

xn hλ(j+k+1)(x; ξ).(5.16)

Expressions for moments of some exponentiated distributions are given by [18]. They can
be used to obtain µ′n. We now provide an application of (5.16) for the ECCW distribution

discussed in Section 3.2, where G(x) = 1−e−(β x)c , c > 0 is a shape parameter and β > 0
a scale parameter. The corresponding exp-Weibull (exp-W) density function with power
parameter λ(j + k + 1) is given by

hλ(j+k+1)(x;β, c) = λ(j + k + 1) c βc xc−1 e−(βx)c [1− e−(βx)c ]λ(j+k+1)−1.(5.17)

The nth moment of (5.17), say ρ
(n)
j,k , can be obtained from [4] as

ρ
(n)
j,k =

Γ(n/c+ 1)

βn

∞∑
r=0

w
(r)
j,k

(r + 1)n/c
,(5.18)

where

w
(r)
j,k =

[λ(j + k + 1)]

(r + 1)

∞∑
i=0

(−1)i+r
(

[λ(j + k + 1)](i+ 1)− 1

r

)
.

Combining equations (5.16) and (5.18), we can write µ′n as

µ′n =
Γ(n/c+ 1)

βn

∞∑
k,j,r,i=0

(−1)i+r [λ(j + k + 1)]ωj,k
(r + 1)n/c+1

(
[λ(j + k + 1)](i+ 1)− 1

r

)
.

Next, we provide two more examples from (5.16). First, for the ECCPa distribution,
where the underlying cdf is G(x) = 1 − (1 + x)−ν and ν > 0, we obtain (for ν real non
integer)

µ′n =

∞∑
k,j,m=0

(−1)n+m [λ(j + k + 1)]B(λ(j + k + 1)− 1, 1−mν−1)ωj,k

(
n

m

)
.

Second, for the ECCSL distribution, where G(x) = (1 + e−x)−1, we can write using a
result by [22] (Section 2.6.13, equation 4) (for t < 1)

µ′n =

∞∑
k,j=0

[λ(j + k + 1)]ωj,k

(
∂

∂t

)n
B(t+ λ(j + k + 1), 1− t)

∣∣∣∣
t=0

.
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A second general formula for µ′n follows from (4.2) and QG(u) as

µ′n =

∞∑
k,j=0

(α+ k + j)ωj,k τ(n, λ(j + k + 1)− 1),(5.19)

where τ(n, a) is given by

τ(n, a) =

∫ ∞
−∞

xnG(x)a g(x)dx =

∫ 1

0

QG(u)n uadu.

Inserting (5.4) in the last equation and integrating, we obtain

τ(n, a) =

∞∑
i=0

cn,i
(a+ 1)

,(5.20)

where the quantities cn,i can be determined from (5.5).
The central moments (µn) and cumulants (κn) of X can be determined from (5.16)

or (5.19) as

µn =

r∑
k=0

(−1)k
(
n

k

)
µ′n1 µ′n−k and κn = µ′n −

n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , κ4 =

µ′4 − 4µ′3µ
′
1 − 3µ′22 + 12µ′2µ

′2
1 − 6µ′41 , etc. The skewness γ1 = κ3/κ

3/2
2 and kurtosis

γ2 = κ4/κ
2
2 can be calculated from the third and fourth standardized cumulants.

5.5. Incomplete moments. The answers to many important questions in economics
require more than just knowing the mean of a distribution, but its shape as well. This
is obvious not only in the study of econometrics (for example, asymmetric error terms
cannot be generated by the commonly assumed spherical distributions) and income dis-
tribution, but in other areas as well. Incomplete moments of the income distribution
form natural building blocks for measuring inequality: for example, the Lorenz and Bon-
ferroni curves and Pietra and Gini measures of inequality all depend upon the incomplete
moments of the income distribution.

