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Abstract

The distance, d(u, v), between two vertices u and v of a connected
graph G is the length of a u − v geodesic in G. A large number of
graph-distance-based topological indices in various families of graphs
and networks have been computed. In this paper, we consider circu-
lant networks and compute three distance-based topological indices,
namely the Wiener index, hyper-Wiener index and Schultz molecular
topological index on these networks.
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1. Preliminaries

A combination of chemistry, mathematics and information de�nes a new subject
called cheminformatics. To predict the biological activities and properties of chemi-
cal compounds, cheminformatics studies Quantitative structure-activity and Quantita-
tive structure-property relationships (QSAR/QSPR). In QSAR/QSPR study, physico-
chemical properties and topological indices such as Wiener index, hyper-Wiener index,
Harary index, Randi¢ index, Zagreb index and Schultz index are used to predict bioac-
tivity of chemical compounds.

∗Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya Uni-
versity Multan, Pakistan, Email: faisalali@bzu.edu.pk
†Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya Uni-

versity Multan, Pakistan, Email: hafeez276@gmail.com
‡Department of Mathematics, Government Post Graduate College Bahawalpur, Pakistan

Email: solo33@gmail.com
�Department of Mathematics, Chuzhou University, Chuzhou, China, Email:

shulianghuang@163.com
¶Corresponding Author.



1428

Let G be a family of graphs. A topological index is a function Top : G → R such
that G ∼= H implies Top(G) = Top(H) for two graphs G,H ∈ G [8]. A topological
index is, in fact, a numeric quantity associated with chemical constitution purporting for
correlation of chemical structure with many physico-chemical properties. Actually, they
are designed on the ground of transformation of a molecular graph into a number which
characterizes the topology of that graph. Due to the chemical signi�cance of topological
indices, remarkable research has been done on topological indices of various families of
graphs.

In this paper, we consider simple connected graphs G with vertex set V (G) and edge
set E(G). The number d(v) denotes the degree of a vertex v in G, which is the number of
edges adjacent with v in G. The number d(u, v) denotes the distance between two vertices
u and v of G, which is de�ned as the length of a shortest path between u and v in G.
A network is simply a connected graph having no multiple edges. Here, we consider the
family of circulant networks, which is de�ned as follows: Let n,m and a1, a2, . . . , am be
positive integers, 1 ≤ ai ≤ bn2 c and ai 6= aj for all 1 ≤ i < j ≤ m. An undirected graph
with the set of vertices {vi+1 ; i ∈ Zn} (Zn : the additive group of integers modulo n)
and the set of edges {vjvj+al : 1 ≤ j ≤ n, 1 ≤ l ≤ m} is called a circulant graph, and is
denoted by Cn(a1, a2, . . . , am). The numbers a1, a2, . . . , am are called the generators and
we say that the edge vjvj+al is of type al. The indices after n will be taken modulo n.
It is easy to see that a circulant network Cn(a1, a2, . . . , am) is a regular graph of degree
r, where

r =

{
2m− 1 if n

2
∈ {a1, a2, . . . , am},

2m otherwise.

The class of circulant networks is an important class of graphs, which is useful in the
design of local area networks [1]. Circulant networks have played a vital role for decades
in the design of computer and telecommunication networks due to their optimal fault-
tolerance and routing capabilities [2]. They also constitute the basis for designing certain
data alignment networks for complex memory systems [14]. We consider two families of
circulant graphs, Cn(1, a) for a = 2, 3 in this paper, and compute the Wiener, hyper-
Wiener and Schultz indices on these families, which are de�ned as follows:

In 1947, to study the boiling points of para�ns, Wiener introduced the �rst non-trivial
distance-based topological index. He named this index the path number, and later on
it was called the Wiener index [13]. The research interest in Wiener index and related
indices is still considerable (see the bibliography and therein [9, 11]). This index was
given in terms of edge weights which, originally, was de�ned on trees. Traditionally, its
generalization on general graphs G is de�ned as:

W (G) =
∑

u,v∈V (G)

d(u, v).

