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1. Introduction

The classical de�nition of a fuzzy set on a universe gives rise to additional structures.
Thus, the concept of a fuzzy set can actually be regarded from various alternative points
of view, as functional equations (see [6, 5]), nested families of sets and nested topologies
(see [1, 7, 20]) or representable total preorders (see [12, 6]) among others. In addition,
in [8] the concept of a weightable quasi-metric was shown to be closely related to some
classical functional equations, of which some were also intimately linked to the de�nition
of a fuzzy set of a universe as proved in [6, 5]. However, to complete the panorama,
a direct link between the de�nition of a fuzzy set of a universe and the possibility of
endowing that universe with a suitable weightable quasi-metric had not been explored
yet. This will be our task to be developed throughout the present note.

As regards quasi-metrics, as already commented in [8], we may observe that in the
last years, (weightable) quasi-metric spaces have proven to be useful in modeling many
processes that arise in Theoretical Computer Science and that involve some situation of
asymmetry . The aforementioned usefulness is due to the fact that quasi-metric spaces
lack the symmetry and the Hausdor�ness enjoyed by metric spaces. This fact allows to in-
troduce techniques of measuring that, contrarily to the metric ones, re�ect the asymmetry
inherent to the computational process. Recent applications of (weightable) quasi-metrics
to Complexity Analysis of Algorithms, Denotational Semantics and Program Correctness
can be found e.g in [15, 16, 17, 18] and [14].

Inspired in part by its utility in Theoretical Computer Science, we focus our attention
on the de�nition of (weightable) quasi-metric ([10, 13]). In [8] we already analyzed some
functional equation that appears associated in a natural way. Indeed, weightable quasi-
metrics were characterized as the quasi-metrics that satisfy the functional equation of
circuit invariance. Furthermore, the disymmetry function of a weightable quasi-metric
satis�es Sincov's functional equation and induces a representable total preorder. But
Sincov's functional equation has been also proved in [6] to be closely related to the
classical de�nition of a fuzzy set of a universe. We may then conclude, that a weightable
quasi-metric could be then directly retrieved from the mere de�nition of a fuzzy set,
by means of an associated real-valued bivariate function that satis�es Sincov's functional
equation. This allows us to establish a link between apparently disparate notions, namely:
i) fuzzy sets of a universe, ii) weightable quasi-metrics, iii) real-valued bivariate functions
that satisfy Sincov's functional equation and iv) representable total preorders and their
corresponding order-preserving real-valued utility functions.

The structure of the present note goes as follows: After the Introduction and the
necessary de�nitions introduced in the subsequent Section 2 (Preliminaries), in Section 3
we analyze the relationship between fuzzy sets and weightable quasi-metrics on a universe.
Some miscellaneous examples, looking for possible applications, are discussed in Section
4. A �nal Section 5 of concluding remarks, pointing out some open problems arising in
this literature, will close the paper.

2. Previous concepts

Preliminaries on fuzzy sets.

2.1. De�nition. Let U be a nonempty set, also called a universe. We call crisp subset
X of U to any application of the form νX : U → {0, 1}, so that t ∈ X ⇔ νX(t) = 1, and
consequently t /∈ X ⇔ νX(t) = 0. This is denoted X ⊆ U . The map νX is said to be the
characteristic function of the subset X.

Generalizing this last notion of characteristic function, the standard de�nition of a
fuzzy set is established now in a formal way.



1186

2.2. De�nition. ([22]) Let U be a universe. A fuzzy set X of U is de�ned as the graph
of a function µX : U → [0, 1]. The map µX is said to be the membership function (or
indicator degree) of X. Notice that X is then a (crisp) subset of the Cartesian product
U × [0, 1].

The support of X is the crisp subset Supp(X) = {t ∈ U : µX(t) 6= 0} ⊆ U , whereas
the kernel of X is the crisp subset Ker(X) = {t ∈ U : µX(t) = 1} ⊆ U . The fuzzy
set X is said to be normal provided that it has nonempty kernel, and it is said to be
quasi-normal when sup{µX(t) : t ∈ U} = 1.

2.3. Remark. A quasi-normal fuzzy subset X of a universe U may fail to be normal.
In other words, despite 1 being the supremum of the set sup{µX(t) : t ∈ U}, it could
still happen that this supremum is not attained at any point of the universe U . As a
clear example, consider U = (0, 1) and the fuzzy subset X de�ned by µX(t) = t for every
t ∈ U .