The nth incomplete moment ofX is de�ned asmn(y) = E(Xn|X < y) =
∫ y
−∞ x

r f(x)dx.
Here, we propose two methods to determine the incomplete moments of the new family.
First, the nth incomplete moment of X can be expressed as

mn(y) =

∞∑
j,k=0

[λ(j + k + 1)]ωj,k

∫ G(y; ξ)

0

QG(u)n uλ(j+k+1) du.(5.21)

The integral in (5.21) can be computed at least numerically for most underlying dis-
tributions. A second method to obtain the incomplete moments of X follows from (5.21)
using equations (5.4) and (5.5). We obtain

mn(y) =

∞∑
j,k,i=0

[λ(j + k + 1)]ωj,k cn,i
[λ(j + k + 1) + i]

G(y; ξ)λ(j+k+1)+i.(5.22)

5.6. Mean deviations. The mean deviations about the mean δ1 = E(|X − µ′1|) and
about the median δ2(X) = E(|X −M |) of X can be expressed as

δ1 = 2µ′1F (µ′1)− 2T (µ′1) and δ2 = µ′1 − 2T (M),
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respectively, where µ′1 = E(X), M = Median(X) denotes the median, F (µ′1) comes from
equation (1.1) and T (z) =

∫ z
−∞ xf(x)dx. The median M follows from equation (1.1) as

M = QG

[(
1− 2−1/α

1− p 2−1/α

)1/λ
]
.

Then, using ordinary and incomplete moments, we can easily obtain δ1 and δ2.

5.7. Quantile measure. The e�ects of the shape parameters a and b on the skewness
and kurtosis can be based on quantile measures. The shortcomings of the classical kur-
tosis measure are well-known. The Bowley skewness [14] is one of the earliest skewness
measures de�ned by the average of the quartiles minus the median, divided by half the
interquartile range, namely

B =
Q
(
3
4

)
+Q

(
1
4

)
− 2Q

(
1
2

)
Q
(
3
4

)
−Q

(
1
4

) .

Since only the middle two quartiles are considered and the other two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis [16] is based on octiles

M =
Q
(
3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)
Q
(
6
8

)
−Q

(
2
8

) .

These measures are less sensitive to outliers and they exist even for distributions
without moments. Plots of the skewness and kurtosis for the distributions ECCW and
ECCN (discussed in Section 3) and selected parameter values are displayed in Figures 7
and 8, respectively. These plots indicate how both measures B and M vary depending
on the values of the shape parameters.
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Figure 7. Skewness (a) and Kurtosis (b) of the ECCW distribution.

5.8. Entropies. An entropy is a measure of variation or uncertainty of a random vari-
able X. Two popular entropy measures are the Rényi and Shannon entropies [24, 23].
The Rényi entropy of a random variable with pdf f(x) is de�ned as

IR(c) =
1

1− c log

(∫ ∞
0

fc(x)dx

)
,
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Figure 8. Skewness (a) and Kurtosis (b) of the ECCN distribution.

for c > 0 and c 6= 1. The Shannon entropy of a random variable X is de�ned by
E {− log [f(X)]}. It is the special case of the Rényi entropy when c ↑ 1. Direct calculation
gives

E {− log [f(X)]} = − log [αλ(1− p)]− E {log [g(X; ξ)]} − (λ− 1) E {log [G(x; ξ)]}

− (α− 1) E
{

log
[
1−G(x; ξ)λ

]}
+ (α+ 1) E

{
log
[
1− pG(x; ξ)λ

]}

After some algebraic manipulations, we obtain:

5.3. Proposition. Let X be a random variable with pdf (2.1). Then,

E {log [G(X)]} =
α(1− p)

λ

∞∑
i,j=0

(−1)i+j+1pi

(
−α− 1

i

)(
α− 1

j

)
[i+ j + 1]2

,

E
{

log
[
1−G(X)λ

]}
= α(1− p)

∑∞
i,j=0

(−1)i+jpi

(
−α− 1

i

) ∂
∂t

(
α+ t− 1

j

)∣∣
t=0


i+j+1

,

E
{

log
[
1− pG(X)λ

]}
= α(1− p)

∑∞
i,j=0

(−1)i+jpi

 ∂
∂t

(
t− α− 1

i

)∣∣
t=0


(
−α− 1

i

)
i+j+1

,

where ψ(·) is the digamma function.
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The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log[αλ(1− p)]− E {log[g(X; ξ)]}