During the last two decades, a large number of generalizations and extensions of the
Wiener index has been introduced and studied by various mathematical chemists. An
extensive bibliography on this matter can by viewed in [4, 7]. One of these extensions, the
hyper-Wiener index was proposed by Randi¢ for trees [10], and extended to all connected
graphs by Klein et al. [6]. This index remarkably used as a structure descriptor for
predicting physicochemical properties of chemical compounds, which are signi�cant for
pharmacology, agriculture and environment protection [3, 6, 10]. This index is de�ned
as:

WW (G) =
1

2

∑
u,v∈V (G)

d(u, v)(1 + d(u, v)).
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Another generalization of the Wiener index is the Schultz molecular topological index,
which was introduced in 1989 [12], and is de�ned as:

MTI(G) =
∑

u∈V (G)

∑
v∈V (G)

d(u)(Auv + d(u, v)),

where Auv is the (u, v)-th entry of the adjacency matrix A of G.

2. Circulant networks Cn(1, 2)

In this section, we consider circulant networks Cn(1, 2), for all n ≥ 5, in the context of
the Wiener, hyper-Wiener and Schultz indices. Firstly, we de�ne some notations which
will be useful in the sequel. Let

D(v|G) =
∑

u∈V (G)

d(u, v) and DD(v|G) =
1

2

D(v|G) +
∑

u∈V (G)

(d(u, v))2

 ,

and we call them the distance number and the double distance number of v, respectively.
Then the Wiener and the hyper-Wiener indices can be expressed as:

W (G) =
1

2

∑
v∈V (G)

D(v|G),

WW (G) =
1

2

∑
v∈V (G)

DD(v|G).

The Schultz molecular topological index can also be expressed as [5]:

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G).

2.1. Theorem. For n ≥ 5, let G be a circulant network Cn(1, 2). Then

W (G) =
1

16


n2(n+ 2) , when n ≡ 0, 2 (mod 4),

n(n− 1)(n+ 3) , when n ≡ 1 (mod 4),
n(n+ 1)2 , when n ≡ 3 (mod 4).

Proof. We discuss the following three cases:
Case 1: When n ≡ 0, 2 (mod 4). For all v ∈ V (G), the distance number of v is

D(v|G) =

{
4(1 + 2 + . . .+ n−4

4
) + 3(n

4
) , when n ≡ 0 (mod 4),

4(1 + 2 + . . .+ n−2
4

) + 1(n−2
4

+ 1) , when n ≡ 2 (mod 4),

=
1

8
n(n+ 2).

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

8
n(n+ 2) =

1

16
n2(n+ 2).

Case 2: When n ≡ 1 (mod 4). The distance number of each v ∈ V (G) is

D(v|G) = 4

(
1 + 2 + . . .+

n− 1

4

)
=

1

8
(n− 1)(n+ 3).

By applying the formula of Wiener index, we have



1430

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

8
(n− 1)(n+ 3) =

1

16
n(n− 1)(n+ 3).

Case 3: When n ≡ 3 (mod 4). The distance number of every vertex v of G is

D(v|G) = 4

(
1 + 2 + . . .+

n− 3

4

)
+ 2

(
n− 3

4
+ 1

)
=

1

8
(n+ 1)2.

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

8
(n+ 1)2 =

1

16
n(n+ 1)2.

�

2.2. Theorem. For n ≥ 5, let G be a circulant network Cn(1, 2). Then

WW (G) =
1

192


n2(n2 + 9n+ 20) , when n ≡ 0 (mod 4),

n(n− 1)(n+ 3)(n+ 7) , when n ≡ 1 (mod 4),
n(n+ 2)(n2 + 7n+ 6) , when n ≡ 2 (mod 4),
n(n+ 1)(n2 + 8n+ 15) , when n ≡ 3 (mod 4).

Proof. We discuss the following four cases:
Case 1: When n ≡ 0 (mod 4). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + 22 + 32 + . . .+ (

n− 4

4
)2) + 3(

n

4
)2
)
.

Using the value of D(v|G) derived in Theorem 2.1 (Case-1), we have

DD(v|G) =
1

96
n(n2+9n+20).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

96
n(n2 + 9n+ 20) =

1

192
n2(n2 + 9n+ 20).

Case 2: When n ≡ 1 (mod 4). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + 22 + 32 + . . .+ (

n− 1

4
)2)

)
.

Using the value of D(v|G) derived in Theorem 2.1 (Case-1), we have

DD(v|G) =
1

96
(n−1)(n+3)(n+7).

By applying the formula of hyper-Wiener index, we have
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WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

96
(n− 1)(n+ 3)(n+ 7) =

1

192
n(n− 1)(n+ 3)(n+ 7).