Given α ∈ [0, 1], the crisp subset of U de�ned by Uα = {t ∈ U : µX(t) ≥ α} is said to
be the α-cut of the fuzzy set X. The family of α-cuts of a fuzzy set is obviously nested.

2.4. Remark. Suitable nested families of subsets of a given universe can be put in
correspondence with the α-cuts of a fuzzy set, as analyzed in [1]. The term crisp is
usually understood in contraposition to the term fuzzy. A fuzzy set X of U is identi�ed
to a crisp subset of U provided that its membership function µX takes values in {0, 1}.
The main di�erence between these concepts, namely crisp vs. fuzzy, is that unlike the
�rst one, the second one allows a graduation in the membership of an element to a set X,
so that µX(t) = α means that the element t ∈ U belongs to X with the grade α ∈ [0, 1].
If µX(t) = 0 we interpret that t does not belong to X.

Preliminaries on quasi-metrics.

2.5. De�nition. Let U be a nonempty set (also called a universe). By a quasi-metric on
U we mean a function d : U×U → R such that for all x, y, z ∈ U the following conditions
hold:

(i) d(x, y) ≥ 0;
(ii) d(x, y) = d(y, x) = 0⇔ x = y;
(iii) d(x, y) + d(y, z) ≥ d(x, z).

Of course a metric on a set U is a quasi-metric d on U satisfying, in addition, the
following condition for all x, y ∈ U :

(iv) d(x, y) = d(y, x).

By a quasi-metric space we mean a pair (U, d) such that U is a universe and d is a
quasi-metric on U .

Given a quasi-metric d on U , and an ordered pair (x, y) ∈ U × U , the real number
F (x, y) = d(x, y)− d(y, x) is said to be the disymmetry of the pair (x, y). The function
F : U × U → R de�ned by F (x, y) = d(x, y) − d(y, x) (x, y ∈ U) is said to be the
disymmetry function associated to the quasi-metric d on the given universe U .

2.6. De�nition. ([10, 14]) Let U be a universe. A quasi-metric d on U , as well as the
associated quasi-metric space (U, d), are said to be weightable if there exists a function
w : U → R such that d(x, y) + w(x) = d(y, x) + w(y) holds for every x, y ∈ U . The
function w is called a weighting function for d.

In the particular case in which there is at least one weighting function that only
takes non-negative values (w(U) ⊆ [0,+∞)) we say that the quasi-metric d is positively
weightable.
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2.7. Example. Let d : R×R→ [0,+∞) be the function given by d(x, y) = max{y−x, 0}
for all x, y ∈ R. It is clear that (R, d) is a quasi-metric space which is weightable with
weighting function w : R→ R given by w(x) = x for all x ∈ R.

2.8. Example. Next we provide a more informal and miscellaneous example.
Let us assume that the prices P (x, y) that you pay to travel with a certain airline

depend on the departure airport x as well as on the arrival airport y, in a way such
that P (x, y) ≥ 0 and P (x, y) > 0 ⇔ x 6= y. Moreover, any travel with a stop can never
be cheaper than the corresponding direct �ight, so that P (x, z) ≤ P (x, y) + P (y, z), for
every x, y, z ∈ U , where U stands for the set of all the airports covered by this airline.
Finally, the price P (x, y) could be slightly di�erent from the price P (y, x), depending for
instance, on local taxes. Under all this hypotheses, the function P : U × U → [0,+∞)
is a quasi-metric. Suppose now that, apart from paying P (x, y) for your boarding ticket
in order to �y from city x to city y, you are also obliged to pay an amount w(x) as an
airport tax (to leave), that only depends on the departure airport. Assume also that the
system of prices and taxes accomplishes that the total amount P (x, y) + w(x) that you
pay when you travel from a city x to a city y is equal to the money P (y, x) + w(y) that
you pay when coming back from y to x. In other words: P (x, y)+w(x) = P (y, x)+w(y),
for every x, y ∈ U . In this case, it is clear that the function P constitutes an example of
a positively weightable quasi-metric, in the sense of De�nition 2.6.

Preliminaries on functional equations and representable total preorders.

2.9. De�nition. Let U be a universe. A bivariate function F : U × U −→ R is said to
satisfy the Sincov's functional equation on the universe U if F (x, y) + F (y, z) = F (x, z)
holds for every x, y, z ∈ U .

The following result is well-known ([19]):

2.10. Proposition. Let U be a universe. A bivariate function F : U ×U −→ R satis�es
the Sincov's functional equation if and only if F (x, y) = g(y)−g(x) (x, y ∈ U), for some
function g : U → R that only depends on one single variable.