+
α(1− λ)(1− p)

λ

∞∑
i,j=0

(−1)i+j+1pi

(
−α− 1

i

)(
α− 1

j

)
[i+ j + 1]2

,

+α(1− α)(1− p)
∞∑

i,j=0

(−1)i+jpi

(
−α− 1

i

)[
∂
∂t

(
α+ t− 1

j

)∣∣
t=0

]
i+ j + 1

,

+α(α+ 1)(1− p)
∞∑

i,j=0

(−1)i+jpi

[
∂
∂t

(
t− α− 1

i

)∣∣
t=0

](
−α− 1

i

)
i+ j + 1

After some algebraic developments, we obtain an alternative expression for IR(c)

IR(c) = c
1−c log [αλ(1− p)] + 1

1−c log
[∑∞

i,j=0 w
∗
i,j EYi,j (gc−1[G−1(Y )])

]
,

where Yi,j ∼ B(γ(λ− 1) + λ(i+ j) + 1, 1) and

w∗i,j =

(−1)i+jpi

(
−γ(α+ 1)

i

)(
γ(α− 1)

j

)
γ(λ− 1) + λ(i+ j) + 1

.

6. Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the model param-
eters of the new family from complete samples only. Let x1, . . . , xn be observed values
from the ECC-G distribution with parameters p, α, λ and ξ. Let Θ = (p, α, λ, ξ)> be the
r × 1 parameter vector. The total log-likelihood function for Θ is given by

`n = `n(Θ) = n logα+ n log λ+ n log(1− p) +

n∑
i=1

log [g(x; ξ)] + (λ− 1)

n∑
i=1

log [G(x; ξ)]

+(α− 1)

n∑
i=1

log
[
1−G(x; ξ)λ

]
− (α+ 1)

n∑
i=1

log
[
1− pG(x; ξ)λ

]
.(6.1)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or the Ox program (sub-routine MaxBFGS) [8] or by solving the nonlinear
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likelihood equations obtained by di�erentiating (6.1). The components of the score func-

tion Un(Θ) = (∂`n/∂p, ∂`n/∂α, ∂`n/∂λ, ∂`n/∂ξ)> are

∂`n
∂p

= (α+ 1)

n∑
i=1

G(x; ξ)λ

1− pG(x; ξ)λ
− n

1− p ,

∂`n
∂α

=
n

α
+

n∑
i=1

log
[
1−G(x; ξ)λ

]
−

n∑
i=1

log
[
1− pG(x; ξ)λ

]
,

∂`n
∂λ

=
n

λ
+

n∑
i=1

log [G(x; ξ)]− (α− 1)

n∑
i=1

G(x; ξ)λ log [G(x; ξ)]

1−G(x; ξ)λ

+p (α+ 1)

n∑
i=1

G(x; ξ)λ log [G(x; ξ)]

1− pG(x; ξ)λ
and

∂`n
∂ξ

= p λ (α+ 1)

n∑
i=1

G(x; ξ)λ−1

[1− pG(x; ξ)λ]
G(ξ)(x; ξ)− λ(α− 1)

n∑
i=1

G(x; ξ)λ−1

[1−G(x; ξ)λ]

G(ξ)(x; ξ) +

n∑
i=1

g(ξ)(x; ξ)

g(x; ξ)
+ (λ− 1)

n∑
i=1

G(ξ)(x; ξ)

G(x; ξ)
,

where h(ξ)(·) means the derivative of the function h with respect to ξ. For interval
estimation on the model parameters, we require the observed information matrix

Jn(Θ) = −


Upp Upα Upλ | U>pξ
Uαp Uαα Uαλ | U>αξ
Uλp Uλα Uλλ | U>λξ
−− −− −− −− −−
Uξp Uξα Uξλ | Uξξ

 ,

whose elements are listed in Appendix A. Let Θ̂ be the MLE of Θ. Under standard
regularity conditions [7] that are ful�lled for the proposed model whenever the parameters

are in the interior of the parameter space, we can approximate the distribution of
√
n(Θ̂−

Θ) by the multivariate normal Nr(0,K(Θ)−1), where K(Θ) = limn→∞ Jn(Θ) is the unit
information matrix and r is the number of parameters of the new distribution.