Case 3: When n ≡ 2 (mod 4). For each vertex v of G, the double distance number of v
is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + 22 + 32 + . . .+ (

n− 2

4
)2) + 1(

n− 2

4
+ 1)2

)
.

Using the value of D(v|G) derived in Theorem 2.1 (Case-2), we have

DD(v|G) =
1

96
(n+2)(n2+7n+6).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

96
(n+ 2)(n2 + 7n+ 6) =

1

192
n(n+ 2)(n2 + 7n+ 6).

Case 4: When n ≡ 3 (mod 4). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + 22 + 32 + . . .+ (

n− 3

4
)2) + 2(

n− 3

4
+ 1)2

)
.

Using the value of D(v|G) derived in Theorem 2.1 (Case-3), we have

DD(v|G) =
1

96
(n+1)(n2+8n+15).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

96
(n+ 1)(n2 + 8n+ 15) =

1

192
n(n+ 1)(n2 + 8n+ 15).

�

2.3. Theorem. For n ≥ 5, let G be a circulant network Cn(1, 2). Then

MTI(G) =
1

2
n


(n2 + 2n+ 32) , when n ≡ 0, 2 (mod 4),
(n2 + 2n+ 29) , when n ≡ 1 (mod 4),
(n2 + 2n+ 33) , when n ≡ 3 (mod 4).

Proof. We discuss the following three cases:
Case 1: When n ≡ 0, 2 (mod 4). Since the degree d(v) of each vertex v in G is 4, so
using the distance number D(v|G) for each v ∈ V (G), derived in Theorem 2.1 (Case-1),
and by applying the formula of Schultz molecular topological index, we have
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MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

8
n(n+ 2)

)
=

1

2
n(n2 + 2n+ 32).

Case 2: When n ≡ 1 (mod 4). Since the degree d(v) of each vertex v in G is 4, so using
the distance number D(v|G) for each v ∈ V (G), derived in Theorem 2.1 (Case-2), and
by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

8
(n− 1)(n+ 3)

)
=

1

2
n(n2 + 2n+ 29).

Case 3: When n ≡ 3 (mod 4). Since the degree d(v) of each vertex v in G is 4, so using
the distance number D(v|G) for each v ∈ V (G), derived in Theorem 2.1 (Case-3), and
by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

8
(n+ 1)2

)
=

1

2
n(n2 + 2n+ 33).

�

3. Circulant networks Cn(1, 3)

In this section, we consider circulant networks Cn(1, 3), for all n ≥ 7, in the context
of the Wiener, hyper-Wiener and Schultz indices.

3.1. Theorem. For n ≥ 7, let G be a circulant network Cn(1, 3). Then

W (G) =
1

24


n2(n+ 8) , when n ≡ 0, 4 (mod 6),

n(n+ 9)(n− 1) , when n ≡ 1, 3 (mod 6),
n(n2 + 8n− 8) , when n ≡ 2 (mod 6),
n(n2 + 8n+ 7) , when n ≡ 5 (mod 6).

Proof. We discuss the following four cases:
Case 1: When n ≡ 0, 4 (mod 6). For all v ∈ V (G), the distance number of v is

D(v|G) =

{
4(1) + 6(2 + 3 + . . .+ n−6

6
) + 5(n

6
) + 2(n+6

6
) , n ≡ 0 (mod 6),

4(1 + n+2
6

) + 6(2 + 3 + . . .+ n−4
6

) + 1(n+8
6

) , n ≡ 4 (mod 6),

=
1

12
n(n+ 8).

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

12
n(n+ 8) =

1

24
n2(n+ 8).

Case 2: When n ≡ 1, 3 (mod 6). For all v ∈ V (G), the distance number of v is
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D(v|G) =

{
4(1) + 6(2 + 3 + . . .+ n−1

6
) + 2(n+5

6
)) , when n ≡ 1 (mod 6),

4(1 + n+3
6

) + 6(2 + 3 + . . .+ n−3
6

) , when n ≡ 3 (mod 6),

=
1

12
(n+ 9)(n− 1).

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

12
(n+ 9)(n− 1) =

1

24
n(n+ 9)(n− 1).

Case 3: When n ≡ 2 (mod 6). For all v ∈ V (G), the distance number of v is

D(v|G) = 4(1) + 6(2 + 3 + . . .+
n− 2

6
) + 3(

n+ 4

6
)

=
1

12
(n2 + 8n− 8).