Having this fact in mind, we say that a function g : U → R generates F if F (x, y) =
g(y)− g(x), for every x, y ∈ U .

It is easy to prove that a function g : U → R that generates F is unique up to an
additive constant. Also, if U denotes a universe and F : U × U −→ R is a function that
satis�es the Sincov's functional equation, it holds true that if we �x an element a ∈ U
and a real number k ∈ R, then there exists a unique function g : U → R such that g
generates F and g(a) = k

Let us recall now the notion of a total preorder.

2.11. De�nition. Let U denote a universe. A preorder - on U is a binary relation on
U which is reflexive and transitive.

An antisymmetric preorder is said to be an order . A total preorder - on a set U is
a preorder such that if a, b ∈ U then [a - b] or [b - a] holds true. A total order is also
called a linear order .

If - is a preorder on U , then the associated asymmetric relation is denoted by ≺,
whereas ∼ will stand for the associated equivalence relation. These relations are respec-
tively de�ned by [a ≺ b⇔ (a - b)∧¬(b - a)] and [a ∼ b⇔ (a - b)∧ (b - a)]. Moreover,
the binary relation -d de�ned by a -d b ⇔ b - a for every a, b ∈ U , which is also a
preorder on U , is said to be the dual preorder associated to -.

The asymmetric part of a linear order is said to be a strict linear order .
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2.12. De�nition. Let U be a universe. Let - be a total preorder de�ned on U . The
preorder - is said to be representable if there exists a function u : U → R such that
x - y ⇔ u(x) ≤ u(y), for every x, y ∈ U . The order-preserving function u involved is
said to be a utility function (also known as an isotony or an order isomorphism) for the
preorder - on U .

2.13. Remark. For further information concerning characterizations of the representabil-
ity of total preorders through utility functions, see e.g. the �rst three chapters of [3].

Sincov's functional equations are closely related to the representability of total pre-
orders de�ned on a universe U , as the next well-known result shows. (See e.g. Theorem
1 in [2]).

2.14. Proposition. Let - be a total preorder de�ned on a universe U . Then - is
representable if and only if there exists a bivariate function F : U × U → R such that F
satis�es the Sincov's functional equation and, in addition, x - y ⇔ F (x, y) ≤ 0 holds for
all x, y ∈ U .

Weightable quasi-metrics and functional equations.

As proved in [8], the de�nition of a weightable quasi-metric gives rise to the consider-
ation of several functional equations.

2.15. Theorem. Let (U, d) be a quasi-metric space. The following statements are equiv-
alent:

(i) The quasi-metric d is weightable.
(ii) The quasi-metric d satis�es the functional equation of the 3-circuit, namely

d(x, y) + d(y, z) + d(z, x) = d(x, z) + d(z, y) + d(y, x), for every x, y, z ∈ U .
(iii) For every n ≥ 3, n ∈ N, the quasi-metric d satis�es the functional equation of the

n-circuit, namely d(x1, x2)+d(x2, x3)+. . .+d(xn−1, xn)+d(xn, x1) = d(x1, xn)+
d(xn, xn−1) + . . .+ d(x3, x2) + d(x2, x1), for every x1, x2, x3, . . . , xn ∈ U . (Here
N stands for the set of positive integer numbers).

(iv) For some k ≥ 3, k ∈ N, the quasi-metric d satis�es the functional equation
of the k-circuit, namely d(x1, x2) + d(x2, x3) + . . . + d(xk−1, xk) + d(xk, x1) =
d(x1, xk)+d(xk, xk−1)+. . .+d(x3, x2)+d(x2, x1), for every x1, x2, x3, . . . , xk ∈ U .

v) The disymmetry function F associated to d satis�es Sincov's functional equation
F (x, y) + F (y, z) = F (x, z), for every x, y, z ∈ U .

Proof. See Theorem 3.2 and Theorem 3.5 in [8]. �

Now we consider an example that is related to periodical processes.

2.16. Example. Let n > 1 and U = {x1, . . . , xn}. De�ne d : U ×U → {0, . . . , n− 1} as
follows d(xi, xj) = j − i if i ≤ j and d(xi, xj) = n + j − i if i > j. It is straightforward
to see that d is a quasi-metric on U . Moreover, being xi, xj ∈ U we observe that
d(xi, xj)− d(xj , xi) = j − i− (n+ i− j) = 2j − 2i− n if i < j; d(xi, xj)− d(xj , xi) = 0
if i = j; and �nally d(xi, xj)− d(xj , xi) = (n− i+ j)− i+ j = n− 2i+ 2j if i > j.