Often with lifetime data and reliability studies, one encounters censoring. A very
simple random censoring mechanism very often realistic is one in which each individual i is
assumed to have a lifetime Xi and a censoring time Ci, where Xi and Ci are independent
random variables. Suppose that the data consist of n independent observations xi =
min(Xi, Ci) and δi = I(Xi ≤ Ci) is such that δi = 1 if Xi is a time to event and
δi = 0 if it is right censored for i = 1, . . . , n. The censored likelihood L(Θ) for the model
parameters is

L(Θ) ∝
n∏
i=1

[f(xi; p, α, λ, ξ)]δi [S(xi; p, α, λ, ξ)]1−δi ,

where f(x; p, α, λ, ξ) is given by (2.1) and S(x; p, α, λ, ξ) is the survival function which
comes from (1.1).

An easy way to validate the approximate normal distribution for Θ̂ is by simulating
a speci�c distribution of the new family of distribution. Here, the ECCW model is
selected as an example. We use equation (2.3) to simulate the ECCW(β = 0.5, c =
2, α = 0.5, 2.0, λ = 0.2, p = 0.9, 0.1) model by taking u as a uniform random variable
in (0, 1) for n = 50, 150 and 300. For each sample size, we evaluate the MLEs of the
parameters. Then, we repeat this process 1,000 times and compute the averages of the
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estimates (AEs), biases and mean squared errors (MSEs). The simulation results are
listed in Table 2.

Table 2. The AEs, biases and MSEs based on 1,000 simulations of
the ECCW distribution when β = 0.5, c = 2, α = 0.5, 2.0, λ = 0.2 and
p=0.9,0.1, and n=50, 150 and 300.

α = 2.0 and p = 0.9 α = 2.0 and p = 0.3
n Θ AE Bias MSE Θ AE Bias MSE

50 β 0.5249 0.0249 0.0776 β 0.5352 0.0352 0.0257
c 3.1990 1.1990 4.4361 c 2.0607 0.0607 0.0304
α 2.6291 0.6291 6.4462 α 2.0393 0.0393 0.0534
λ 0.2056 0.0056 0.0449 λ 0.2017 0.0017 0.0017
p 0.7791 -0.1209 0.1169 p 0.2798 -0.0202 0.0491

150 β 0.5108 0.0108 0.0276 β 0.5048 0.0048 0.0067
c 2.4565 0.4565 1.0313 c 2.0279 0.0279 0.0126
α 2.3201 0.3201 2.0399 α 2.0570 0.0570 0.0248
λ 0.1972 -0.0028 0.0062 λ 0.1998 -0.0002 0.0005
p 0.8614 -0.0386 0.0125 p 0.3096 0.0096 0.0140

300 β 0.5041 0.0041 0.0133 β 0.5008 0.0008 0.0029
c 2.2180 0.2180 0.3185 c 2.0181 0.0181 0.0086
α 2.2463 0.2463 1.3088 α 2.0560 0.0560 0.0133
λ 0.2014 0.0014 0.0032 λ 0.2001 0.0001 0.0002
p 0.8826 -0.0174 0.0032 p 0.3111 0.0111 0.0064

α = 0.5 and p = 0.9 α = 0.5 and p = 0.3
n Θ AE Bias MSE Θ AE Bias MSE

50 β 0.4965 -0.0035 0.0060 β 0.4914 -0.0086 0.0069
c 2.0099 0.0099 0.0286 c 2.0531 0.0531 0.0584
α 0.5505 0.0505 0.0217 α 0.5467 0.0467 0.0167
λ 0.2720 0.0720 0.0187 λ 0.2261 0.0261 0.0089
p 0.8745 -0.0255 0.0026 p 0.2761 -0.0239 0.0550