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

12
(n2 + 8n− 8) =

1

24
n(n2 + 8n− 8).

Case 4: When n ≡ 5 (mod 6). For all v ∈ V (G), the distance number of v is

D(v|G) = 4(1 +
n+ 1

6
) + 6(2 + 3 + . . .+

n− 5

6
) + 2(

n+ 7

6
)

=
1

12
(n2 + 8n+ 7).

By applying the formula of Wiener index, we have

W (G) =
1

2

∑
v∈V (G)

D(v|G) =
1

2

∑
v∈V (G)

1

12
(n2 + 8n+ 7) =

1

24
n(n2 + 8n+ 7).

�

3.2. Theorem. For n ≥ 7, let G be a circulant network Cn(1, 3). Then

WW (G) =
1

432



n2(n2 + 21n+ 162) , when n ≡ 0 (mod 6),
n(n3 + 21n2 + 135n− 157) , when n ≡ 1 (mod 6),
n(n3 + 12n2 + 138n− 152) , when n ≡ 2 (mod 6),
n(n3 + 21n2 + 135n− 189) , when n ≡ 3 (mod 6),
n(n3 + 21n2 + 162n+ 32) , when n ≡ 4 (mod 6),
n(n3 + 21n2 + 183n+ 163) , when n ≡ 5 (mod 6).

Proof. We discuss the following six cases:
Case 1: When n ≡ 0 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12) + 6(22 + . . .+ (

n− 6

6
)2) + 5(

n

6
)2 + 2(

n+ 6

6
)2
)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-1), we have

DD(v|G) =
1

216
n(n2+21n+162).
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By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
n(n2 + 21n+ 162) =

1

432
n2(n2 + 21n+ 162).

Case 2: When n ≡ 1 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12) + 6(22 + 32 + . . .+ (

n− 1

6
)2 + 2(

n+ 5

6
)2)

)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-2), we have

DD(v|G) =
1

216
(n3+21n2+135n−157).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
(n3 + 21n2 + 135n− 157)

=
1

432
n(n3 + 21n2 + 135n− 157).

Case 3: When n ≡ 2 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12) + 6(22 + 32 + . . .+ (

n− 2

6
)2) + 3(

n+ 4

6
)2
)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-3), we have

DD(v|G) =
1

216
(n3+21n2+138n−152).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
(n3 + 21n2 + 138n− 152)

=
1

432
n(n3 + 21n2 + 138n− 152).

Case 4: When n ≡ 3 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + (

n+ 3

6
)2) + 6(22 + 32 + . . .+ (

n− 3

6
)2)

)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-2), we have
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DD(v|G) =
1

216
(n3+21n2+135n−189).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
(n3 + 21n2 + 135n− 189)

=
1

432
n(n3 + 21n2 + 135n− 189).

Case 5: When n ≡ 4 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + (

n+ 2

6
)2) + 6(22 + . . .+ (

n− 4

6
)2) + 1(

n+ 8

6
)2
)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-1), we have

DD(v|G) =
1

216
(n3+21n2+162n+32).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
(n3 + 21n2 + 162n+ 32)

=
1

432
n(n3 + 21n2 + 162n+ 32).

Case 6: When n ≡ 5 (mod 6). For all v ∈ V (G), the double distance number of v is

DD(v|G) =
1

2

(
D(v|G) + 4(12 + (

n+ 1

6
)2) + 6(22 + . . .+ (

n− 5

6
)2) + 2(

n+ 7

6
)2
)
.

Using the value of D(v|G) derived in Theorem 3.1 (Case-4), we have

DD(v|G) =
1

216
(n3+21n2+183n+163).

By applying the formula of hyper-Wiener index, we have

WW (G) =
1

2

∑
v∈V (G)

DD(v|G)

=
1

2

∑
v∈V (G)

1

216
(n3 + 21n2 + 183n+ 163)

=
1

432
n(n3 + 21n2 + 183n+ 163).

�
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3.3. Theorem. For n ≥ 7, let G be a circulant network Cn(1, 3). Then

MTI(G) =
1

3
n


(n2 + 8n+ 48) , when n ≡ 0, 4 (mod 6),
(n2 + 8n+ 39) , when n ≡ 1, 3 (mod 6),
(n2 + 8n+ 40) , when n ≡ 2 (mod 6),
(n2 + 8n+ 55) , when n ≡ 5 (mod 6).