If n ≥ 3 this quasi-metric d is not weightable, by part (iii) of Theorem 2.15. In fact,
d(x1, x2) + d(x2, x3) + d(x3, x1) = 1 + 1 + (n − 2) = n, whereas d(x1, x3) + d(x3, x2) +
d(x2, x1) = 2 + (n− 1) + (n− 1) = 2n.

As aforesaid, this example is typical in periodical processes. Suppose for instance that
we have a process in which the elements {x1, . . . , xn} appear periodically as the hours in
a clock or the seasons in a year. (For instance, this happens when I insert a compact disk
in the CD-slot of my car: the CD has 20 songs, but after hearing the last one, the system
restarts again in the �rst soundtrack). Thus d(xi, xj) measures the number of elements
encountered from an occurrence of xi to the next occurrence of xj (i, j = 1, . . . , n).
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3. Weightable quasi-metrics vs. fuzzy sets

A fuzzy set de�ned from a weightable quasi-metric on a universe.

Let us see how a weightable quasi-metric on a given universe generates a fuzzy set on
it.

3.1. Lemma. Let U be a universe. Let F : U × U → [−1, 1] be a function that satis�es
Sincov's functional equation. Then there exists a fuzzy subset X of U , such that F (x, y) =
µX(y)− µX(x), for all x, y ∈ X, where µX denotes the membership function of X.

Proof. Fix an element a ∈ U . Let k = inf{F (a, t) : t ∈ U}. De�ne G(x) = F (a, x) − k,
for every t ∈ U . By de�nition of k we have that G(x) ≥ 0 for all t ∈ U . Moreover,
�xed x ∈ X we notice that G(x) = F (a, x) − k = F (a, x) − inf{F (a, t) : t ∈ U} =
sup{F (a, x)−F (a, t) : t ∈ U} = sup{F (x, t) : t ∈ U}, because F (a, x) +F (x, t) = F (a, t)
by hypothesis. Since F (U) ⊆ [−1, 1], it follows that G(x) ≤ 1 for every x ∈ U . Hence
G(U) ⊆ [0, 1], so that G is the indicator of a certain fuzzy subset X of U . To conclude,
notice that F (x, y) = G(y)−G(x), for every x, y ∈ X. �

3.2. Proposition. Let U denote a universe, and let d be a weightable quasi-metric on X
such that d(x, y) ≤ 1 for every x, y ∈ X. Then, there exists a fuzzy set X of the universe
U such that d(x, y)− d(y, x) = µX(y)− µX(x) holds for all x, y ∈ U .

Proof. Notice that the disymmetry function F : X×X → R given by F (x, y) = d(x, y)−
d(y, x) (x, y ∈ U) satis�es Sincov's functional equation by Theorem 2.15. In addition,
F takes values in the interval [−1, 1]. Furthermore, by Lemma 3.1, there is a fuzzy set
X of the universe U such that d(x, y)− d(y, x) = F (x, y) = µX(y)− µX(x) holds for all
x, y ∈ U . where µX denotes the membership function of the fuzzy set X. �

3.3. Remark. By the way, under the statement of Proposition 3.2 the fuzzy set X is
not unique, in general. An easy example is the following: Let d denote the discrete
metric on U , that is d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y (x, y ∈ U . Then
d(x, y)−d(y, x) = 0 for every x, y ∈ U . Consider the fuzzy subsets X,T of U , respectively
de�ned by µX(t) = 1 and µT (t) = 0.5, for every ∈ U . Obviously d(x, y)− d(y, x) = 0 =
µX(y) − µX(t) = µT (y) − µT (x) holds for every x, y ∈ U , so that both fuzzy subsets X
and T agree with the statement of Proposition 3.2.

The collection of all the fuzzy sets that share the property in the statement of Propo-
sition 3.2, can actually be characterized through the following Proposition 3.4.

3.4. Proposition. Let U stand for a universe. Let F : U × U → [−1, 1] be a bivariate
function that satis�es Sincov's functional equation. Let f : U → [0, 1] be de�ned as
f(x) = sup{F (t, x) : t ∈ U}. Let a = inf{f(t) : t ∈ U} and b = sup{f(t) : t ∈ U}. Then
X is a fuzzy set of U such that F (x, y) = µX(y) − µX(x)(x, y ∈ X), where µX denotes
the membership function of X, if and only if there exists a constant k ∈ [−a, 1− b] such
that µX = f(x) + k holds true for every x ∈ U .