150 β 0.4937 -0.0063 0.0029 β 0.4838 -0.0162 0.0022
c 2.0132 0.0132 0.0124 c 2.0452 0.0452 0.0305
α 0.5377 0.0377 0.0088 α 0.5344 0.0344 0.0056
λ 0.2396 0.0396 0.0063 λ 0.2062 0.0062 0.0020
p 0.8839 -0.0161 0.0009 p 0.3053 0.0053 0.0221

300 β 0.4967 -0.0033 0.0025 β 0.4881 -0.0119 0.0016
c 2.0094 0.0094 0.0065 c 2.0380 0.0380 0.0203
α 0.5326 0.0326 0.0057 α 0.5263 0.0263 0.0026
λ 0.2342 0.0342 0.0041 λ 0.2031 0.0031 0.0010
p 0.8855 -0.0145 0.0006 p 0.3080 0.0080 0.0123

The �gures in Table 2 indicate that the MSEs and the biases of the estimated pa-
rameters decay toward zero when the sample size increases for all settings, as expected
under �rst-under asymptotic theory. When n increases, the AEs of the parameters tend
to be closer to the true parameter values. This fact supports that the asymptotic normal
distribution provides an adequate approximation to the �nite sample distribution of the
MLEs.
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7. Empirical illustrations

In this section, we compare the �ts of some special models of the ECC-G family by
means of two real data sets to show the potentiality of the new family. In order to estimate
the parameters of these special models, we adopt the maximum likelihood method. All
the computations were done using the subroutine NLMixed of the SAS software.

The �rst data set consists of fracture toughness from the silicon nitride. The data
taken from the web-site https://goo.gl/UMx3h9 was already studied by [19]. The ECC-
G model used in the �rst application is de�ned by equation (3.2) with θ1 = (α, β, λ, c, p).
Further, the extended Cordeiro and de Castro-exponential (ECCE) density function is
given by (for x > 0)

f2(x;θ2) = αβ λ (1− p) [1− exp (−βx)]λ−1

exp (βx)

{
1− [1− exp(−βx)]λ

}α−1

{
1− p [1− exp (−βx)]λ

}α+1 ,

where θ2 = (α, β, λ, p). These ECC-G models are compared with the Kumaraswamy
Weibull (KwW) and beta Weibull (BW) models with corresponding densities (both for
x > 0)

f3(x;θ3) = αλ c βc xc−1 e−(βx)c
[
1− e−(βx)c

]λ−1
{

1−
[
1− e−(βx)c

]λ}α−1

,

and

f4(x;θ4) =
c λc

B(a, b)
xc−1 exp [−b(λx)c]

[
1− e−(λx)c

]a−1

,

where θ3 = (α, β, λ, c) and θ4 = (a, b, c, λ).
As a second application, we consider a real data set on the strengths of 1.5 cm glass

�bres, measured at the National Physical Laboratory, England, see [26]. We �t the
ECCW and ECCE models to these data. These models are compared with the BW
model and beta Birnbaum-Saunders (BBS) model (for x > 0) de�ned by

f5(x;θ5) =
κ(α, β)

B(a, b)
x−3/2(x+ β) exp

[
−τ(x/β)/(2α2)

]
Φ(ν)2 [1− Φ(ν)]b−1 ,

where ν = α−1ρ(x/β), ρ(z) = z1/2 + z−1/2, κ(α, β) = exp(α−2)/(2α
√

2πβ), τ(z) =
z + z−1, Φ(·) is the standard normal cumulative function and θ5 = (a, b, α, β). We
also compere, in both applications, the results by �tting standard distributions such as
Weibull (θ6 = (c, β)), gamma (θ7 = (a, b)) and log-logistic (θ8 = (a, b)) distributions
as well as the beta exponentiated Weibull (BEW) (θ9 = (λ, c, α, a, b)) distribution [5],
which is de�ned by (for x > 0)

f9(x;θ9) =
α cλc

B(a, b)
xc−1e−(λx)c(1− e−(λx)c)aα−1{1− (1− e−(λx)c)α}b−1.