Proof. We discuss the following four cases:
Case 1: When n ≡ 0, 4 (mod 6). Since the degree d(v) of each vertex v in G is 4, so
using the distance number D(v|G) for each v ∈ V (G), derived in Theorem 3.1 (Case-1),
and by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

12
n(n+ 8)

)
=

1

3
n(n2 + 8n+ 48).

Case 2: When n ≡ 1, 3 (mod 6). Since the degree d(v) of each vertex v in G is 4, so
using the distance number D(v|G) for each v ∈ V (G), derived in Theorem 3.1 (Case-2),
and by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

12
n(n2 + 8n+ 3)

)
=

1

3
n(n2 + 8n+ 39).

Case 3: When n ≡ 2 (mod 6). Since the degree d(v) of each vertex v in G is 4, so using
the distance number D(v|G) for each v ∈ V (G), derived in Theorem 3.1 (Case-3), and
by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

12
(n2 + 8n− 8)

)
=

1

3
n(n2 + 8n+ 40).

Case 4: When n ≡ 5 (mod 6). Since the degree d(v) of each vertex v in G is 4, so using
the distance number D(v|G) for each v ∈ V (G), derived in Theorem 3.1 (Case-4), and
by applying the formula of Schultz molecular topological index, we have

MTI(G) =
∑

v∈V (G)

(d(v))2 +
∑

v∈V (G)

d(v)D(v|G)

= 16n+ 4n

(
1

12
(n2 + 8n+ 7)

)
=

1

3
n(n2 + 8n+ 55).

�

Acknowledgment. This research work was supported by the Anhui Provincial Natural
Science Foundation (1408085QA08) and the Key University Science Research Project of
Anhui Province (KJ2014A183) and also the Training Program of Chuzhou University
(2014PY06) of China.



1437

References

[1] Bermound, J.C., Comellas, F. and Hsu, D. F. Distributed loop computer networks: survey,
J. Parallel Distrib. Comput. 24, 2-10, 1995.

[2] Boesch, F.T. and Wang, J. Reliable circulant networks with minimum transmission delay,
IEEE Transactions on Circuit and Systems 32, 1286-1291, 1985.

[3] Devillers, J. and Balaban, A.T. (Eds.) Topological indices and related descriptors in QSAR
and QSPR (Gordon and Breach, Amsterdam, 1999).

[4] Diudea, M.V. and Gutman, I. Croat. Chem. Acta 71, 21-51, 1998.
[5] Klavºar, S. and Gutman, I. A comparison of the Schultz molecular topological index with

the Wiener index, J. Chem. Inf. Comut. Sci. 36, 1001-1003, 1996.
[6] Klein, D.J., Lukovits, I. and Gutman, I. On the de�nition of the hyper-Wiener index for

cycle containing structures, J. Chem. Inf. Comput. Sci. 35, 50-52, 1995.
[7] Lukovits, I. in: Diudea, M.V. (Ed.) QSAR/QSPR studies by molecular descriptors, Nova,

Huntigton, 31-38, 2001.
[8] Mirzargar, M. and Ashra�, A.R. Some distance-based topological indices of a non-commuting

graph, Hacettepe J. Math. Stat. 41(4), 515-526, 2012.
[9] Nikoli¢, S., Trinajsti¢, N. and Mihali¢, Z. The Wiener index: Development and Applications,

Croat. Chem. Acta 68, 105-129, 1995.
[10] Randi¢, M. Novel molecular description for structure property studies, Chem. Phys. Lett.

211, 478-483, 1993.
[11] Rouvray, D.H. Should we have designs on topological indices? In Chemical Applications of

Topology and Graph Theory; King, B.B. (Ed. 28 Elsevier, Amsterdam, 1984), 159-177.
[12] Schultz, H.P. Topological organic chemistry 1. Graph theory and topological indices of alka-

nes, J. Chem. Inf. Comput. Sci. 29, 227-228, 1989.
[13] Wiener, H. Correlation of heats of isomerization and di�erences in heats of vaporization of

isomers, among the para�n hydrocarbons, J. Am. Chem. Soc. 69, 17-20, 1947.
[14] Wong, G.K. and Coppersmith, D.A. A combinatorial problem related to multimodule mem-

ory organization, J. Assoc. Comp. Mach. 21, 392-401, 1974.