Proof. See Proposition 3.3 in [6]. �

To force the uniqueness of the fuzzy subset induced by a Sincov's functional equation
F : U ×U → [−1, 1] on a universe U , some additional condition is compulsory. One such
condition is quasi-normality of the fuzzy set considered, as next Corollary 3.5 states.

3.5. Corollary. Let U be a universe. Let F : U×U → [−1, 1] be a function that satis�es
Sincov's functional equation. Then there exists a unique quasi-normal fuzzy subset X of
U , such that F (x, y) = µX(y)− µX(x), for all x, y ∈ X, where µX denotes the indicator
of X.
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Proof. First, let us prove the existence of a quasi-normal fuzzy subsetX of U , such thatX
agrees with the statement of Proposition 3.2. To do so, take a fuzzy subsetX such that its
membership function µX satis�es that F (x, y) = µX(y)−µX(x), for every x, y ∈ X. (The
existence ofX is guaranteed by Proposition 3.2). Let q = sup{µX(t) : t ∈ U}. De�ne now
the fuzzy subset T of U , by means of the indicator µT given by µT (t) = µX(t) + 1 − q,
for every t ∈ U . It is plain that t is quasi-normal and F (x, y) = µX(y) − µX(x) =
µT (y)− µT (x) for all x, y ∈ U .

By Proposition 3.4, if X1 and X2 are two fuzzy subsets of U such that F (x, y) =
µX1(y)−µX1(x) = µX2(y)−µX2(x) holds for all x, y ∈ U , then µX1 −µX2 is a constant,
say k ∈ [−1, 1]. Therefore sup{µX1(t) : t ∈ U} = k+ sup{µX2(t) : t ∈ U}. Consequently,
if X1 and X2 are both quasi-normal, it follows that k = 0. Thus µX1 and µX2 coincide,
so that X1 and X2 are indeed the same fuzzy set of the universe U . (See also Corollary
3.6 in [6]). �

3.6. Remark. The condition d(x, y) ≤ 1 that appears in the statement of Proposition
3.2 is restrictive. However, if d is a bounded quasi-metric de�ned on a universe U , we still
can obtain a fuzzy set from d, as follows: Let K > 0 be a bound for d, that is, d(x, y) ≤ K
holds true for every x, y ∈ X. Consider now the quasi-metric d′ : X ×X → [0, 1] given

by d′(x, y) = d(x,y)
K

(x, y ∈ X). Obviously, d′ satis�es the conditions of the statement
of Proposition 3.2, so that we can get a fuzzy set X, of the universe U , such that
d(x,y)−d(y,x)

K
= d′(x, y)− d′(y, x) = µX(y)− µX(x) holds true for all x, y ∈ U , where µX

stands for the membership function of the fuzzy set X. Observe that, in particular, if U
is compact with respect to a topology τ such that d : X ×X → [0,+∞) is continuous as
regards the product topology τ × τ on X × X and the usual topology on the real line,
then d is bounded and the argument given above applies. A typical situation of this kind
appears when the universe U is �nite. Thus, any quasi-metric on a �nite universe U gives
rise to a fuzzy set of U .

As a matter of fact, looking at the proof of Proposition 3.2, we may realize that the
condition d(x, y) ≤ 1 (x, y ∈ U) could be replaced by the weaker one |d(x, y)−d(y, x)| ≤
1 (x, y ∈ U). In the same direction, the condition of d being bounded could still be
replaced by a weaker condition, namely, the boundedness of the disymmetry function
associated to the quasi-metric d.

Weightable quasi-metrics de�ned from fuzzy sets.

First we see how a weightable quasi-metric can be obtained in a natural way from the
indicator function of a fuzzy set on a universe, provided that the support of the fuzzy set
is the whole universe.

3.7. Theorem. Let U be a universe. Let µX : U → (0, 1] de�ne a fuzzy set X of the
universe U . Let F : U × U → [−1, 1] be such that F (x, y) = µX(y) − µX(x), for every
x, y ∈ U . Then there exists a positively weightable quasi-metric d : U × U → [0,+∞)
whose disymmetry function is F and so that µX is a weighting function for d.