The MLEs of the parameters and their standards errors are given in Table 3. We also
perform formal goodness-of-�t tests in order to verify which distribution �ts better to
these data. We apply the Cramér-von Mises (W ∗) and Arderson-Darling (A∗) statistics.
TheW ∗ and A∗ statistics are described in details in [3]. In general, the smaller the values
of W ∗ and A∗, the better the �t to the data. Table 4 gives the values of these statistics
for the �rst and second data sets. According to them, the ECCW model �ts the �rst
data set better than the others competing models.

The �gures in Table 3 for the second data set indicate that the ECCW model is a
very competitive model to the other �tted models to these data, although it does not give
the smallest AIC. However, the smallest values of the W ∗ and A∗ statistics in Table 4
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indicate that the ECCW model provides a more adequate �t to these data than the other
distributions. Overall, these results illustrate the potentiality of the ECCW model for
lifetime data and the importance of its additional parameters.

Table 3. Estimates (a denotes standard errors).

Data set Distribution Estimates

1 ECCW θ̂1 = (1.9217, 0.5422, 4.3091, 1.5526, 0.9589)
(n = 119) (3.7100, 1.3219, 17.9943, 2.6544, 0.1602)a

ECCE θ̂2 = (3.0949, 1.2853, 16.8832, 0.9848)
(2.2243, 0.2272, 10.6914, 0.0137)a

KwW θ̂3 = (7.0242, 0.1450, 0.8329, 5.8042)
(2.4542, 0.1655, 0.5797, 3.4765)a

BW θ̂4 = (5.6663, 0.1634, 0.8054, 3.4077)
(0.5568, 0.3708, 0.0067, 3.5823)a

Weibull θ̂6 = (4.9909, 0.2121)
(0.3576, 0.0040)a

gamma θ̂7 = (15.5335, 3.5913)
(1.9925, 0.4681)a

log-logistic θ̂8 = (4.3226, 7.0597)
(0.0959, 0.5531)a

BEW θ̂9 = (0.0964, 5.7762, 0.9848, 0.8015, 66.5370)
(0.1366, 16.7231, 3.1581, 0.4255, 623.5624)a

2 ECCW θ̂1 = (0.9367, 0.8276, 0.6341, 3.6621, 0.9420)
(n = 51) (0.7763, 0.2411, 0.7032, 2.2503, 0.1053)a

ECCE θ̂2 = (3.6519, 4.5125, 11.1218, 0.9978)
(2.7515, 0.7429, 22.1433, 0.0049)a

BW θ̂4 = (7.0127, 0.9199, 0.4493, 0.0496)
(0.1867, 0.0484, 0.8872, 0.1522)a

BBS θ̂5 = (0.3638, 7857.5658, 1.0505, 30.4783)
(0.1517, 2558.5670, 0.2506, 18.1233)a

Weibull θ̂6 = (5.2655, 0.6394)
(0.5648, 0.0178)a

gamma θ̂7 = (16.2574, 11.2742)
(3.1869, 2.2445)a

log-logistic θ̂8 = (1.4571, 7.5383)
(0.04564, 0.9253)a

BEW θ̂9 = (0.7971, 5.7669, 0.0109, 48.8659, 0.2552)
(0.0205, 0.0213, 0.0156, 71.7566, 0.0538)a

8. Concluding remarks

We de�ne a new family of distributions, called the extended Cordeiro and de Castro
(ECC-G) family of distributions, which generalizes several well-known distributions in
the statistical literature such as the normal, Weibull and beta distributions by adding
three shape parameters. We provide a mathematical treatment of the new family includ-
ing expansions for the density function, moments, generating function and incomplete
moments. The ECC-G density function can be expressed as a linear combination of expo-
nentiated density functions. This property is important to obtain several other structural
results. We derive a power series for the quantile function of this family. Our formulas
related with the ECC-G model are manageable, and with the use of modern computer
resources with analytic and numerical capabilities, they may turn into adequate tools
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Table 4. Goodness-of-�t tests

Data set Model
Statistics

W ∗ A∗

1 ECCW 0.0469 0.3116

ECCE 0.0577 0.5629

KwW 0.0784 0.6064

BW 0.1967 1.3748

Weibull 0.0916 0.5616

gamma 0.3883 2.3501

log-logistic 0.3547 2.2304

BEW 0.0829 0.5020

2 ECCW 0.1824 1.1636

ECCE 0.2350 1.3730

BW 0.2390 1.3750

BBS 0.3651 1.9727

Weibull 0.2362 1.2984

gamma 0.5683 3.1173

log-logistic 0.4969 2.7488

BEW 0.2719 1.5476

x

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ECCW
ECCE
KwW
BW

(a)

2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
df

ECCW
ECCE
KwW
BW

(b)

Figure 9. Estimated (a) pdf and (b) cdf for the ECCW, ECCE, KwW
and BW models for the �rst data set.

comprising the arsenal of applied statisticians. Some special models are studied in some
detail. The estimation of the model parameters is approached by the method of maxi-
mum likelihood. The observed information matrix is derived. Finally, we �t the ECC-G
models to two real data sets to demonstrate the potentiality of the proposed family.
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Figure 10. Estimated (a) pdf and (b) cdf for the ECCW, ECCE, BBS
and BW models for the second data set.

Appendix A. Observed information matrix

The elements of the r × r observed information matrix Jn(Θ) are

Upp = (α+ 1)

n∑
i=1

G(xi; ξ)
2λ[

1− pG(xi; ξ)λ
]2 −

n

(1− p)2
, Upα =

n∑
i=1

G(xi; ξ)
λ

1− pG(xi; ξ)λ
,

Upλ = (α+ 1)

n∑
i=1

G(xi; ξ)
λ logG(xi; ξ)[

1− pG(xi; ξ)λ
]2 , Upξ = λ(α+ 1)

n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)[

1− pG(xi; ξ)λ
]2 ,

Uαα = −
n

α2
, Uαλ = p

n∑
i=1

G(xi; ξ)
λ logG(xi; ξ)

1− pG(xi; ξ)λ
− p

n∑
i=1

G(xi; ξ)
λ logG(xi; ξ)

1−G(xi; ξ)λ
,

Uαξ = λ p
n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)

1− pG(xi; ξ)λ
− λ

n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)

1−G(xi; ξ)λ
,

Uλλ = −
n

λ2
− λ(α− 1)

n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)[

1−G(xi; ξ)λ
]2 logG(xi; ξ)

+ λ p (α+ 1)
n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)[

1− pG(xi; ξ)λ
]2 logG(xi; ξ),

Uλξ =

n∑
i=1

G(ξ)(x; ξ)

G(xi; ξ)
− (α− 1)

n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)

[
1−G(xi; ξ)

λ + logG(xi; ξ)
λ
][

1−G(xi; ξ)λ
]2

+ p (α+ 1)

n∑
i=1

G(xi; ξ)
λ−1G(ξ)(x; ξ)

[
1−G(xi; ξ)

λ + logG(xi; ξ)
λ
][

1− pG(xi; ξ)λ
]2
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and

Uξξ = (λ− 1)

n∑
i=1

G(xi; ξ)G
(2ξ)(x; ξ)

G(ξ)(xi; ξ)2
+

n∑
i=1

g(xi; ξ) g
(2ξ)(x; ξ)

g(ξ)(xi; ξ)2
− nλ

+ λ (α− 1)

n∑
i=1

G(xi; ξ)
λ−2G(ξ)(x; ξ)2[

1−G(xi; ξ)λ
]2 −

n∑
i=1

G(xi; ξ)
λ−2G(ξ)(x; ξ)2

1−G(xi; ξ)λ

(
G(xi; ξ)

G(ξ)(x; ξ)

)(ξ)

− λ p (α+ 1)

n∑
i=1

G(xi; ξ)
λ−2G(ξ)(x; ξ)2[

1− pG(xi; ξ)λ
]2 −

n∑
i=1

G(xi; ξ)
λ−2G(ξ)(x; ξ)2

1− pG(xi; ξ)λ

(
G(xi; ξ)

G(ξ)(x; ξ)

)(ξ)

,

where h(2ξ)(·) denotes the second derivative of the function h with respect to ξ.
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