Proof. Observe that since µX(t) 6= 0 (t ∈ U), the fuzzy set X accomplishes that
Supp(X) = U . Given x, y ∈ U , we de�ne d(x, y) = 0 if x = y and d(x, y) = µX(y)
otherwise. Notice that d(x, y) ≥ 0 holds true by de�nition of d. To check the triangle
inequality, given x, y, z ∈ U we distinguish the following cases:

Case 1: x = y. In this case we have that 0 = d(x, y) ≤ d(x, z)+ d(z, y) because,
by de�nition of d, we have that d(x, z) ≥ 0 and d(z, y) ≥ 0.
Case 2: x 6= y; y = z. In this case we have that d(x, y) = d(x, y) + d(y, y)
because d(y, y) = 0 by de�nition of d. Thus d(x, y) = d(x, z) + d(z, y) since z
and y coincide.
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Case 3: x 6= y; x = z. In this case the proof runs as in Case 2.
Case 4: x 6= y; y 6= z. In this case we have that µX(y) = d(x, y) ≤ µ(y) +
d(x, z) = d(z, y) + d(x, z) = d(x, z) + d(z, y) since d(x, z) ≥ 0 and d(x, y) =
d(z, y) = µX(y) by de�nition of d.

Notice now that d(x, y) = d(y, x) = 0 immediately implies x = y because, by hypothesis,
µX(t) 6= 0 for every t ∈ U .

Therefore d is a quasi-metric on the universe U .
It is straightforward to check that F is the disymmetry function associated to d, so

that µX is a weighting function for d. Hence d is positively weightable. �

3.8. Remark. In fact, the condition of whole support that appears in Theorem 3.7
can still be replaced by the less restrictive one of asking the cardinality of the set {t ∈
U : µX(t) = 0} to be at most one. A particular case of this situation occurs when
the membership function µX of the fuzzy set X is injective. The steps in the proof of
Theorem 3.7 are still valid here since d(x, y) = d(y, x) = 0 still forces the equality x = y.

3.9. Remark. Notice that, in general, the quasi-metric satisfying the conditions in the
statement of Theorem 3.7 is not unique. A trivial situation appears when X is actually
a crisp set, so that µX(t) = 1 for every t ∈ U . In that situation, any metric d on U is
ad hoc. Notice also that whenever the set X is crisp, the quasi-metric d is actually the
trivial metric on X, so that d(x, y) = 1 if x 6= y and d(x, x) = 0 hold for every x, y ∈ X.
The trivial metric d induces the discrete topology on X. However, when the quasi-metric
d is di�erent from the trivial metric, it also de�nes a non-trivial topology on the given
universe U . (Compare this last fact to other parallel results analyzed in [1]).

Now we see how to de�ne a weightable quasi-metric from any fuzzy set of a universe,
even if the support of the fuzzy set does not coincide with the universe. To do so, we
furnish here a suitable modi�cation of the proof of Theorem 3.7.

3.10. Theorem. Let U be a universe. Let µX be the membership function of a fuzzy set
X of the universe U . Let F : U ×U → [−1, 1] be such that F (x, y) = µX(y)−µX(x), for
every x, y ∈ U . Then there exists a positively weightable quasi-metric d : U×U → [0,+∞)
whose disymmetry function is F and so that µX is a weighting function for d.

Proof. Given x, y ∈ U , we de�ne d(x, y) = 0 if x = y and d(x, y) = µX(y) + 1 otherwise.
Notice that d(x, y) ≥ 0 holds true by de�nition of d. Observe also that d(x, y) = 0 imme-
diately implies x = y. To check the triangle inequality, given x, y, z ∈ U we distinguish
the following cases:

Case 1: x = y. In this case we have that 0 = d(x, y) ≤ d(x, z)+ d(z, y) because,
by de�nition of d, we have that d(x, z) ≥ 0 and d(z, y) ≥ 0.
Case 2: x 6= y; y = z. In this case we have that d(x, y) = d(x, y) + d(y, y)
because d(y, y) = 0 by de�nition of d. Thus d(x, y) = d(x, z) + d(z, y) since z
and y coincide.
Case 3: x 6= y; x = z. This case is similar to Case 2.
Case 4: x 6= y; y 6= z. In this case we have that d(x, y) = µX(y) + 1 ≤
µX(z) + 1 + µX(y) + 1 = d(x, z) + d(z, y).

Therefore d is a quasi-metric on the universe U .
It is straightforward to check that F is the disymmetry function associated to d, so

that µX is a weighting function for d. Hence d is positively weightable. �

3.11. Remark. Needless to say, we could have directly proved this more general Theo-
rem 3.10, ignoring the previous Theorem 3.7. Nevertheless, we have decided to include
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both of them, because the construction of the quasi-metric in the proof of Theorem 3.10
is a bit more arti�cial than that in Theorem 3.7, much more natural (see e.g. Example
4.1 and Remark 4.2 below). In addition, the quasi-metric built in Theorem 3.7 also has
some topological implications as brie�y commented in Remark 3.9.

4. Miscellaneous examples

Let us analyze some practical situations in which the results introduced along the
previous sections may play a role.

4.1. Example. Some candidates compete in a contest that consists in doing an exam.
A correct answer to all the questions posed in the exam is considered as �perfect". Thus,
the score that a person obtains in the contest, from 0% till 100% of correct answers, gives
us an idea of the perfection of the candidate. Obviously, that quality can be assigned this
way a number between 0 and 1, so that the whole set of scores that the candidates have
got in the exam can be understood as a fuzzy set of the universe of candidates. Suppose
also that all candidates have some skills, so that none of them is assigned the score 0.
Under these hypotheses, when comparing candidates x and y, and in order to say who
is the best one, we may assign to the ordered pair (x, y) the value d(x, y) = d(y, x) = 0
if x = y and, whenever x 6= y, then d(x, y) is the score obtained for the candidate y.
Intuitively, d(x, y) gives to candidate x an information about how good has been y in the
contest. We may then observe that d is actually a weightable quasi-metric on the set of
candidates, following the ideas of the proof of Theorem 3.7 above. And candidate x is at
least as good as candidate y if and only if d(x, y) ≤ d(y, x), or equivalently if and only if
d(y, x)− d(x, y) ≥ 0.

4.2. Remark. The ideas underlying in the previous example are general, in the following
sense. Suppose that we have got a total preorder - de�ned on a �nite universe U . Given
an element x ∈ U we may assign to x the percentile p(x) such that x is at least as good
as the p(x) percent of the cardinality (i.e., number of elements) of U . Obviously, the

function µ : U → (0, 1] given by µ(t) = p(t)
100

de�nes a fuzzy set, with whole support, of
the universe U . Again, as in the proof of Theorem 3.7, the function d : U × U → [0, 1]
given by d(a, b) = d(b, a) = 0 ⇔ a = b and d(a, b) = µ(b) if a 6= b ∈ U is a quasi-metric.
Moreover, a - b⇔ d(b, a) ≤ d(a, b) holds true for every a, b ∈ U .

4.3. Remark. The previous Example 4.1 and Remark 4.2 have been given for a situation
in which the universe U is �nite. However, when U is in�nite and it is endowed with
a representable total preorder -, we may consider without loss of generality a utility
function u de�ned on U and taking values in the unit interval (0, 1), so that x - y ⇔
u(x) ≤ u(y) (x, y ∈ U). To do so, we can combine a given utility function v : U → R
representing - with the function h : R→ (0, 1) given by h(t) = arctg(t)

π
+ 1

2
that is strictly

increasing, so that the composition u = h ◦ v is also a utility function for -. Once more,
u can be considered as the membership function of a fuzzy set of U . And the bivariate
map d : U × U → [0, 1] given by d(x, y) = d(y, x) = 0 ⇔ x = y and d(x, y) = u(y) if
x 6= y (x, y ∈ U) is indeed a quasi-metric.

4.4. Example. Let U = {x1, . . . , xn} a set of stochastic independent basic events such
that each event xi has a probability pi 6= 0 (i = 1, . . . , n) and p1+. . .+pn = 1. Obviously,
these probabilities give rise to a fuzzy set X of U whose membership function µX is given
by the probabilities, that is µX(xi) = pi (i = 1, . . . , n). The novelty here is that we can
combine independent events to get more sophisticated events in the algebra generated by
U . (For instance, the probability of the event �xj or xk" is pj + pk and the probability
of the event �xi will not happen" is 1 − pi). In other words, from the fuzzy set X on
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the universe U we may generate another fuzzy set on a new universe U ′ such that U ′

is the algebra generated from U by taking unions and complements. Since U is �nite,
that algebra is the power set of U . Of course, we may pass to consider the corresponding
weightable quasi-metric associated to the fuzzy set X following the ideas introduced in
the previous section (see, in particular, Remark 3.8), and we could still extend that
quasi-metric to a new one, also weightable, de�ned on the power set of U .

4.5. Example. A shipping company operates in di�erent coastal cities. The price P (x, y)
of a travel in a ferryboat from the city x to the city y ( 6= x) is composed of two summands,
namely an amount of money a(x, y) that is directly proportional to the distance d(x, y)
between x and y, and a tax b(y) paid to be allowed to debark in the second harbor, in
the city y. That is P (x, y) = 0 if x = y and P (x, y) = k · d(x, y) + b(y) otherwise, where
k > 0 is a strictly positive constant. Let U be the set of cities covered by the shipping
company. The function of prices P : U × U → [0,+∞) is, by its own construction, a
positively weightable quasi-metric. Moreover, this quasi-metric is obviously bounded,
since U is �nite. So we may obtain a fuzzy set from P following the ideas introduced in
Remark 3.6.

4.6. Example. (Problem of a travel in several stages.)
Usually, when transporting goods for delivery, trucks have to travel a great distance

and make the travel in several stages. The cost of transporting goods from a city A to a
city Z following a route (A→ x1 → x2 → · · · → xn−1 → Z) depends on the chosen route.
The cost associated to a route is the sum of the costs of every stage (xi → xi+1), and
the cost of any stage is given by adding two amounts: the �rst one (where oil and tolls
are included) is proportional to the miles made in the stage (it is always a mathematical
distance, d(xi, xi+1), whereas the second summand (w(xi+1) ≥ 0) depends only on the
arriving place (staying the night, special conditions for the goods, or unload and load
of goods, for example). It is a logistical problem to �nd the best route (the one with
minimal cost) between two cities.

This problem can be represented with a weighted graph with loops (or re�exive graph).
The cities are the nodes, the branches show the 1-stage possible routes and have a weight
representing the �rst summand of the cost of the stage, and the loops at the nodes,
also with a weight, represent the costs of the stop. A very easy modi�cation of Dijkstra
algorithm ([11]) provides the best route between two any nodes and also the minimal cost
(C(A,Z)) of transporting goods between two points A and Z. This minimal cost can be
calculated easily (by means of an algorithm) although it cannot be easily expressed with
a mathematical formula. Besides, this function of total costs fails to be a metric (except
in trivial cases). Instead, it is a weightable quasi-metric, whose disymmetry function has
a much easier expression, namely C(A,Z) − C(Z,A) = w(Z) − w(A). Of course, from
this quasi-metric that is obviously bounded, we may obtain a fuzzy set, once more in the
light of Remark 3.6.

5. Final remarks

As already commented in the Introduction, the mere de�nition of a fuzzy set as a
function from a universe into the unit interval carries many additional structures, of
di�erent (but complementary) mathematical kind. Thus we may consider Sincov's func-
tional equations, or nested topologies generated by α-cuts, or representable total pre-
orders. Throughout this paper we have analyzed the relationship between fuzzy sets of
a universe and weightable quasi-metrics, from a direct approach.

Some open question appears. For instance, in Theorem 3.7 we obtain a weightable
quasi-metric from a fuzzy set on a universe. But the so obtained quasi-metric is not
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unique, in general. Therefore, we could search for some additional condition on the
weightable quasi-metric in order to get uniqueness, in the spirit of Corollary 3.5.

As an unexplored possible application, that comes to our mind in a natural way, from
the relationship between weightable quasi-metrics and fuzzy sets, we may think about
aggregation of fuzzy sets vs. combination of weightable quasi-metrics into a new one. To
put an example, if two fuzzy sets X1 and X2 on the same universe U are aggregated into
o new fuzzy set X of U by means of a suitable operator, then we may consider that the
quasi-metrics associated to X1 and X2 in the sense of Theorem 3.7 are also combined to
get a new one, namely the quasi-metric associated to X (again in the sense of Theorem
3.7). Conversely, if d and d′ are two bounded weightable quasi-metrics on a universe U ,
if we combine them in a way that gives rise to a new bounded weightable quasi-metric
D, we may also interprete that the associated fuzzy sets associated to d and d′ are also
aggregated into a new one, namely the fuzzy set associated to the quasi-metric D, in the
sense of Proposition 3.2 and Remark 3.6. A typical combination of bounded weighted
quasi-metrics is the following one: if d and d′ are bounded weighted quasi-metrics on
a universe U , and α > 0 and β > 0 are strictly positive real numbers, it is clear that
D = αd+ βd′ is a weightable quasi-metric, too.

Finally, another unexplored possible application follows from the relationship between
fuzzy sets and representable total preorders (see [5]). Having in mind studies on exten-
sions of representable total preorders from a set to a bigger set (see e.g. [21, 9, 4]), we
may think about extensions of a universe, and consequently consider extensions of fuzzy
sets on those universes. Furthermore, these new and bigger fuzzy sets would give rise to
extensions of weightable quasi-metrics, in the sense of Theorem 3.10.
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